1
|
Dou J, Li J, Liu J, Shang J, Tan W, Miao X, Zhou J, Guo G. A multifunctional nanoplatform for precision-guided therapeutic intervention in bacterial infection. J Mater Chem B 2024; 12:8133-8141. [PMID: 39054879 DOI: 10.1039/d4tb01020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Skin wound infection has become a global clinical problem in recent years. Curcumin (Cur) and polylysine (PLL) are natural products with strong antibacterial properties. However, the poor water solubility and low stability of Cur and the cationic toxicity of PLL limit their application. In this study, we synthesized a macromolecular hyaluronic acid (HA)-curcumin drug (HC) via esterification. HC was attracted by electrostatic interactions with positively charged PLL to form a spherical nanocomplex (HCP) with hyaluronidase (HAase) and pH dual response under ultrasonication. HCP was found to target the bacterial infection microenvironment and release Cur and PLL for synergistic antibacterial action. In addition, HCP was proven to exhibit good biocompatibility and broad spectrum antibacterial activity to bacterial strains S. aureus and E. coli and antibacterial biofilm activities in vitro. In vivo experiments showed that HCP could inhibit pathogens and promote wound healing. These results prove that HCP can be used as a new strategy for the treatment and management of infected wounds.
Collapse
Affiliation(s)
- Jinli Dou
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China.
| | - Juan Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China.
| | - Jingjing Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China.
| | - Jinmeng Shang
- School of Clinical Medicine, Shandong Second Medical University, Weifang 261053, China
| | - Wei Tan
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China.
| | - Xia Miao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China
| | - Jin Zhou
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, People's Republic of China.
| | - Guifang Guo
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong Second Medical University/Weifang People's Hospital, Weifang 261041, China.
| |
Collapse
|
2
|
Shyam S, Misra S, Mitra S, Mitra SK. Bacteria-surface interactions: role of impacting bacteria-laden droplets. SOFT MATTER 2024; 20:3425-3435. [PMID: 38623617 DOI: 10.1039/d4sm00196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Understanding the interactions of pathogenic droplets with surfaces is crucial to biomedical applications. In this study, using E. coli as the model microbe, we investigate the impact of a bacteria-laden droplet on different substrates, both bare and antimicrobial. In doing so, we unveil the significance of kinetic energy and spreading parameters of the impacting droplet in determining the microbes' proliferation capabilities. Our results indicate an inverse relationship between the impact Weber number and the bacterial ability to proliferate. We reveal that the mechanical stress generated during impact impedes the capabilities of microbes present inside the droplet to create their progeny. Following an order analysis of the mechanical stress generated, we argue that the impact does not induce lysis-driven cell death of the bacteria; rather, it promotes a stress-driven transition of viable bacteria to a viable-but-non-culturable (VBNC) state. Furthermore, variations in the concentration of particles on the antimicrobial surfaces revealed the role of the post-impact spreading behaviour in dictating bacterial proliferation capabilities. Contrary to the conventional notion, we demonstrate that during the early stages of interaction, a bare substrate may outperform an antibacterial substrate in the inactivation of the bacterial load. Finally, we present an interaction map illustrating the complex relationship between bacterial colony-forming units, bactericide concentration on the surface, and the impact Weber number. We believe that the inferences of the study, highlighting the effect of mechanical stresses on the soft cell wall of microbes, could be a useful design consideration for the development of antimicrobial surfaces.
Collapse
Affiliation(s)
- Sudip Shyam
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sirshendu Misra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Surjyasish Mitra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Sushanta K Mitra
- Micro & Nano-Scale Transport Laboratory, Waterloo Institute for Nanotechnology, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
3
|
Kim E, Jeon S, Yang YS, Jin C, Kim JY, Oh YS, Rah JC, Choi H. A Neurospheroid-Based Microrobot for Targeted Neural Connections in a Hippocampal Slice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208747. [PMID: 36640750 DOI: 10.1002/adma.202208747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Functional restoration by the re-establishment of cellular or neural connections remains a major challenge in targeted cell therapy and regenerative medicine. Recent advances in magnetically powered microrobots have shown potential for use in controlled and targeted cell therapy. In this study, a magnetic neurospheroid (Mag-Neurobot) that can form both structural and functional connections with an organotypic hippocampal slice (OHS) is assessed using an ex vivo model as a bridge toward in vivo application. The Mag-Neurobot consists of hippocampal neurons and superparamagnetic nanoparticles (SPIONs); it is precisely and skillfully manipulated by an external magnetic field. Furthermore, the results of patch-clamp recordings of hippocampal neurons indicate that neither the neuronal excitabilities nor the synaptic functions of SPION-loaded cells are significantly affected. Analysis of neural activity propagation using high-density multi-electrode arrays shows that the delivered Mag-Neurobot is functionally connected with the OHS. The applications of this study include functional verification for targeted cell delivery through the characterization of novel synaptic connections and the functionalities of transported and transplanted cells. The success of the Mag-Neurobot opens up new avenues of research and application; it offers a test platform for functional neural connections and neural regenerative processes through cell transplantation.
Collapse
Affiliation(s)
- Eunhee Kim
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sungwoong Jeon
- IMsystem Co., Ltd., 333, Technojungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Yoon-Sil Yang
- Emerging Infectious Disease Vaccines Division, National Institute of Food and Drug Safety Evaluation, 187, Osongsaengmyeong 2-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28159, Republic of Korea
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Chaewon Jin
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
| | - Yong-Seok Oh
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- DGIST-ETH Microrobotics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Department of Robotics and Mechatronics Engineering, DGIST, Daegu, 42988, Republic of Korea
- Robotics and Mechatronics Engineering Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
4
|
Antimicrobial-Loaded Polyacrylamide Hydrogels Supported on Titanium as Reservoir for Local Drug Delivery. Pathogens 2023; 12:pathogens12020202. [PMID: 36839473 PMCID: PMC9962340 DOI: 10.3390/pathogens12020202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Arthroplasty is a highly successful treatment to restore the function of a joint. The contamination of the implant via bacterial adhesion is the first step toward the development of device-associated infections. The emerging concern about antimicrobial resistance resulted in a growing interest to develop alternative therapeutic strategies. Thus, the increment in the incidence of bacterial periprosthetic infections, the complexity of treating infections caused by organisms growing in biofilms, together with the rise in antibiotic resistant bacteria, expose the need to design novel surfaces that provide innovative solutions to these rising problems. The aim of this work is to develop a coating on titanium (Ti) suitable for inhibiting bacterial adhesion and proliferation, and hence, biofilm formation on the surface. We have successfully prepared polyacrylamide hydrogels containing the conventional antibiotic ampicillin (AMP), silver nanoparticles (AgNPs), and both, AMP and AgNPs. The release of the antibacterial agents from the gelled to aqueous media resulted in an excellent antibacterial action of the loaded hydrogels against sessile S. aureus. Moreover, a synergic effect was achieved with the incorporation of both AMP and AgNPs in the hydrogel, which highlights the importance of combining antimicrobial agents having different targets. The polyacrylamide hydrogel coating on the Ti surface was successfully achieved, as it was demonstrated by FTIR, contact angle, and AFM measurements. The modified Ti surfaces having the polyacrylamide hydrogel film containing AgNPs and AMP retained the highest antibacterial effect against S. aureus as it was found for the unsupported hydrogels. The modified surfaces exhibit an excellent cytocompatibility, since healthy, flattened MC3T3-E1 cells spread on the surfaces were observed. In addition, similar macrophage RAW 264.7 adhesion was found on all the surfaces, which could be related to a low macrophage activation. Our results indicate that AMP and AgNP-loaded polyacrylamide hydrogel films on Ti are a good alternative for designing efficient antibacterial surfaces having an excellent cytocompatibility without inducing an exacerbated immune response. The approach emerges as a superior alternative to the widely used direct adsorption of therapeutic agents on surfaces, since the antimicrobial-loaded hydrogel coatings open the possibility of modulating the concentration of the antimicrobial agents to enhance bacterial killing, and then, reducing the risk of infections in implantable materials.
Collapse
|
5
|
Fluorophore-Tagged Poly(ʟ-Lysine) Block copolymer Nano-assemblies for Real-time Visualization and Antimicrobial Activity. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Chug M, Brisbois EJ. Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials. ACS MATERIALS AU 2022; 2:525-551. [PMID: 36124001 PMCID: PMC9479141 DOI: 10.1021/acsmaterialsau.2c00040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Implant-associated infections arising from biofilm development are known to have detrimental effects with compromised quality of life for the patients, implying a progressing issue in healthcare. It has been a struggle for more than 50 years for the biomaterials field to achieve long-term success of medical implants by discouraging bacterial and protein adhesion without adversely affecting the surrounding tissue and cell functions. However, the rate of infections associated with medical devices is continuously escalating because of the intricate nature of bacterial biofilms, antibiotic resistance, and the lack of ability of monofunctional antibacterial materials to prevent the colonization of bacteria on the device surface. For this reason, many current strategies are focused on the development of novel antibacterial surfaces with dual antimicrobial functionality. These surfaces are based on the combination of two components into one system that can eradicate attached bacteria (antibiotics, peptides, nitric oxide, ammonium salts, light, etc.) and also resist or release adhesion of bacteria (hydrophilic polymers, zwitterionic, antiadhesive, topography, bioinspired surfaces, etc.). This review aims to outline the progress made in the field of biomedical engineering and biomaterials for the development of multifunctional antibacterial biomedical devices. Additionally, principles for material design and fabrication are highlighted using characteristic examples, with a special focus on combinational nitric oxide-releasing biomedical interfaces. A brief perspective on future research directions for engineering of dual-function antibacterial surfaces is also presented.
Collapse
Affiliation(s)
- Manjyot
Kaur Chug
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials
and Biomedical Engineering, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Yang X, Castell-Perez ME, Moreira RG, Sevimli-Yurttas Z. trans-Cinnamaldehyde-encapsulated zeolitic imidazolate framework-8 nanoparticle complex solutions to inactivate Escherichia coli O157:H7 on fresh spinach leaves. J Food Sci 2022; 87:4649-4664. [PMID: 36045506 DOI: 10.1111/1750-3841.16294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
This study synthesized and characterized ZIF-8 nanoparticles encapsulated with trans-cinnamaldehyde oil (TC) and evaluated their antimicrobial effectiveness against Escherichia coli O157:H7 on fresh spinach leaves. The antimicrobial activity of different mass ratios of TC-encapsulated ZIF-8 against E. coli O157:H7 (ATCC 43895) strain was assessed and the best mass ratio of 1:2 TC to ZIF-8 identified. Spinach leaves were treated with (1) 0.5TC@ZIF-8_PL nanoparticle complexes solution, (2) 200 ppm chlorine, (3) free TC, and (4) sterilized distilled water (control). All sample groups were rinsed for 1 min, dried in a biosafety cabinet, weighted, and packed in sterilized Whirl-pkTM Stand-Up sampling bags, and stored at 4°C for 15 days for shelf life studies. Samples were dipped into a solution of nanoparticles and another group was sprayed. The quality of spinach samples was assessed by monitoring changes in moisture content (MC), water activity (Aw), color, pH, texture (firmness and work), vitamin C content, total carotenoid, and chlorophyll content. Spinach leaves treated with 0.5TC@ZIF-8_PL had less (p < 0.05) water, total chlorophyll, and total carotenoid losses, with minimal changes in pH. However, treatment did not prevent the color degradation (p > 0.05) and adversely affected spinach firmness. The spinach samples treated with 200 ppm chlorine and free TC had higher (p < 0.05) total chlorophyll degradation than the samples treated with the nanoparticles. The mass ratio of TC-encapsulated ZIF-8 must be readjusted to reduce potential toxicity issues while maintaining the antimicrobial properties. PRACTICAL APPLICATION: Zeolitic imidazolate framework-8 (ZIF-8) nanoparticle complex can be used to encapsulate natural antimicrobials to inhibit growth of pathogens on fresh produce. A 2-log reduction in populations of Escherichia coli O157:H7 on fresh spinach leaves was achieved using trans-cinnamaldehyde at low concentrations. The results can be used to embed the compounds into polymeric films for antimicrobial packaging applications.
Collapse
Affiliation(s)
- Xiaoying Yang
- Department of Food Science and Technology, Texas A&M University, College Station, Texas, USA
| | - Maria Elena Castell-Perez
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Rosana G Moreira
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Zeynep Sevimli-Yurttas
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Wang S, Gao CZ, Liu X, Wu FG, Han X. Long-Chain Poly-d-Lysines Interact with the Plasma Membrane and Induce Protective Autophagy and Intense Cell Necrosis. Bioconjug Chem 2022; 33:938-947. [PMID: 35442635 DOI: 10.1021/acs.bioconjchem.2c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polylysines have been frequently used in drug delivery and antimicrobial and cell adhesion studies. Because of steric hindrance, chirality plays a major role in the functional difference between poly-l-lysine (PLL) and poly-d-lysine (PDL), especially when they interact with the plasma membranes of mammalian cells. Therefore, it is speculated that the interaction between chiral polylysines and the plasma membrane may cause different cellular behaviors. Here, we carefully investigated the interaction pattern of PLL and PDL with plasma membranes. We found that PDL could be anchored onto the plasma membrane and interact with the membrane lipids, leading to the rapid morphological change and death of A549 cells (a human lung cancer cell line) and HPAEpiCs (a human pulmonary alveolar epithelial cell line). In contrast, PLL exhibited good cytocompatibility and was not anchored onto the plasma membranes of these cells. Unlike PLL, PDL could trigger protective autophagy to prevent cells in a certain degree, and the PDL-caused cell death occurred via intense necrosis (featured by increased intracellular Ca2+ content and plasma membrane disruption). In addition, it was found that the short-chain PDL with a repeat unit number of 9 (termed DL9) could locate in lysosomes and induce autophagy at high concentrations, but it could not elicit drastic cell death, which proved that the repeat unit number of polylysine could affect its cellular action. This research confirms that the interaction between chiral polylysines and the plasma membrane can induce autophagy and intense necrosis, which provides guidance for the future studies of chiral molecules/drugs.
Collapse
Affiliation(s)
- Shujing Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Cheng-Zhe Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental, Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Wang Y, Zheng Q, Li L, Pan L, Zhu H. Anti-Quorum-Sensing Activity of Tryptophan-Containing Cyclic Dipeptides. Mar Drugs 2022; 20:md20020085. [PMID: 35200615 PMCID: PMC8924889 DOI: 10.3390/md20020085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some virulence factors. It is a promising target for screening to find anti-virulence agents in the coming post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine, the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein, the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-contained CDPs were able to decrease the production of violacein in C.violaceum CV026 and predicted as binding within the same pocket of receptor protein CviR, but in lower binding energy compared with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems, these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm formation, and adhesion. These investigations suggested a promising way to keep the tryptophan untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.
Collapse
|
10
|
Shrestha S, McFadden MJ, Teng ACT, Chang PDM, Deng J, Wong TWY, Cohn RD, Ivakine EA, Gramolini AO, Santerre JP. Self-Assembled Oligo-Urethane Nanoparticles: Their Characterization and Use for the Delivery of Active Biomolecules into Mammalian Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58352-58368. [PMID: 34873903 DOI: 10.1021/acsami.1c17868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing safe and effective strategies to deliver biomolecules such as oligonucleotides and proteins into cells has grown in importance over recent years, with an increasing demand for non-viral methods that enable clinical translation. Here, we investigate uniquely configured oligo-urethane nanoparticles based on synthetic chemistries that minimize the release of pro-inflammatory biomarkers from immune cells, show low cytotoxicity in a broad range of cells, and efficiently deliver oligonucleotides and proteins into mammalian cells. The mechanism of cell uptake for the self-assembled oligo-urethane nanoparticles was shown to be directed by caveolae-dependent endocytosis in murine myoblasts (C2C12) cells. Inhibiting caveolae functions with genistein and methyl-β-cyclodextrin limited nanoparticle internalization. The nanoparticles showed a very high delivery efficiency for the genetic material (a 47-base oligonucleotide) (∼80% incorporation into cells) as well as the purified protein (full length firefly luciferase, 67 kDa) into human embryonic kidney (HEK293T) cells. Luciferase enzyme activity in HEK293T cells demonstrated that intact and functional proteins could be delivered and showed a significant extension of activity retention up to 24 h, well beyond the 2 h half-life of the free enzyme. This study introduces a novel self-assembled oligo-urethane nanoparticle delivery platform with very low associated production costs, enabled by their scalable chemistry (the benchwork cost is $ 0.152/mg vs $ 974.6/mg for typical lipid carriers) that has potential to deliver both oligonucleotides and proteins for biomedical purposes.
Collapse
Affiliation(s)
- Suja Shrestha
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Ontario, Canada
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
| | - Meghan J McFadden
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| | - Allen C T Teng
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Patrick Dong Min Chang
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Chemical Engineering & Applied Chemistry, Faculty of Engineering, University of Toronto, Toronto M5S 3E5, Canada
| | - Joyce Deng
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
| | - Tatianna W Y Wong
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Ronald D Cohn
- Department of Molecular & Medical Genetics and Paediatrics, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Evgueni A Ivakine
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - J Paul Santerre
- Faculty of Dentistry, University of Toronto, Toronto M5G 1G6, Ontario, Canada
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto M5G 1M1, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Ontario, Canada
| |
Collapse
|
11
|
Parandhaman T, Choudhary P, Ramalingam B, Schmidt M, Janardhanam S, Das SK. Antibacterial and Antibiofouling Activities of Antimicrobial Peptide-Functionalized Graphene-Silver Nanocomposites for the Inhibition and Disruption of Staphylococcus aureus Biofilms. ACS Biomater Sci Eng 2021; 7:5899-5917. [PMID: 34787388 DOI: 10.1021/acsbiomaterials.1c01253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the emergence of antibiotic-resistant strains, bacterial infection and biofilm formation are growing concerns in healthcare management. Herein, we report an eco-benign strategy for the synthesis and functionalization of graphene-silver (rGOAg) nanocomposites with an antimicrobial peptide (AMP) for the treatment of Staphylococcus aureus infection. The synthesis of rGOAg nanocomposites was carried out by simple microwave reduction, and the as-synthesized rGOAg was covalently functionalized with an AMP. As a natural AMP, poly-l-lysine (PLL) functionalization of rGOAg enhanced the antibacterial efficacy and target specificity against the S. aureus biofilm. The robust bactericidal efficiency and biofilm disruption by AMP-functionalized rGOAg (designated as GAAP) occurred through the "contact-kill-release" mode of action, where the electrostatic interaction with bacterial cells together with intracellular ROS generation induced physical disruption to the cell membrane. The internalization of GAAP into the cytoplasm through the damaged cell membrane caused an outburst of intracellular proteins and DNA. Crystal violet staining along with fluorescence and confocal microscopic images showed an effective inhibition and disruption of the S. aureus biofilm upon treatment with GAAP. PLL functionalization also prevented the dissolution of Ag+ ions and thereby minimized the in vitro toxicity of GAAP to the 3 T6 fibroblast and human red blood cells. The ex vivo rat skin disinfection model further demonstrated the potency of GAAP in eliminating the biofilm formation and disruption of the S. aureus biofilm. The obtained results demonstrated a general approach for designing a functional nanocomposite material to disrupt the mature biofilm and provided a promising strategy for treating bacterial infection.
Collapse
Affiliation(s)
- Thanusu Parandhaman
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Michael Schmidt
- Electron Microscopy Facility, Tyndall National Institute, University College Cork (UCC), Lee Maltings Complex, Dyke Parade, Cork T12 R5CP, Ireland
| | - Sridevi Janardhanam
- Centre for Analytical, Testing, Evaluation and Reporting Services, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Wei C, Song J, Tan H. A paintable ophthalmic adhesive with customizable properties based on symmetrical/asymmetrical cross-linking. Biomater Sci 2021; 9:7522-7533. [PMID: 34643623 DOI: 10.1039/d1bm01197a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In situ and efficient incision sealing for ophthalmic surgery remains unresolved. Current commercially available gel adhesives often suffer from unsuitable gelation time, difficulty in micro-delivery, and mismatched degradation period, leading to difficulties for application in ocular tissue areas. Herein, a novel hydrogel adhesive was developed based on the simultaneous crosslinking of poly(lysine) (PLL) and lysine (Lys) with an end-modified active ester multi-arm polyethylene glycol (PEG) via the amidation reaction, where the residual terminal active ester of PEG can also bond to amino groups on tissue to provide strong adhesion. Due to the different molecular structures around their amino groups, PLL and Lys can crosslink with 4-arm-PEG-NHS (active ester) respectively, to form symmetrical and asymmetrical crosslinking networks, which exhibit various mechanical properties. Therefore, just by adjusting PLL/Lys ratios, the PEG-PLL-Lys hydrogel can easily possess a suitable gelation time, appropriate mechanical properties and matched degradation rate. As a result, a paintable, readily accessible and biocompatible ophthalmic tissue adhesive (sealant) is prepared for sealing ocular tissue incision. Considering the simple strategy and outstanding performance, the PEG-PLL-Lys hydrogel is promising for clinical transformation.
Collapse
Affiliation(s)
- Changzheng Wei
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| | - Jialin Song
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| | - Haoqi Tan
- Shanghai Qisheng Biological Preparation Co., Ltd, Shanghai, 201106, China.
| |
Collapse
|
13
|
Guo J, Cao G, Wang X, Tang W, Diwu W, Yan M, Yang M, Bi L, Han Y. Coating CoCrMo Alloy with Graphene Oxide and ε-Poly-L-Lysine Enhances Its Antibacterial and Antibiofilm Properties. Int J Nanomedicine 2021; 16:7249-7268. [PMID: 34737563 PMCID: PMC8560011 DOI: 10.2147/ijn.s321800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION With increases in implant infections, the search for antibacterial and biofilm coatings has become a new interest for orthopaedists and dentists. In recent years, graphene oxide (GO) has been extensively studied for its superior antibacterial properties. However, most of these studies have focused on solutions and there are few antibacterial studies on metal surfaces, especially the surfaces of cobalt-chromium-molybdenum (CoCrMo) alloys. ε-Poly-L-lysine (ε-PLL), as a novel food preservative, has a spectrum of antimicrobial activity; however, its antimicrobial activity after coating an implant surface is not clear. METHODS In this study, for the first time, a two-step electrodeposition method was used to coat GO and ε-PLL on the surface of a CoCrMo alloy. Its antibacterial and antibiofilm properties against S. aureus and E. coli were then studied. RESULTS The results show that the formation of bacteria and biofilms on the coating surface was significantly inhibited, GO and ε-PLL composite coatings had the best antibacterial and antibiofilm effects, followed by ε-PLL and GO coatings. In terms of classification, the coatings are anti-adhesive and contact-killing/inhibitory surfaces. In addition to oxidative stress, physical damage to GO and electrostatic osmosis of ε-PLL are the main antibacterial and antibiofilm mechanisms. DISCUSSION This is the first study that GO and ε-PLL coatings were successfully prepared on the surface of CoCrMo alloy by electrodeposition. It provides a promising new approach to the problem of implant infection in orthopedics and stomatology.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
- Department of Joint Surgery, Hong-Hui Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, People’s Republic of China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Wenhao Tang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
14
|
Lerch S, Stolaś A, Darmadi I, Wen X, Strach M, Langhammer C, Moth-Poulsen K. Robust Colloidal Synthesis of Palladium-Gold Alloy Nanoparticles for Hydrogen Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45758-45767. [PMID: 34542272 PMCID: PMC8485326 DOI: 10.1021/acsami.1c15315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Metal nanoparticles are currently used in a variety of applications, ranging from life sciences to nanoelectronic devices to gas sensors. In particular, the use of palladium nanoparticles is gaining increasing attention due to their ability to catalyze the rapid dissociation of hydrogen, which leads to an excellent response in hydrogen-sensing applications. However, current palladium-nanoparticle-based sensors are hindered by the presence of hysteresis upon hydride formation and decomposition, as this hysteresis limits sensor accuracy. Here, we present a robust colloidal synthesis for palladium-gold alloy nanoparticles and demonstrate their hysteresis-free response when used for hydrogen detection. The obtained colloidal particles, synthesized in an aqueous, room-temperature environment, can be tailored to a variety of applications through changing the size, ratio of metals, and surface stabilization. In particular, the variation of the viscosity of the mixture during synthesis resulted in a highly tunable size distribution and contributed to a significant improvement in size dispersity compared to the state-of-the-art methods.
Collapse
Affiliation(s)
- Sarah Lerch
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
| | - Alicja Stolaś
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
| | - Iwan Darmadi
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Xin Wen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
| | - Michał Strach
- Chalmers
Materials Analysis Laboratory, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
| | - Christoph Langhammer
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- C.L.
| | - Kasper Moth-Poulsen
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, SE-412 96 Gothenburg, Sweden
- K.M.-P.
| |
Collapse
|
15
|
Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021; 13:2870. [PMID: 34502910 PMCID: PMC8433914 DOI: 10.3390/polym13172870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Silver has become a potent agent that can be effectively applied in nanostructured nanomaterials with various shapes and sizes against antibacterial applications. Silver nanoparticle (Ag NP) based-antimicrobial agents play a major role in different applications, including biomedical applications, as surface treatment and coatings, in chemical and food industries, and for agricultural productivity. Due to advancements in nanoscience and nanotechnology, different methods have been used to prepare Ag NPs with sizes and shapes reducing toxicity for antibacterial applications. Studies have shown that Ag NPs are largely dependent on basic structural parameters, such as size, shape, and chemical composition, which play a significant role in preparing the appropriate formulation for the desired applications. Therefore, this review focuses on the important parameters that affect the surface interaction/state of Ag NPs and their influence on antimicrobial activities, which are essential for designing future applications. The mode of action of Ag NPs as antibacterial agents will also be discussed.
Collapse
Affiliation(s)
- Md Abdul Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| | - Li Luming
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Md Abdul Matin
- Department of Pharmacy, NUB School of Health Sciences, Northern University Bangladesh, Globe Center, 24 Mirpur Road, Dhaka 1205, Bangladesh;
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Mohammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
| | - Hamad Fahad Alharbi
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar;
| | - Rezwanul Haque
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| |
Collapse
|
16
|
Ghilini F, Fagali N, Pissinis DE, Benítez G, Schilardi PL. Multifunctional Titanium Surfaces for Orthopedic Implants: Antimicrobial Activity and Enhanced Osseointegration. ACS APPLIED BIO MATERIALS 2021; 4:6451-6461. [PMID: 35006865 DOI: 10.1021/acsabm.1c00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of implants in orthopedics and dental practice is a widespread surgical procedure to treat diverse diseases. However, peri-implantitis due to infections and/or poor osseointegration can lead to metallic implant failure. The aim of this study was to develop a multifunctional coating on titanium (Ti) surfaces, to simultaneously deal with both issues, by combining antibacterial silver nanoparticles (AgNPs) and regenerative properties of lactoferrin (Lf). A simple and cost-effective methodology that allows the direct multifunctionalization of Ti surfaces was developed. The modified surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy, and contact angle measurements. Additionally, in vitro preosteoblast cell adhesion, cell viability, and differentiation were evaluated. The antibacterial capability of the surfaces was tested against Staphylococcus aureus as a prosthesis infection model strain. Our results showed that Lf adsorbed on both Ti surfaces and Ti surfaces with adsorbed AgNPs. Simultaneously, the presence of Lf and AgNPs notably improved preosteoblast adhesion, proliferation, and differentiation, whereas it reduced the bacterial colonization by 97.7%. Our findings indicate that this simple method may have potential applications in medical devices to both improve osseointegration and reduce bacterial infection risk, enhancing successful implantation and patients' quality of life.
Collapse
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC16 Suc 4, 1900 La Plata, Buenos Aires, Argentina
| | - Natalia Fagali
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC16 Suc 4, 1900 La Plata, Buenos Aires, Argentina
| | - Diego E Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC16 Suc 4, 1900 La Plata, Buenos Aires, Argentina
| | - Guillermo Benítez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC16 Suc 4, 1900 La Plata, Buenos Aires, Argentina
| | - Patricia L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP - CONICET, CC16 Suc 4, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
17
|
Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Zheng M, Pan M, Zhang W, Lin H, Wu S, Lu C, Tang S, Liu D, Cai J. Poly(α-l-lysine)-based nanomaterials for versatile biomedical applications: Current advances and perspectives. Bioact Mater 2021; 6:1878-1909. [PMID: 33364529 PMCID: PMC7744653 DOI: 10.1016/j.bioactmat.2020.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 02/05/2023] Open
Abstract
Poly(α-l-lysine) (PLL) is a class of water-soluble, cationic biopolymer composed of α-l-lysine structural units. The previous decade witnessed tremendous progress in the synthesis and biomedical applications of PLL and its composites. PLL-based polymers and copolymers, till date, have been extensively explored in the contexts such as antibacterial agents, gene/drug/protein delivery systems, bio-sensing, bio-imaging, and tissue engineering. This review aims to summarize the recent advances in PLL-based nanomaterials in these biomedical fields over the last decade. The review first describes the synthesis of PLL and its derivatives, followed by the main text of their recent biomedical applications and translational studies. Finally, the challenges and perspectives of PLL-based nanomaterials in biomedical fields are addressed.
Collapse
Affiliation(s)
- Maochao Zheng
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Miao Pan
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Wancong Zhang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Huanchang Lin
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Shenlang Wu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Shijie Tang
- The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxiabei Road, Shantou, 515041, China
| | - Daojun Liu
- Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| |
Collapse
|
19
|
Velazco-Medel MA, Camacho-Cruz LA, Magaña H, Palomino K, Bucio E. Simultaneous Grafting Polymerization of Acrylic Acid and Silver Aggregates Formation by Direct Reduction Using γ Radiation onto Silicone Surface and Their Antimicrobial Activity and Biocompatibility. Molecules 2021; 26:2859. [PMID: 34065879 PMCID: PMC8151000 DOI: 10.3390/molecules26102859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023] Open
Abstract
The modification of medical devices is an area that has attracted a lot of attention in recent years; particularly, those developments which search to modify existing devices to render them antimicrobial. Most of these modifications involve at least two stages (modification of the base material with a polymer graft and immobilization of an antimicrobial agent) which are both time-consuming and complicate synthetic procedures; therefore, as an improvement, this project sought to produce antimicrobial silicone (PDMS) in a single step. Using gamma radiation as both an energy source for polymerization initiation and as a source of reducing agents in solution, PDMS was simultaneously grafted with acrylic acid and ethylene glycol dimethacrylate (AAc:EGDMA) while producing antimicrobial silver nanoparticles (AgNPs) onto the surface of the material. To obtain reproducible materials, experimental variables such as the effect of the dose, the intensity of radiation, and the concentration of the silver salt were evaluated, finding the optimal reaction conditions to obtain materials with valuable properties. The characterization of the material was performed using electronic microscopy and spectroscopic techniques such as 13C-CPMAS-SS-NMR and FTIR. Finally, these materials demonstrated good antimicrobial activity against S. aureus while retaining good cell viabilities (above 90%) for fibroblasts BALB/3T3.
Collapse
Affiliation(s)
- Marlene A. Velazco-Medel
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Luis A. Camacho-Cruz
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| | - Héctor Magaña
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Kenia Palomino
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, University Boulevard No. 14418, Otay Mesa, Tijuana 22390, Mexico; (H.M.); (K.P.)
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad 7 Universitaria, Ciudad de México 04510, Mexico;
| |
Collapse
|
20
|
Wahab MA, Li L, Li H, Abdala A. Silver Nanoparticle-Based Nanocomposites for Combating Infectious Pathogens: Recent Advances and Future Prospects. NANOMATERIALS 2021; 11:nano11030581. [PMID: 33652693 PMCID: PMC7996865 DOI: 10.3390/nano11030581] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Silver nanoparticles (Ag NPs) and their nanocomposites with polymers are potent agents for antibacterial and disinfectant applications. The structural parameters of Ag-NPs, such as size, shape, and surface area, are very critical for developing appropriate formulations for the targeted applications. The impact of these factors on the performance of Ag NPs is analyzed. Ag NPs with a broad spectrum of antibacterial activities have already found applications in wound and burn dressing, food preservation, agricultural ponds, treatment for infected areas, coatings, water treatment, and other biomedical applications. Ag NPs are quite useful against antibiotic-resistant bacteria, but their level of toxicity needs careful investigation as their toxicity could be very harmful to human health and the environment. This review discusses the challenges and prospects of various Ag NPs and their composites. The review will enrich the knowledge about the efficiency and mechanism of various Ag nanoparticle-based antibacterial agents.
Collapse
Affiliation(s)
- Md A. Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
- Correspondence: or (M.A.W.); (A.A.)
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
| | - Hongmei Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; (L.L.); (H.L.)
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar
- Correspondence: or (M.A.W.); (A.A.)
| |
Collapse
|
21
|
Kowalczyk P, Szymczak M, Maciejewska M, Laskowski Ł, Laskowska M, Ostaszewski R, Skiba G, Franiak-Pietryga I. All That Glitters Is Not Silver-A New Look at Microbiological and Medical Applications of Silver Nanoparticles. Int J Mol Sci 2021; 22:E854. [PMID: 33467032 PMCID: PMC7830466 DOI: 10.3390/ijms22020854] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/23/2022] Open
Abstract
Silver and its nanoparticles (AgNPs) have different faces, providing different applications. In recent years, the number of positive nanosilver applications has increased substantially. It has been proven that AgNPs inhibit the growth and survival of bacteria, including human and animal pathogens, as well as fungi, protozoa and arthropods. Silver nanoparticles are known from their antiviral and anti-cancer properties; however, they are also very popular in medical and pharmaceutical nanoengineering as carriers for precise delivery of therapeutic compounds, in the diagnostics of different diseases and in optics and chemistry, where they act as sensors, conductors and substrates for various syntheses. The activity of AgNPs has not been fully discovered; therefore, we need interdisciplinary research to fulfil this knowledge. New forms of products with silver will certainly find application in the future treatment of many complicated and difficult to treat diseases. There is still a lack of appropriate and precise legal condition regarding the circulation of nanomaterials and the rules governing their safety use. The relatively low toxicity, relative biocompatibility and selectivity of nanoparticle interaction combined with the unusual biological properties allow their use in animal production as well as in bioengineering and medicine. Despite a quite big knowledge on this topic, there is still a need to organize the data on AgNPs in relation to specific microorganisms such as bacteria, viruses or fungi. We decided to put this knowledge together and try to show positive and negative effects on prokaryotic and eukaryotic cells.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Magdalena Maciejewska
- Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Łódź, Poland;
| | - Łukasz Laskowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | - Magdalena Laskowska
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (Ł.L.); (M.L.)
| | | | - Grzegorz Skiba
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland;
| | - Ida Franiak-Pietryga
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr., La Jolla, CA 92037, USA
- Department of Clinical and Laboratory Genetics, Medical University of Lodz, 251 Pomorska Str., 92-213 Łódź, Poland
| |
Collapse
|
22
|
Yang Z, Xi Y, Bai J, Jiang Z, Wang S, Zhang H, Dai W, Chen C, Gou Z, Yang G, Gao C. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials 2020; 269:120534. [PMID: 33243425 DOI: 10.1016/j.biomaterials.2020.120534] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
The dual functional implants of antibacteria and osteointegration are highly demanded in orthopedic and dentistry, especially for patients who suffer from diabetes or osteoporosis simultaneously. However, there is lack of the facile and robust method to produce clinically applicable implants with this dual function although coatings possessing single function have been extensively developed. Herein, hyperbranched poly-L-lysine (HBPL) polymers were covalently immobilized onto the alkali-heat treated titanium (Ti) substrates and implants by using 3-glycidyloxypropyltrimethoxysilane (GPTMS) as the coupling agent, which displayed excellent antibacterial activity against S. aureus and E. coli with an efficiency as high as 89.4% and 92.2% in vitro, respectively. The HBPL coating also significantly promoted the adhesion, spreading, proliferation and osteogenic differentiation of MC3T3-E1 cells in vitro. Furthermore, the results of a S. aureus infection rat model in vivo ulteriorly verified that the HBPL-modified screws had good antibacterial and anti-inflammatory abilities at an early stage of implantation and better osteointegration compared with the control Ti screws.
Collapse
Affiliation(s)
- Zhijian Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Dai
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Chaozhen Chen
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou, 310058, China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Mutalik C, Hsiao YC, Chang YH, Krisnawati DI, Alimansur M, Jazidie A, Nuh M, Chang CC, Wang DY, Kuo TR. High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO 2-FeS 2 Nanocomposites. Int J Nanomedicine 2020; 15:8911-8920. [PMID: 33209024 PMCID: PMC7670305 DOI: 10.2147/ijn.s282689] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Antibiotic resistance issues associated with microbial pathogenesis are considered to be one of the most serious current threats to health. Fortunately, TiO2, a photoactive semiconductor, was proven to have antibacterial activity and is being widely utilized. However, its use is limited to the short range of absorption wavelength. METHODS In this work, heterostructured TiO2-FeS2 nanocomposites (NCs) were successfully prepared by a facile solution approach to enhance light-induced antibacterial activity over a broader absorption range. RESULTS In TiO2-FeS2 NCs, FeS2 NPs, as light harvesters, can effectively increase light absorption from the visible (Vis) to near-infrared (NIR). Results of light-induced antibacterial activities indicated that TiO2-FeS2 NCs had better antibacterial activity than that of only TiO2 nanoparticles (NPs) or only FeS2 NPs. Reactive oxygen species (ROS) measurements also showed that TiO2-FeS2 NCs produced the highest relative ROS levels. Unlike TiO2 NPs, TiO2-FeS2 NCs, under light irradiation with a 515-nm filter, could absorb light wavelengths longer than 515 nm to generate ROS. In the mechanistic study, we found that TiO2 NPs in TiO2-FeS2 NCs could absorb ultraviolet (UV) light to generate photoinduced electrons and holes for ROS generation, including ⋅O2 - and ⋅OH; FeS2 NPs efficiently harvested Vis to NIR light to generate photoinduced electrons, which then were transferred to TiO2 NPs to facilitate ROS generation. CONCLUSION TiO2-FeS2 NCs with superior light-induced antibacterial activity could be a promising antibacterial agent against bacterial infections.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yu-Cheng Hsiao
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | - Yi-Hsuan Chang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| | | | - Moh Alimansur
- Dharma Husada Nursing Academy, Kediri, East Java64114, Indonesia
| | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
- Universitas Nahdlatul Ulama Surabaya, Surabaya60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya60111, Indonesia
| | - Chia-Che Chang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung40704, Taiwan
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei11031, Taiwan
| |
Collapse
|
24
|
Rivas Aiello MB, Ghilini F, Martínez Porcel JE, Giovanetti L, Schilardi PL, Mártire DO. Riboflavin-Mediated Photooxidation of Gold Nanoparticles and Its Effect on the Inactivation of Bacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8272-8281. [PMID: 32569473 DOI: 10.1021/acs.langmuir.0c01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic inactivation (PDI) of microorganisms, based on the ability of photosensitizers to produce reactive oxygen species (ROS) under adequate irradiation, emerges as a promising technique to face the increasing bacterial resistance to conventional antimicrobials. In this work, we analyze the combined action of Riboflavin (Rf) and pectin-coated gold nanoparticles (PecAuNP) on Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) as suitable PDI strategy. We demonstrate that gold ions can be generated upon Rf-photosensitized oxidation of PecAuNP. Transient absorption spectroscopy shows that the Rf cationic radical can accept an electron from the nanoparticles to yield Au(I) ions, which in aqueous medium is disproportionate to yield Au0 and Au(III). Microbiological assays showed that the presence of PecAuNP enhanced the antibacterial activity of photoirradiated Rf toward S. aureus and P. aeruginosa, in line with the well-known antibacterial activity of gold ions. Moreover, the irradiation of Rf solutions containing about 100 μM PecAuNP enabled the solutions to be bactericidal against both bacteria.
Collapse
Affiliation(s)
- María Belén Rivas Aiello
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| | - Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| | - Joaquín E Martínez Porcel
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| | - Lisandro Giovanetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| | - Patricia L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata and CONICET, C. C. 16, Suc. 4, (1900) La Plata, Argentina
| |
Collapse
|
25
|
Vi TTT, Kumar SR, Pang JHS, Liu YK, Chen DW, Lue SJ. Synergistic Antibacterial Activity of Silver-Loaded Graphene Oxide towards Staphylococcus Aureus and Escherichia Coli. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E366. [PMID: 32093180 PMCID: PMC7075295 DOI: 10.3390/nano10020366] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
In this study, the physicochemical and surface properties of the GO-Ag composite promote a synergistic antibacterial effect towards both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. Aureus) bacteria. GO-Ag NPs have a better bactericidal effect on E. coli (73%) and S. Aureus (98.5%) than pristine samples (pure Ag or GO). Transmission electron microscopy (TEM) confirms that the GO layers folded entire bacteria by attaching to the membrane through functional groups, while the Ag NPs penetrated the inner cell, thus damaging the cell membrane and leading to cell death. Cyclic voltammetry (CV) tests showed significant redox activity in GO-Ag NPs, enabling good catalytic performance towards H2O2 reduction. Strong reactive oxygen species (ROS) in GO-Ag NPs suggests that ROS might be associated with bactericidal activity. Therefore, the synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity.
Collapse
Affiliation(s)
- Truong Thi Tuong Vi
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Selvaraj Rajesh Kumar
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan;
| | - Yu-Kuo Liu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
| | - Dave W. Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 20445, Taiwan
| | - Shingjiang Jessie Lue
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.T.T.V.); (S.R.K.); (Y.-K.L.)
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Keelung City 20445, Taiwan
- Department of Safety, Health and Environment Engineering, Ming-Chi University of Technology, New Taipei City 24301, Taiwan
| |
Collapse
|
26
|
Polymeric micelles with aggregation-induced emission based on microbial ε-polylysine for doxorubicin delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Crouzier L, Delvallée A, Ducourtieux S, Devoille L, Tromas C, Feltin N. A new method for measuring nanoparticle diameter from a set of SEM images using a remarkable point. Ultramicroscopy 2019; 207:112847. [DOI: 10.1016/j.ultramic.2019.112847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022]
|
28
|
Ghilini F, Pissinis DE, Miñán A, Schilardi PL, Diaz C. How Functionalized Surfaces Can Inhibit Bacterial Adhesion and Viability. ACS Biomater Sci Eng 2019; 5:4920-4936. [DOI: 10.1021/acsbiomaterials.9b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fiorela Ghilini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Diego E. Pissinis
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Alejandro Miñán
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Patricia L. Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| | - Carolina Diaz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP − CONICET, CC16 Suc 4 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
29
|
Morga M, Adamczyk Z, Kosior D, Kujda-Kruk M. Kinetics of Poly-l-lysine Adsorption on Mica and Stability of Formed Monolayers: Theoretical and Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12042-12052. [PMID: 31433647 DOI: 10.1021/acs.langmuir.9b02149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various physicochemical parameters of poly-l-lysine (PLL) solutions comprising the diffusion coefficient, the electrophoretic mobility, the density, and the intrinsic viscosity were determined for the pH range 3.0-9.2. This allowed us to calculate derivative parameters characterizing the PLL molecule such as: zeta potential, the number of electrokinetic charges, ionization degree, contour length, and cross section area. These data were exploited in theoretical calculations of PLL adsorption kinetics on solid substrates under diffusion transport. A hybrid approach was used comprising a blocking function derived from the random sequential adsorption (RSA) model. In experiments, the PLL adsorption on mica was studied using the streaming potential measurements and interpreted in terms of a general electrokinetic model. This confirmed a side-on adsorption mechanism of the macroion molecules at the examined pH range. Additionally, using this method, the stability of PLL monolayers was determined performing in situ desorption kinetic experiments. In this way, the equilibrium adsorption constant and the energy minimum depth were determined. It was confirmed that the monolayer stability decreases with pH following the decrease in the number of electrokinetic charges per molecule. This confirmed the electrostatic interaction driven adsorption mechanism of PLL. It is also predicted that at pH 5.7-7.4 the monolayers were stable under diffusion-controlled desorption over the time exceeding 100 h. In addition to their significance for basic science, the results obtained in this work can be exploited for developing procedures for preparing stable PLL monolayers of well controlled coverage and electrokinetic properties.
Collapse
Affiliation(s)
| | | | - Dominik Kosior
- Department of Inorganic and Analytical Chemistry , University of Geneva , Sciences II, 30 Quai Ernest-Ansermet , 1205 Geneva , Switzerland
| | | |
Collapse
|
30
|
Rocca DM, Vanegas JP, Fournier K, Becerra MC, Scaiano JC, Lanterna AE. Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles. RSC Adv 2018; 8:40454-40463. [PMID: 35558201 PMCID: PMC9091494 DOI: 10.1039/c8ra08169g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/25/2018] [Indexed: 12/02/2022] Open
Abstract
One-pot thermal and photochemical syntheses of lignin-doped silver and gold nanoparticles were developed and their antimicrobial properties were studied against Escherichia coli and Staphylococcus aureus. The nature of the lignin as well as the metal are directly involved in the antimicrobial activity observed in these nanocomposites. Whereas one of the nanocomposites is innocuous under dark conditions and shows photoinduced activity only against Staphylococcus aureus, the rest of the lignin-coated silver nanoparticles studied show antimicrobial activity under dark and light conditions for both bacteria strains. Additionally, only photoinduced activity is observed for lignin-coated gold nanoparticles. Importantly, the particles are non-cytotoxic towards human cells at the bactericidal concentrations. Preliminary assays show these silver nanoparticles as potential antimicrobial agents towards S. aureus biofilm eradication. Natural derived compounds, lignins, can be used as reducing and stabilizing agents to synthesize noble metal nanoparticles with antimicrobial properties.![]()
Collapse
Affiliation(s)
- Diamela María Rocca
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
- Departamento de Ciencias Farmacéuticas
| | - Julie P. Vanegas
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
- Liquid Crystal Institute
| | - Kelsey Fournier
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| | - M. Cecilia Becerra
- Departamento de Ciencias Farmacéuticas
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Córdoba
- Argentina
| | - Juan C. Scaiano
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| | - Anabel E. Lanterna
- Department of Chemistry and Biomolecular Sciences and Centre for Advanced Materials Research (CAMaR)
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|