1
|
Kostevšek N. Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics. BIOMATERIALS ADVANCES 2025; 170:214234. [PMID: 39961269 DOI: 10.1016/j.bioadv.2025.214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Lee CH, Zaman S, Kundra V, Anvari B. Erythrocyte nano-ghosts with dual optical and magnetic resonance characteristics. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:085001. [PMID: 39165858 PMCID: PMC11333968 DOI: 10.1117/1.jbo.29.8.085001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Significance Fluorescent organic dyes provide imaging capabilities at cellular and sub-cellular levels. However, a common problem associated with some of the existing dyes such as the US FDA-approved indocyanine green (ICG) is their weak fluorescence emission. Alternative dyes with greater emission characteristics would be useful in various imaging applications. Complementing optical imaging, magnetic resonance (MR) imaging enables deep tissue imaging. Nano-sized delivery systems containing dyes with greater fluorescence emission as well as MR contrast agents present a promising dual-mode platform with high optical sensitivity and deep tissue imaging for image-guided surgical applications. Aim We have engineered a nano-sized platform, derived from erythrocyte ghosts (EGs), with dual near-infrared fluorescence and MR characteristics by co-encapsulation of a brominated carbocyanine dye and gadobenate dimeglumine (Gd-BOPTA). Approach We have investigated the use of three brominated carbocyanine dyes (referred to as BrCy106, BrCy111, and BrCy112) with various degrees of bromination, structural symmetry, and acidic modifications for encapsulation by nano-sized EGs (nEGs) and compared their resulting optical characteristics with nEGs containing ICG. Results We find that asymmetric dyes (BrCy106 and BrCy112) with one dibromobenzene ring offer greater fluorescence emission characteristics. For example, the relative fluorescence quantum yield ( ϕ ) for nEGs fabricated using 100 μ M of BrCy112 is ∼ 41 -fold higher than nEGs fabricated using the same concentrations of ICG. The dual-mode nEGs containing BrCy112 and Gd-BOPTA show a nearly twofold increase in their ϕ as compared with their single optical mode counterpart. Cytotoxicity is not observed upon incubation of SKOV3 cells with nEGs containing BrCy112. Conclusions Erythrocyte nano-ghosts with dual optical and MR characteristics may ultimately prove useful in various biomedical imaging applications such as image-guided tumor surgery where MR imaging can be used for tumor staging and mapping, and fluorescence imaging can help visualize small tumor nodules for resection.
Collapse
Affiliation(s)
- Chi-Hua Lee
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
| | - Shamima Zaman
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Vikas Kundra
- University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, Maryland, United States
- University of Maryland, Stuart and Marlene Greenbaum Comprehensive Cancer Center, Baltimore, Maryland, United States
| | - Bahman Anvari
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| |
Collapse
|
3
|
Jia G, Wang J, Wang H, Hu X, Long F, Yuan C, Liang C, Wang F. New insights into red blood cells in tumor precision diagnosis and treatment. NANOSCALE 2024; 16:11863-11878. [PMID: 38841898 DOI: 10.1039/d4nr01454e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Red blood cells (RBCs), which function as material transporters in organisms, are rich in materials that are exchanged with metabolically active tumor cells. Recent studies have demonstrated that tumor cells can regulate biological changes in RBCs, including influencing differentiation, maturation, and morphology. RBCs play an important role in tumor development and immune regulation. Notably, the novel scientific finding that RBCs absorb fragments of tumor-carrying DNA overturns the conventional wisdom that RBCs do not contain nucleic acids. RBC membranes are excellent biomimetic materials with significant advantages in terms of their biocompatibility, non-immunogenicity, non-specific adsorption resistance, and biodegradability. Therefore, RBCs provide a new research perspective for the development of tumor liquid biopsies, molecular imaging, drug delivery, and other tumor precision diagnosis and treatment technologies.
Collapse
Affiliation(s)
- Gaihua Jia
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jun Wang
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
| | - Hu Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fei Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430016, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Lee CH, Mac J, Hanley T, Zaman S, Vankayala R, Anvari B. Membrane cholesterol enrichment and folic acid functionalization lead to increased accumulation of erythrocyte-derived optical nano-constructs within the ovarian intraperitoneal tumor implants in mice. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 56:102728. [PMID: 38061449 DOI: 10.1016/j.nano.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/15/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024]
Abstract
Cytoreductive surgery remains as the gold standard to treat ovarian cancer, but with limited efficacy since not all tumors can be intraoperatively visualized for resection. We have engineered erythrocyte-derived nano-constructs that encapsulate the near infrared (NIR) fluorophore, indocyanine green (ICG), as optical probes for NIR fluorescence imaging of ovarian tumors. Herein, we have enriched the membrane of these nano-constructs with cholesterol, and functionalized their surface with folic acid (FA) to target the folate receptor-α. Using a mouse model, we show that the average fraction of the injected dose per tumor mass for nano-constructs with both membrane cholesterol enrichment and FA functionalization was ~ sixfold higher than non-encapsulated ICG, ~ twofold higher than nano-constructs enriched with cholesterol alone, and 33 % higher than nano-constructs with only FA functionalization at 24-h post-injection. These results suggest that erythrocyte-derived nano-constructs containing both cholesterol and FA present a platform for improved fluorescence imaging of ovarian tumors.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jenny Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Taylor Hanley
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Shamima Zaman
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Bahman Anvari
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Kollipara PS, Li X, Li J, Chen Z, Ding H, Kim Y, Huang S, Qin Z, Zheng Y. Hypothermal opto-thermophoretic tweezers. Nat Commun 2023; 14:5133. [PMID: 37612299 PMCID: PMC10447564 DOI: 10.1038/s41467-023-40865-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.
Collapse
Affiliation(s)
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 15001, China
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
6
|
Lee CH, Tang JC, Hendricks NG, Anvari B. Proteomes of Micro- and Nanosized Carriers Engineered from Red Blood Cells. J Proteome Res 2023; 22:896-907. [PMID: 36792548 PMCID: PMC10756254 DOI: 10.1021/acs.jproteome.2c00695] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Red blood cell (RBC)-derived systems offer a potential platform for delivery of biomedical cargos. Although the importance of specific proteins associated with the biodistribution and pharmacokinetics of these particles has been recognized, it remains to be explored whether some of the key transmembrane and cytoskeletal proteins responsible for immune-modulatory effects and mechanical integrity of the particles are retained. Herein, using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and quantitative tandem mass tag mass spectrometry in conjunction with bioinformatics analysis, we have examined the proteomes of micro- and nanosized erythrocyte ghosts doped with indocyanine green and compared them with those of RBCs. We identified a total of 884 proteins in each set of RBCs, micro-, and nanosized particles, of which 8 and 45 proteins were expressed at significantly different relative abundances when comparing micro-sized particles vs RBCs and nanosized particles vs RBCs, respectively. We found greater differences in relative abundances of some mechano-modulatory proteins, such as band 3 and protein 4.2, and immunomodulatory proteins like CD44, CD47, and CD55 in nanosized particles as compared to RBCs. Our findings highlight that the methods utilized in fabricating RBC-based systems can induce substantial effects on their proteomes. Mass spectrometry data are available at ProteomeXchange with the identifier PXD038780.
Collapse
Affiliation(s)
- Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Jack C Tang
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Nathan G Hendricks
- Institute for Integrative Genome Biology, Proteomics Core, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
7
|
Zhong YT, Cen Y, Xu L, Li SY, Cheng H. Recent Progress in Carrier-Free Nanomedicine for Tumor Phototherapy. Adv Healthc Mater 2023; 12:e2202307. [PMID: 36349844 DOI: 10.1002/adhm.202202307] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/01/2022] [Indexed: 11/10/2022]
Abstract
Safe and effective strategies are urgently needed to fight against the life-threatening diseases of various cancers. However, traditional therapeutic modalities, such as radiotherapy, chemotherapy and surgery, exhibit suboptimal efficacy for malignant tumors owing to the serious side effects, drug resistance and even relapse. Phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), are emerging therapeutic strategies for localized tumor inhibition, which can produce a large amount of reactive oxygen species (ROS) or elevate the temperature to initiate cell death by non-invasive irradiation. In consideration of the poor bioavailability of phototherapy agents (PTAs), lots of drug delivery systems have been developed to enhance the tumor targeted delivery. Nevertheless, the carriers of drug delivery systems inevitably bring biosafety concerns on account of their metabolism, degradation, and accumulation. Of note, carrier-free nanomedicine attracts great attention for clinical translation with synergistic antitumor effect, which is characterized by high drug loading, simplified synthetic method and good biocompatibility. In this review, the latest advances of phototherapy with various carrier-free nanomedicines are summarized, which may provide a new paradigm for the future development of nanomedicine and tumor precision therapy.
Collapse
Affiliation(s)
- Ying-Tao Zhong
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yi Cen
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Lin Xu
- Department of Geriatric Cardiology, General Hospital of the Southern Theatre Command, People's Liberation Army (PLA) and Guangdong Pharmaceutical University, Guangzhou, 510016, P. R. China
| | - Shi-Ying Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Hong Cheng
- Biomaterials Research Center, School of Biomedical Engineering & Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
8
|
Lai WF, Zhang D, Wong WT. Design of erythrocyte-derived carriers for bioimaging applications. Trends Biotechnol 2023; 41:228-241. [PMID: 36031485 DOI: 10.1016/j.tibtech.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 01/24/2023]
Abstract
Erythrocytes are physiological entities that have been exploited in both preclinical and clinical trials for the delivery of exogenous agents. Over the years, diverse erythrocyte-derived carriers (ECs) have been developed with related patents granted for industrial and commercial purposes. However, most ECs have only been exploited for drug delivery. Serious discussions regarding their applications in imaging are scarce. This article reviews the role of ECs in enhancing imaging efficiency and subsequently delineates strategies for engineering and optimising their preclinical and clinical performance. With a snapshot of the latest developments and use of ECs in imaging, directions to streamline the clinical translation of related technologies can be attained for future research.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang 310012, China.
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Zhejiang 310012, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| |
Collapse
|
9
|
Kollipara PS, Li X, Li J, Chen Z, Ding H, Huang S, Qin Z, Zheng Y. Hypothermal opto-thermophoretic tweezers. RESEARCH SQUARE 2023:rs.3.rs-2389570. [PMID: 36711861 PMCID: PMC9882605 DOI: 10.21203/rs.3.rs-2389570/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology.
Collapse
Affiliation(s)
| | - Xiuying Li
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas, 75080, USA
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas, 75080, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Texas, 78712, USA
| |
Collapse
|
10
|
Nanoparticles Design for Theranostic Approach in Cancer Disease. Cancers (Basel) 2022; 14:cancers14194654. [PMID: 36230578 PMCID: PMC9564040 DOI: 10.3390/cancers14194654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Presently, there are no conclusive treatments for many types of cancer, mainly due to the advanced phase of the disease at the time of diagnosis and to the side effects of existing therapies. Present diagnostic and therapeutic procedures need to be improved to supply early detection abilities and perform a more specific therapy with reduced systemic toxicity. In this review, improvements in nanotechnology allowing the design of multifunctional nanoparticles for cancer detection, therapy, and monitoring are reported. Nanoparticles, thanks to the nanomaterials they are made of, can be used as contrast agents for various diagnostic techniques such as MRI, optical imaging, and photoacoustic imaging. Furthermore, when used as drug carriers, they can accumulate in tumor tissues through the passive or/and active targeting, protect encapsulated drugs from degradation, raise tumor exposure to chemotherapeutic agents improving treatment effects. In addition, nanocarriers can simultaneously deliver more than one therapeutic agent enhancing the effectiveness of therapy and can co-deliver imaging and therapy agents to provide integration of diagnostics, therapy, and follow-up. Furthermore, the use of nanocarriers allows to use different therapeutic approaches, such as chemotherapy and hyperthermia to exploit synergistic effects. Theranostic approach to diagnose and treat cancer show a great potential to improve human health, however, despite technological advances in this field, the transfer into clinical practice is still a long way off.
Collapse
|
11
|
Mac JT, Vankayala R, Lee CH, Anvari B. Erythrocyte-Derived Nanoparticles with Folate Functionalization for Near Infrared Pulsed Laser-Mediated Photo-Chemotherapy of Tumors. Int J Mol Sci 2022; 23:10295. [PMID: 36142205 PMCID: PMC9499474 DOI: 10.3390/ijms231810295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Despite its common side effects and varying degrees of therapeutic success, chemotherapy remains the gold standard method for treatment of cancer. Towards developing a new therapeutic approach, we have engineered nanoparticles derived from erythrocytes that contain indocyanine green as a photo-activated agent that enables near infrared photothermal heating, and doxorubicin hydrochloride (DOX) as a chemotherapeutic drug. We hypothesize that milliseconds pulsed laser irradiation results in rapid heating and photo-triggered release of DOX, providing a dual photo-chemo therapeutic mechanism for tumor destruction. Additionally, the surface of the nanoparticles is functionalized with folate to target the folate receptor-α on tumor cells to further enhance the therapeutic efficacy. Using non-contract infrared radiometry and absorption spectroscopy, we have characterized the photothermal response and photostability of the nanoparticles to pulsed laser irradiation. Our in vitro studies show that these nanoparticles can mediate photo-chemo killing of SKOV3 ovarian cancer cells when activated by pulsed laser irradiation. We further demonstrate that this dual photo-chemo therapeutic approach is effective in reducing the volume of tumor implants in mice and elicits an apoptotic response. This treatment modality presents a promising approach in destruction of small tumor nodules.
Collapse
Affiliation(s)
- Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Raviraj Vankayala
- Radoptics, Limited Liability Corporation, 1002 Health Sciences Road East, Suite P214, Irvine, CA 92612, USA
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Bahman Anvari
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
12
|
Malhotra S, Dumoga S, Singh N. Red blood cells membrane-derived nanoparticles: Applications and key challenges in their clinical translation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1776. [PMID: 35106966 DOI: 10.1002/wnan.1776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Cellular membrane-derived nanoparticles, particularly of red blood cells (RBCs), represent an emerging class of drug delivery systems. The lack of nucleus and organelles in these cells makes them easy to process and empty out intracellular contents. The empty vesicle membranes can then be either used as a coating on nanoparticles or can be reassembled into a nanovesicle. Engineered RBCs membrane has unique ability to retain its lipid bilayer architecture with host's proteins during top-down approach, thus allowing it to form stable nanoformulations mimicking RBCs stealth properties. In addition, its core-shell structure allows loading of different drug molecules, and its surface chemistry can be manipulated by facile conjugation with ligands on the shell. The remarkable ability of RBCs membrane to fuse with membranes of other cells enables the formation of hybrid nanovesicles. In this review, we highlight the biomedical applications of such vesicles and discuss the potential challenges related to its clinical translation. Although nano-RBCs retain much of the host's proteins, which may give an edge over synthetic nanoparticles in terms of lower immunogenicity, its production at industrial level is more challenging. This review gives the critical analysis of barriers involved in the translation of RBCs-derived nanoparticles from preclinical to clinical level. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Sahil Malhotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shweta Dumoga
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India.,Biomedical Engineering unit, All India Institute of Medical Sciences New Delhi, New Delhi, India
| |
Collapse
|
13
|
Mukunda DC, Rodrigues J, Joshi VK, Raghushaker CR, Mahato KK. A comprehensive review on LED-induced fluorescence in diagnostic pathology. Biosens Bioelectron 2022; 209:114230. [PMID: 35421670 DOI: 10.1016/j.bios.2022.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Sensitivity, specificity, mobility, and affordability are important criteria to consider for developing diagnostic instruments in common use. Fluorescence spectroscopy has been demonstrating substantial potential in the clinical diagnosis of diseases and evaluating the underlying causes of pathogenesis. A higher degree of device integration with appropriate sensitivity and reasonable cost would further boost the value of the fluorescence techniques in clinical diagnosis and aid in the reduction of healthcare expenses, which is a key economic concern in emerging markets. Light-emitting diodes (LEDs), which are inexpensive and smaller are attractive alternatives to conventional excitation sources in fluorescence spectroscopy, are gaining a lot of momentum in the development of affordable, compact analytical instruments of clinical relevance. The commercial availability of a broad range of LED wavelengths (255-4600 nm) has opened up new avenues for targeting a wide range of clinically significant molecules (both endogenous and exogenous), thereby diagnosing a range of clinical illnesses. As a result, we have specifically examined the uses of LED-induced fluorescence (LED-IF) in preclinical and clinical evaluations of pathological conditions, considering the present advancements in the field.
Collapse
Affiliation(s)
| | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Vijay Kumar Joshi
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Chandavalli Ramappa Raghushaker
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.
| |
Collapse
|
14
|
Zhu L, Zhong Y, Wu S, Yan M, Cao Y, Mou N, Wang G, Sun D, Wu W. Cell membrane camouflaged biomimetic nanoparticles: Focusing on tumor theranostics. Mater Today Bio 2022; 14:100228. [PMID: 35265826 PMCID: PMC8898969 DOI: 10.1016/j.mtbio.2022.100228] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Nanoparticles (NPs) modified by cell membranes represent an emerging biomimetic platform that can mimic the innate biological functions resulting from the various cell membranes in biological systems. researchers focus on constructing the cell membrane camouflaged NPs using a wide variety of cells, such as red blood cell membranes (RBC), macrophages and cancer cells. Cell membrane camouflaged NPs (CMNPs) inherit the composition of cell membranes, including specific receptors, antigens, proteins, for target delivering to the tumor, escaping immune from clearance, and prolonging the blood circulation time, etc. Combining cell membrane-derived biological functions and the NP cores acted cargo carriers to encapsulate the imaging agents, CMNPs are widely developed to apply in tumor imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), fluorescence imaging (FL) and photoacoustic imaging (PA). Herein, in this review, we systematically summarize the superior functions of various CMNPs in tumor imaging, especially highlighting the advanced applications in different imaging techniques, which is to provide the theoretical supports for the development of precise guided imaging and tumor treatment.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, People's Republic of China
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China
| |
Collapse
|
15
|
Tang JC, Lee CH, Lu T, Vankayala R, Hanley T, Azubuogu C, Li J, Nair MG, Jia W, Anvari B. Membrane Cholesterol Enrichment of Red Blood Cell-Derived Microparticles Results in Prolonged Circulation. ACS APPLIED BIO MATERIALS 2022; 5:650-660. [PMID: 35006664 PMCID: PMC9924066 DOI: 10.1021/acsabm.1c01104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Particles fabricated from red blood cells (RBCs) can serve as vehicles for delivery of various biomedical cargos. Flipping of phosphatidylserine (PS) from the inner to the outer membrane leaflet normally occurs during the fabrication of such particles. PS externalization is a signal for phagocytic removal of the particles from circulation. Herein, we demonstrate that membrane cholesterol enrichment can mitigate the outward display of PS on microparticles engineered from RBCs. Our in-vitro results show that the phagocytic uptake of cholesterol-enriched particles by murine macrophages takes place at a lowered rate, resulting in reduced uptake as compared to RBC-derived particles without cholesterol enrichment. When administered via tail-vein injection into healthy mice, the percent of injected dose (ID) per gram of extracted blood for cholesterol-enriched particles was ∼1.5 and 1.8 times higher than the particles without cholesterol enrichment at 4 and 24 h, respectively. At 24 h, ∼43% ID/g of the particles without cholesterol enrichment was eliminated or metabolized while ∼94% ID/g of the cholesterol-enriched particles were still retained in the body. These results indicate that membrane cholesterol enrichment is an effective method to reduce PS externalization on the surface of RBC-derived particles and increase their longevity in circulation.
Collapse
Affiliation(s)
- Jack C. Tang
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States; Present Address: University of Southern California, Los Angeles, California 90033, United States
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Thompson Lu
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States; Present Address: Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342037, India
| | - Taylor Hanley
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Chiemerie Azubuogu
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92023, United States
| | - Jiang Li
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Meera G. Nair
- Division of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Wangcun Jia
- Beckman Laser Institute & Medical Clinic, University of California, Irvine, Irvine, California 92617, United States
| | - Bahman Anvari
- Department of Bioengineering and Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
16
|
Cell Membrane-Cloaked Nanotherapeutics for Targeted Drug Delivery. Int J Mol Sci 2022; 23:ijms23042223. [PMID: 35216342 PMCID: PMC8879543 DOI: 10.3390/ijms23042223] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Cell membrane cloaking technique is bioinspired nanotechnology that takes advantage of naturally derived design cues for surface modification of nanoparticles. Unlike modification with synthetic materials, cell membranes can replicate complex physicochemical properties and biomimetic functions of the parent cell source. This technique indeed has the potential to greatly augment existing nanotherapeutic platforms. Here, we provide a comprehensive overview of engineered cell membrane-based nanotherapeutics for targeted drug delivery and biomedical applications and discuss the challenges and opportunities of cell membrane cloaking techniques for clinical translation.
Collapse
|
17
|
Malhotra S, Dumoga S, Mehta S, Rao EP, Mohanty S, Singh N. Engineering Cellular Membrane for Dual Mode Therapy Using NIR Responsive Photosensitizer and Reversible Topoisomerase Inhibition Activity. ACS APPLIED BIO MATERIALS 2022; 5:570-582. [PMID: 35040623 DOI: 10.1021/acsabm.1c01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extensive research over past few decades has highlighted the challenges of chemotherapy and prompted the need for multimodality therapy because chemotherapy alone cannot fully eradicate the tumor due to physiological barriers in its effective delivery and systemic side effects. It can be mitigated by adopting nanoparticles as more effective delivery method, but none of them completely prevents drug toxicities. Utilizing multiple therapeutic modes such as phototherapy that can act synergistically with chemotherapy in controlling tumor growth, while reducing the overall dosage, could become a preferred route for cancer management. Careful selection of nanoparticle system, which can simultaneously deliver both drug and photosensitizer, can significantly enhance the therapeutic outcome. Therefore, in this paper, we report development and potential of immune-compatible and long circulating nanoerythrosomes for enhancing the therapeutic potential of camptothecin and indocyanine green against murine cancer model. The RBCs membrane simultaneously loaded the nonpolar drug and amphiphilic photosensitizer in its lipid bilayer, which self-assembled to form stable nanoparticles. These nano constructs absorbed light in the near-infrared region and hence are suitable for targeting deep seated tissues. The dual chemo-phototherapy had great effect on cell viability and had therapeutic value.
Collapse
Affiliation(s)
- Sahil Malhotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shweta Dumoga
- Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Supriya Mehta
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.,Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
18
|
|
19
|
Della Pelle G, Delgado López A, Salord Fiol M, Kostevšek N. Cyanine Dyes for Photo-Thermal Therapy: A Comparison of Synthetic Liposomes and Natural Erythrocyte-Based Carriers. Int J Mol Sci 2021; 22:ijms22136914. [PMID: 34199144 PMCID: PMC8268567 DOI: 10.3390/ijms22136914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 01/02/2023] Open
Abstract
Cyanine fluorescent dyes are attractive diagnostic or therapeutic agents due to their excellent optical properties. However, in free form, their use in biological applications is limited due to the short circulation time, instability, and toxicity. Therefore, their encapsulation into nano-carriers might help overcome the above-mentioned issues. In addition to indocyanine green (ICG), which is clinically approved and therefore the most widely used fluorescent dye, we tested the structurally similar and cheaper alternative called IR-820. Both dyes were encapsulated into liposomes. However, due to the synthetic origin of liposomes, they can induce an immunogenic response. To address this challenge, we proposed to use erythrocyte membrane vesicles (EMVs) as “new era” nano-carriers for cyanine dyes. The optical properties of both dyes were investigated in different biological relevant media. Then, the temperature stability and photo-stability of dyes in free form and encapsulated into liposomes and EMVs were evaluated. Nano-carriers efficiently protected dyes from thermal degradation, as well as from photo-induced degradation. Finally, a hemotoxicity study revealed that EMVs seem less hemotoxic dye carriers than clinically approved liposomes. Herein, we showed that EMVs exhibit great potential as nano-carriers for dyes with improved stability and hemocompatibility without losing excellent optical properties.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: (G.D.P.); (N.K.)
| | - Andrea Delgado López
- Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.D.L.); (M.S.F.)
| | - Marina Salord Fiol
- Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain; (A.D.L.); (M.S.F.)
| | - Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence: (G.D.P.); (N.K.)
| |
Collapse
|
20
|
Burns JM, Shafer E, Vankayala R, Kundra V, Anvari B. Near Infrared Fluorescence Imaging of Intraperitoneal Ovarian Tumors in Mice Using Erythrocyte-Derived Optical Nanoparticles and Spatially-Modulated Illumination. Cancers (Basel) 2021; 13:cancers13112544. [PMID: 34067308 PMCID: PMC8196853 DOI: 10.3390/cancers13112544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Ovarian cancer has a greater mortality rate than all gynecological malignancies combined. While cytoreductive surgery remains the primary therapeutic approach, its success is limited by the inability to visualize all tumor nodules for resection. We developed light activated nano-sized particles derived from red blood cells as potential imaging probes for near infrared fluorescence imaging of tumors during cytoreductive surgery. We present the first demonstration of the use of these nanoparticles in conjunction a spatially-modulated illumination (SMI) modality to image ovarian intraperitoneal tumors in mice. Our findings indicate that, at 24 h post-administration, these nanoparticles accumulated at higher levels in tumors as compared to organs, and that use of SMI enhances the image contrast. Abstract Ovarian cancer is the deadliest gynecological cancer. Cytoreductive surgery to remove primary and intraperitoneal tumor deposits remains as the standard therapeutic approach. However, lack of an intraoperative image-guided approach to enable the visualization of all tumors can result in incomplete cytoreduction and recurrence. We engineered nano-sized particles derived from erythrocytes that encapsulate the near infrared (NIR) fluorochrome, indocyanine green, as potential imaging probes for tumor visualization during cytoreductive surgery. Herein, we present the first demonstration of the use of these nanoparticles in conjunction with spatially-modulated illumination (SMI), at spatial frequencies in the range of 0–0.5 mm−1, to fluorescently image intraperitoneal ovarian tumors in mice. Results of our animal studies suggest that the nanoparticles accumulated at higher levels within tumors 24 h post-intraperitoneal injection as compared to various other organs. We demonstrate that, under the imaging specifications reported here, use of these nanoparticles in conjunction with SMI enhances the fluorescence image contrast between intraperitoneal tumors and liver, and between intraperitoneal tumors and spleen by nearly 2.1, and 3.0 times, respectively, at the spatial frequency of 0.2 mm−1 as compared to the contrast values at spatially-uniform (non-modulated) illumination. These results suggest that the combination of erythrocyte-derived NIR nanoparticles and structured illumination provides a promising approach for intraoperative fluorescence imaging of ovarian tumor nodules at enhanced contrast.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Elise Shafer
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Radoptics, LLC, 1002 Health Science Rd. E., Suite P214, Irvine, CA 92612, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging and Department of Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, #57, Houston, TX 77030, USA;
| | - Bahman Anvari
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Correspondence:
| |
Collapse
|
21
|
Hanley T, Vankayala R, Lee CH, Tang JC, Burns JM, Anvari B. Phototheranostics Using Erythrocyte-Based Particles. Biomolecules 2021; 11:729. [PMID: 34068081 PMCID: PMC8152750 DOI: 10.3390/biom11050729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
There has been a recent increase in the development of delivery systems based on red blood cells (RBCs) for light-mediated imaging and therapeutic applications. These constructs are able to take advantage of the immune evasion properties of the RBC, while the addition of an optical cargo allows the particles to be activated by light for a number of promising applications. Here, we review some of the common fabrication methods to engineer these constructs. We also present some of the current light-based applications with potential for clinical translation, and offer some insight into future directions in this exciting field.
Collapse
Affiliation(s)
- Taylor Hanley
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
- Radoptics, Limited Liability Company, 1002 Health Sciences Road, East, Suite P214, Irvine, CA 92612, USA
| | - Chi-Hua Lee
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (T.H.); (R.V.); (J.C.T.); (J.M.B.)
| |
Collapse
|
22
|
Liu X, Gaihre B, George MN, Li Y, Tilton M, Yaszemski MJ, Lu L. 2D phosphorene nanosheets, quantum dots, nanoribbons: synthesis and biomedical applications. Biomater Sci 2021; 9:2768-2803. [PMID: 33620047 PMCID: PMC9009269 DOI: 10.1039/d0bm01972k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorene, also known as black phosphorus (BP), is a two-dimensional (2D) material that has gained significant attention in several areas of current research. Its unique properties such as outstanding surface activity, an adjustable bandgap width, favorable on/off current ratios, infrared-light responsiveness, good biocompatibility, and fast biodegradation differentiate this material from other two-dimensional materials. The application of BP in the biomedical field has been rapidly emerging over the past few years. This article aimed to provide a comprehensive review of the recent progress on the unique properties and extensive medical applications for BP in bone, nerve, skin, kidney, cancer, and biosensing related treatment. The details of applications of BP in these fields were summarized and discussed.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew N George
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael J Yaszemski
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA. and Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Castro F, Martins C, Silveira MJ, Moura RP, Pereira CL, Sarmento B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv Drug Deliv Rev 2021; 170:312-339. [PMID: 32946921 DOI: 10.1016/j.addr.2020.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022]
Abstract
Although nanocarriers offer many advantages as drug delivery systems, their poor stability in circulation, premature drug release and nonspecific uptake in non-target organs have prompted biomimetic approaches using natural cell membranes to camouflage nanovehicles. Among them, erythrocytes, representing the most abundant blood circulating cells, have been extensively investigated for biomimetic coating on artificial nanocarriers due to their upgraded biocompatibility, biodegradability, non-immunogenicity and long-term blood circulation. Due to the cell surface mimetic properties combined with customized core material, erythrocyte-mimicking nanovehicles (EM-NVs) have a wide variety of applications, including drug delivery, imaging, phototherapy, immunomodulation, sensing and detection, that foresee a huge potential for therapeutic and diagnostic applications in several diseases. In this review, we summarize the recent advances in the biomedical applications of EM-NVs in cancer, infection, heart-, autoimmune- and CNS-related disorders and discuss the major challenges and opportunities in this research area.
Collapse
Affiliation(s)
- Flávia Castro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria José Silveira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Pedro Moura
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Catarina Leite Pereira
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
24
|
Xing J, Gong Q, Akakuru OU, Liu C, Zou R, Wu A. Research advances in integrated theranostic probes for tumor fluorescence visualization and treatment. NANOSCALE 2020; 12:24311-24330. [PMID: 33300527 DOI: 10.1039/d0nr06867e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, cancer is obviously a major threat to human health worldwide. Accurate diagnosis and treatment are in great demand and have become an effective method to alleviate the development of cancer and improve the survival rate of patients. A large number of theranostic probes that combine diagnosis and treatment methods have been developed as promising tools for tumor precision medicine. Among them, fluorescent theranostic probes have developed rapidly in the frontier research field of precision medicine with their real time, low toxicity, and high-resolution merit. Therefore, this review focuses on recent advances in the development of fluorescent theranostic probes, as well as their applications for cancer diagnosis and treatment. Initially, small-molecule fluorescent theranostic probes mainly including tumor microenvironment-responsive fluorescent prodrugs and phototherapeutic probes were introduced. Subsequently, nanocomposite probes are expounded based on four types of nano-fluorescent particles combining different therapies (chemotherapy, photothermal therapy, photodynamic therapy, gene therapy, etc.). Then, the capsule-type "all in one" probes, which occupy an important position in theranostic probes, are summarized according to the surface carrier type. This review aims to present a comprehensive guide for researchers in the field of tumor-related theranostic probe design and development.
Collapse
Affiliation(s)
- Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qiuyu Gong
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China. and University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruifen Zou
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
25
|
Hanley TM, Vankayala R, Mac JT, Lo DD, Anvari B. Acute Immune Response of Micro- and Nanosized Erythrocyte-Derived Optical Particles in Healthy Mice. Mol Pharm 2020; 17:3900-3914. [PMID: 32820927 PMCID: PMC9844151 DOI: 10.1021/acs.molpharmaceut.0c00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Erythrocyte-derived particles activated by near-infrared (NIR) light present a platform for various phototheranostic applications. We have engineered such a platform with indocyanine green as the NIR-activated agent. A particular feature of these particles is that their diameters can be tuned from micro- to nanoscale, providing a potential capability for broad clinical utility ranging from vascular to cancer-related applications. An important issue related to clinical translation of these particles is their immunogenic effects. Herein, we have evaluated the early-induced innate immune response of these particles in healthy Swiss Webster mice following tail vein injection by measurements of specific cytokines in blood serum, the liver, and the spleen following euthanasia. In particular, we have investigated the effects of particle size and relative dose, time-dependent cytokine response for up to 6 h postinjection, functionalization of the nanosized particles with folate or Herceptin, and dual injections of the particles 1 week apart. Mean concentrations of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein (MCP)-1 in response to injection of microsized particles at the investigated relative doses were significantly lower than the corresponding mean concentrations induced by lipopolysaccharide (positive control) at 2 h. All investigated doses of the nanosized particles induced significantly higher concentrations of MCP-1 in the liver and the spleen as compared to phosphate buffer saline (PBS) (negative control) at 2 h. In response to micro- and nanosized particles at the highest investigated dose, there were significantly higher levels of TNF-α in blood serum at 2 and 6 h postinjection as compared to the levels associated with PBS treatment at these times. Whereas the mean concentration of TNF-α in the liver significantly increased between 2 and 6 h postinjection in response to the injection of the microsized particles, it was significantly reduced during this time interval in response to the injection of the nanosized particles. In general, functionalization of the nanosized particles was associated with a reduction of IL-6 and MCP-1 in blood serum, the liver, and the spleen, and TNF-α in blood serum. With the exception of IL-10 in the spleen in response to nanosized particles, the second injection of micro- or nanosized particles did not lead to significantly higher concentrations of other cytokines at the investigated dose as compared to a single injection.
Collapse
Affiliation(s)
- Taylor M. Hanley
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David D. Lo
- Department of Biomedical Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
26
|
Tang JC, Vankayala R, Mac JT, Anvari B. RBC-Derived Optical Nanoparticles Remain Stable After a Freeze-Thaw Cycle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10003-10011. [PMID: 32787036 PMCID: PMC9844156 DOI: 10.1021/acs.langmuir.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanosized carriers engineered from red blood cells (RBCs) provide a means for delivering various cargos, including drugs, biologics, and imaging agents. We have engineered nanosized particles from RBCs, doped with the near-infrared (NIR) fluorochrome, indocyanine green (ICG). An important issue related to clinical translation of RBC-derived nanocarriers, including these NIR nanoparticles, is their stability postfabrication. Freezing may provide a method for long-term storage of these and other RBC-derived nanoparticles. Herein, we have investigated the physical and optical stability of these particles in response to a single freeze-thaw cycle. Nanoparticles were frozen to -20 °C, stored frozen for up to 8 weeks, and then thawed at room temperature. Our results show that the hydrodynamic diameter, zeta potential, optical density, and NIR fluorescence emission of these nanoparticles are retained following the freeze-thaw cycle. The ability of these nanoparticles in NIR fluorescence imaging of ovarian cancer cells, as well as their biodistribution in reticuloendothelial organs of healthy Swiss Webster mice after the freeze-thaw cycle is similar to that for freshly prepared nanoparticles. These results indicate that a single cycle of freezing the RBC-derived nanoparticles to -20 °C followed by thawing at room temperature is an effective method to retain the physical and optical characteristics of the nanoparticles, and their interactions with biological systems without the need for use of cryoprotectants.
Collapse
Affiliation(s)
- Jack C Tang
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Jenny T Mac
- Department of Biochemistry, University of California, Riverside, California 92521, United States
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
27
|
Liu Y, Hanley T, Chen H, Long SR, Gambhir SS, Cheng Z, Wu JC, Fakhri GE, Anvari B, Zaman RT. Non-Invasive Photoacoustic Imaging of In Vivo Mice with Erythrocyte Derived Optical Nanoparticles to Detect CAD/MI. Sci Rep 2020; 10:5983. [PMID: 32249814 PMCID: PMC7136251 DOI: 10.1038/s41598-020-62868-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Coronary artery disease (CAD) causes mortality and morbidity worldwide. We used near-infrared erythrocyte-derived transducers (NETs), a contrast agent, in combination with a photoacoustic imaging system to identify the locations of atherosclerotic lesions and occlusion due to myocardial-infarction (MI). NETs (≈90 nm diameter) were fabricated from hemoglobin-depleted mice erythrocyte-ghosts and doped with Indocyanine Green (ICG). Ten weeks old male C57BL/6 mice (n = 9) underwent left anterior descending (LAD) coronary artery ligation to mimic vulnerable atherosclerotic plaques and their rupture leading to MI. 150 µL of NETs (20 µM ICG,) was IV injected via tail vein 1-hour prior to photoacoustic (PA) and fluorescence in vivo imaging by exciting NETs at 800 nm and 650 nm, respectively. These results were verified with histochemical analysis. We observed ≈256-fold higher PA signal from the accumulated NETs in the coronary artery above the ligation. Fluorescence signals were detected in LAD coronary, thymus, and liver. Similar signals were observed when the chest was cut open. Atherosclerotic lesions exhibited inflammatory cells. Liver demonstrated normal portal tract, with no parenchymal necrosis, inflammation, fibrosis, or other pathologic changes, suggesting biocompatibility of NETs. Non-invasively detecting atherosclerotic plaques and stenosis using NETs may lay a groundwork for future clinical detection and improving CAD risk assessment.
Collapse
Affiliation(s)
- Yonggang Liu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Taylor Hanley
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Hao Chen
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven R Long
- Department of Pathology, University of California, San Francisco, CA, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhen Cheng
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Georges El Fakhri
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, CA, USA.
| | - Raiyan T Zaman
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
29
|
Jia W, Burns JM, Villantay B, Tang JC, Vankayala R, Lertsakdadet B, Choi B, Nelson JS, Anvari B. Intravital Vascular Phototheranostics and Real-Time Circulation Dynamics of Micro- and Nanosized Erythrocyte-Derived Carriers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:275-287. [PMID: 31820920 PMCID: PMC7028219 DOI: 10.1021/acsami.9b18624] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Erythrocyte-based carriers can serve as theranostic platforms for delivery of imaging and therapeutic payloads. Engineering these carriers at micro- or nanoscales makes them potentially useful for broad clinical applications ranging from vascular diseases to tumor theranostics. Longevity of these carriers in circulation is important in delivering a sufficient amount of their payloads to the target. We have investigated the circulation dynamics of micro (∼4.95 μm diameter) and nano (∼91 nm diameter) erythrocyte-derived carriers in real time using near-infrared fluorescence imaging, and evaluated the effectiveness of such carrier systems in mediating photothermolysis of cutaneous vasculature in mice. Fluorescence emission half-lives of micro- and nanosized carriers in response to a single intravenous injection were ∼49 and ∼15 min, respectively. A single injection of microsized carriers resulted in a 3-fold increase in signal-to-noise ratio that remained nearly persistent over 1 h of imaging time. Our results also suggest that a second injection of the carriers 7 days later can induce a transient inflammatory response, as manifested by the apparent leakage of the carriers into the perivascular tissue. The administration of the carriers into the mice vasculature reduced the threshold laser fluence to induce photothermolysis of blood vessels from >65 to 20 J/cm2. We discuss the importance of membrane physicochemical and mechanical characteristics in engineering erythrocyte-derived carriers and considerations for their clinical translation.
Collapse
Affiliation(s)
- Wangcun Jia
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | - Betty Villantay
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
| | - Jack C. Tang
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| | | | - Ben Lertsakdadet
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bernard Choi
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
- Edwards Life Sciences Center for Advanced Cardiovascular Technology, University of California, Irvine, Irvine, CA 92697
| | - J. Stuart Nelson
- Beckman Laser Institute and Medical Clinic, Department of Surgery, University of California, Irvine, Irvine, CA, 92617
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521
| |
Collapse
|
30
|
Ou W, Byeon JH, Soe ZC, Kim BK, Thapa RK, Gupta B, Poudel BK, Ku SK, Yong CS, Kim JO. Tailored Black Phosphorus for Erythrocyte Membrane Nanocloaking with Interleukin-1 α siRNA and Paclitaxel for Targeted, Durable, and Mild Combination Cancer Therapy. Am J Cancer Res 2019; 9:6780-6796. [PMID: 31660068 PMCID: PMC6815959 DOI: 10.7150/thno.37123] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several therapeutic nanosystems have been engineered to remedy the shortcomings of cancer monotherapies, including immunotherapy (stimulating the host immune system to eradicate cancer), to improve therapeutic efficacy with minimizing off-target effects and tumor-induced immunosuppression. Light-activated components in nanosystems confer additional phototherapeutic effects as combinatorial modalities; however, systemic and thermal toxicities with unfavorable accumulation and excretion of nanoystem components now hamper their practical applications. Thus, there remains a need for optimal multifunctional nanosystems to enhance targeted, durable, and mild combination therapies for efficient cancer treatment without notable side effects. Methods: A nanosystem constructed with a base core (poly-L-histidine [H]-grafted black phosphorus [BP]) and a shell (erythrocyte membrane [EM]) is developed to offer a mild photoresponsive (near-infrared) activity with erythrocyte mimicry. In-flight electrostatic tailoring to extract uniform BP nanoparticles maintains a hydrodynamic size of <200 nm (enabling enhanced permeability and retention) after EM cloaking and enhances their biocompatibility. Results: Ephrin-A2 receptor-specific peptide (YSA, targeting cancer cells), interleukin-1α silencing small interfering RNA (ILsi, restricting regulatory T cell trafficking), and paclitaxel (X, inducing durable chemotherapeutics) are incorporated within the base core@shell constructs to create BP-H-ILsi-X@EM-YSA architectures, which provide a more intelligent nanosystem for combination cancer therapies. Conclusion: The in-flight tailoring of BP particles provides a promising base core for fabricating <200 nm EM-mimicking multifunctional nanosystems, which could be beneficial for constructing smarter nanoarchitectures to use in combination cancer therapies.
Collapse
|
31
|
Hanley T, Yin R, Mac JT, Tan W, Anvari B. Functionalized erythrocyte-derived optical nanoparticles to target ephrin-B2 ligands. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31429216 PMCID: PMC6983482 DOI: 10.1117/1.jbo.24.8.085002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Over- or under-expression of erythropoietin-production human hepatocellular receptors (Eph) and their ligands are associated with various diseases. Therefore, these molecular biomarkers can potentially be used as binding targets for the delivery of therapeutic and/or imaging agents to cells characterized by such irregular expressions. We have engineered nanoparticles derived from erythrocytes and doped with the near-infrared (NIR) FDA-approved dye, indocyanine green. We refer to these nanoparticles as NIR erythrocyte-derived transducers (NETs). We functionalized the NETs with the ligand-binding domain of a particular Eph receptor, EphB1, to target the genetically modified human dermal microvascular endothelial cells (hDMVECs) with coexpression of EphB1 receptor and its ligand ephrin-B2. This cell model mimics the pathological phenotypes of lesional endothelial cells (ECs) in port wine stains (PWSs). Our quantitative fluorescence imaging results demonstrate that such functionalized NETs bind to the ephrin-B2 ligands on these hDMVECs in a dose-dependent manner that varies sigmoidally with the number density of the particles. These nanoparticles may potentially serve as agents to target PWS lesional ECs and other diseases characterized with over-expression of Eph receptors or their associated ligands to mediate phototherapy.
Collapse
Affiliation(s)
- Taylor Hanley
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| | - Rong Yin
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, South Carolina, United States
| | - Jenny T. Mac
- University of California, Riverside, Department of Biochemistry, Riverside, California, United States
| | - Wenbin Tan
- University of South Carolina School of Medicine, Department of Cell Biology and Anatomy, Columbia, South Carolina, United States
| | - Bahman Anvari
- University of California, Riverside, Department of Bioengineering, Riverside, California, United States
| |
Collapse
|
32
|
Vankayala R, Mac JT, Burns JM, Dunn E, Carroll S, Bahena EM, Patel DK, Griffey S, Anvari B. Biodistribution and toxicological evaluation of micron- and nano-sized erythrocyte-derived optical particles in healthy Swiss Webster mice. Biomater Sci 2019; 7:2123-2133. [PMID: 30869663 PMCID: PMC9844153 DOI: 10.1039/c8bm01448e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Particle-based systems provide a capability for the delivery of imaging and/or therapeutic payloads. We have engineered constructs derived from erythrocytes, and doped with the FDA-approved near infrared dye, indocyanine green (ICG). We refer to these optical particles as NIR erythrocyte-mimicking transducers (NETs). A particular feature of NETs is that their diameters can be tuned from micron- to nano-scale. Herein, we investigated the effects of micron- (≈2.6 μm diameter), and nano- (≈145 nm diameter) sized NETs on their biodistribution, and evaluated their acute toxicity in healthy Swiss Webster mice. Following tail vein injection of free ICG and NETs, animals were euthanized at various time points up to 48 hours. Fluorescence analysis of blood showed that nearly 11% of the injected amount of nano-sized NETs (nNETs) remained in blood at 48 hours post-injection as compared to ≈5% for micron-sized NETs (μNETs). Similarly, at this time point, higher levels of nNETs were present in various organs including the lungs, liver, and spleen. Histological analyses of various organs, extracted at 24 hours post-injection of NETs, did not show pathological alterations. Serum biochemistry profiles, in general, did not show elevated levels of the various analyzed biomarkers associated with liver and kidney functions. Values of various hematological profiles remained within the normal ranges following the administration of μNETs and nNETs. Results of this study suggest that erythrocyte-derived particles can potentially provide a non-toxic platform for delivery of ICG.
Collapse
Affiliation(s)
- Raviraj Vankayala
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jenny T. Mac
- Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Joshua M. Burns
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Eugene Dunn
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Stefanie Carroll
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Edver M. Bahena
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Dipti K. Patel
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Stephen Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, Sacramento, CA 95616, USA
| | - Bahman Anvari
- Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA,Department of Biochemistry, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
33
|
Tang JC, Partono A, Anvari B. Near-Infrared-Fluorescent Erythrocyte-Mimicking Particles: Physical and Optical Characteristics. IEEE Trans Biomed Eng 2019; 66:1034-1044. [PMID: 30130175 PMCID: PMC6382600 DOI: 10.1109/tbme.2018.2866368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exogenous fluorescent materials activated by near-infrared (NIR) light can offer deep optical imaging with subcellular resolution, and enhanced image contrast. We have engineered NIR particles by doping hemoglobin-depleted erythrocyte ghosts (EGs) with indocyanine green (ICG). We refer to these optical particles as NIR erythrocyte-mimicking transducers (NETs). A particular feature of NETs is that their diameters can be tuned from micrometer to nanometer scale, thereby, providing a capability for broad NIR biomedical imaging applications. Herein, we investigate the effects of ICG concentration on key material properties of micrometer-sized NETs, and nanometer-sized NETs fabricated by either sonication or mechanical extrusion of EGs. The zeta potentials of NETs do not vary significantly with ICG concentration, suggesting that ICG is encapsulated within NETs regardless of particle size or ICG concentration. Loading efficiency of ICG into the NETs monotonically decreases with increasing values of ICG concentration. Based on quantitative analyses of the fluorescence emission spectra of the NETs, we determine that 20 μM ICG utilized during fabrication of NETs presents an optimal concentration that maximizes the integrated fluorescence emission for micrometer- and nanometer-sized NETs. Encapsulation of the ICG in these constructs also enhances the fluorescence stability and quantum yield of ICG. These results guide the engineering of NETs with maximal NIR emission for imaging applications such as fluorescence-guided tumor resection and real-time angiography.
Collapse
|