1
|
Fu Y, Lin S, Wang XH. Whispering Gallery Mode Micro/Nanolasers for Intracellular Probing at Single Cell Resolution. ACS Sens 2024; 9:5683-5698. [PMID: 39508808 DOI: 10.1021/acssensors.4c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Intracellular probing at single cell resolution is key to revealing the heterogeneity of cells, learning new cell subtypes and functions, understanding the pathophysiology of disease, and ensuring precise diagnosis and treatment. Despite the best efforts, an enormous challenge remains due to the very small size, extremely low content, and dynamic microenvironment of a single cell. Whispering gallery mode (WGM) micro/nanolasers (active WGM) offer unique advantages of small mode volume, high quality factors, bright and low threshold laser emission, and narrow line width, particularly suitable for integration within a single cell. In this review, we provide a focused overview of WGM micro/nanolasers for intracellular probing. We deliver information on WGM micro/nanolaser concepts, sensing mechanism, and biocompatibility, as well as recent progress in intracellular probing applications mainly covering cellular-level sensing, molecular-level detection, and feasibility for cellular imaging. At the end, challenges and prospects of WGM micro/nanolasers for intracellular applications are discussed.
Collapse
Affiliation(s)
- Yiqian Fu
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Siqi Lin
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiu-Hong Wang
- Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing 100124, China
- Beijing Engineering Research Center of Laser Technology, Beijing 100124, China
- Laboratory for Biomedical Photonics, Institute of Laser Engineering, School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Zhong Y, Zhang J, Fang L, Cheang UK. MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47163-47177. [PMID: 39196769 DOI: 10.1021/acsami.4c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH2-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of Staphylococcus aureus biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Titze VM, Caixeiro S, Dinh VS, König M, Rübsam M, Pathak N, Schumacher AL, Germer M, Kukat C, Niessen CM, Schubert M, Gather MC. Hyperspectral confocal imaging for high-throughput readout and analysis of bio-integrated microlasers. Nat Protoc 2024; 19:928-959. [PMID: 38238582 DOI: 10.1038/s41596-023-00924-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 03/10/2024]
Abstract
Integrating micro- and nanolasers into live cells, tissue cultures and small animals is an emerging and rapidly evolving technique that offers noninvasive interrogation and labeling with unprecedented information density. The bright and distinct spectra of such lasers make this approach particularly attractive for high-throughput applications requiring single-cell specificity, such as multiplexed cell tracking and intracellular biosensing. The implementation of these applications requires high-resolution, high-speed spectral readout and advanced analysis routines, which leads to unique technical challenges. Here, we present a modular approach consisting of two separate procedures. The first procedure instructs users on how to efficiently integrate different types of lasers into living cells, and the second procedure presents a workflow for obtaining intracellular lasing spectra with high spectral resolution and up to 125-kHz readout rate and starts from the construction of a custom hyperspectral confocal microscope. We provide guidance on running hyperspectral imaging routines for various experimental designs and recommend specific workflows for processing the resulting large data sets along with an open-source Python library of functions covering the analysis pipeline. We illustrate three applications including the rapid, large-volume mapping of absolute refractive index by using polystyrene microbead lasers, the intracellular sensing of cardiac contractility with polystyrene microbead lasers and long-term cell tracking by using semiconductor nanodisk lasers. Our sample preparation and imaging procedures require 2 days, and setting up the hyperspectral confocal microscope for microlaser characterization requires <2 weeks to complete for users with limited experience in optical and software engineering.
Collapse
Affiliation(s)
- Vera M Titze
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
| | - Soraya Caixeiro
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Vinh San Dinh
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Graduate Program in Applied Physics, Northwestern University, Evanston, Illinois, USA
| | - Matthias König
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Matthias Rübsam
- Department of Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Nachiket Pathak
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany
| | - Anna-Lena Schumacher
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Maximilian Germer
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Carien M Niessen
- Department of Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Marcel Schubert
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
| | - Malte C Gather
- Centre of Biophotonics, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, University of Cologne, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Zhou D, Zhao N, Chen Y, Sun J, Li Y, Peng Z, Liu Y. Laser emission from tapered fiber-based liquid-crystal microsphere for sensing. OPTICS LETTERS 2023; 48:3773-3776. [PMID: 37450747 DOI: 10.1364/ol.492930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023]
Abstract
This Letter introduces a novel laser emission probe for liquid-crystal microspheres based on a tapered fiber. A cholesteric liquid crystal (CLC) is injected into a hollow glass microsphere (HGM) attached at the front end of a tapered fiber in order to produce laser. Tapered fibers are preferable to rectangular fibers for liquid-crystal microsphere laser emission. The whispering gallery mode (WGM) laser is significantly suppressed by the tapered fiber-based liquid-crystal microsphere, which also displays an apparent single-mode photonic bandgap (PBG) laser peak. The stimulation response of tapered fiber-based liquid-crystal microspheres to organic vapors causes a modification of the laser peak wavelength with increasing gas concentration. In addition, laser emission generated by tapered fiber-based liquid-crystal microspheres is expected to be used in fields such as microenvironmental biosensing.
Collapse
|
5
|
Anwar A, Mur M, Humar M. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications. ACS PHOTONICS 2023; 10:1202-1224. [PMID: 37215324 PMCID: PMC10197175 DOI: 10.1021/acsphotonics.2c01611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 05/24/2023]
Abstract
Optical microbarcodes have recently received a great deal of interest because of their suitability for a wide range of applications, such as multiplexed assays, cell tagging and tracking, anticounterfeiting, and product labeling. Spectral barcodes are especially promising because they are robust and have a simple readout. In addition, microcavity- and microlaser-based barcodes have very narrow spectra and therefore have the potential to generate millions of unique barcodes. This review begins with a discussion of the different types of barcodes and then focuses specifically on microcavity-based barcodes. While almost any kind of optical microcavity can be used for barcoding, currently whispering-gallery microcavities (in the form of spheres and disks), nanowire lasers, Fabry-Pérot lasers, random lasers, and distributed feedback lasers are the most frequently employed for this purpose. In microcavity-based barcodes, the information is encoded in various ways in the properties of the emitted light, most frequently in the spectrum. The barcode is dependent on the properties of the microcavity, such as the size, shape, and the gain materials. Various applications of these barcodes, including cell tracking, anticounterfeiting, and product labeling are described. Finally, the future prospects for microcavity- and microlaser-based barcodes are discussed.
Collapse
Affiliation(s)
- Abdur
Rehman Anwar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Maruša Mur
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Humar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- CENN
Nanocenter, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska
19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Li J, Li B, Meng M, Sun L, Jiang M. Interface engineering enhanced near-infrared electroluminescence in an n-ZnO microwire/p-GaAs heterojunction. OPTICS EXPRESS 2022; 30:24773-24787. [PMID: 36237023 DOI: 10.1364/oe.459837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Interface engineering in the fabrication of low-dimensional optoelectronic devices has been highlighted in recent decades to enhance device characteristics such as reducing leakage current, optimizing charge transport, and modulating the energy-band structure. In this paper, we report a dielectric interface approach to realize one-dimensional (1D) wire near-infrared light-emitting devices with high brightness and enhanced emission efficiency. The light-emitting diode is composed of a zinc oxide microwire covered by a silver nanolayer (Ag@ZnO MW), magnesium oxide (MgO) buffer layer, and p-type gallium arsenide (GaAs) substrate. In the device structure, the insertion of a MgO dielectric layer in the n-ZnO MW/p-GaAs heterojunction can be used to modulate the device features, such as changing the charge transport properties, reducing the leakage current and engineering the band alignment. Furthermore, the cladding of the Ag nanolayer on the ZnO MW can optimize the junction interface quality, thus reducing the turn-on voltage and increasing the current injection and electroluminescence (EL) efficiency. The combination of MgO buffer layer and Ag nanolayer cladding can be utilized to achieve modulating the carrier recombination path, interfacial engineering of heterojunction with optimized band alignment and electronic structure in these carefully designed emission devices. Besides, the enhanced near-infrared EL and improved physical contact were also obtained. The study of current transport modulation and energy-band engineering proposes an original and efficient route for improving the device performances of 1D wire-type heterojunction light sources.
Collapse
|
7
|
Shan H, Dai H, Chen X. Monitoring Various Bioactivities at the Molecular, Cellular, Tissue, and Organism Levels via Biological Lasers. SENSORS (BASEL, SWITZERLAND) 2022; 22:3149. [PMID: 35590841 PMCID: PMC9102053 DOI: 10.3390/s22093149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The laser is considered one of the greatest inventions of the 20th century. Biolasers employ high signal-to-noise ratio lasing emission rather than regular fluorescence as the sensing signal, directional out-coupling of lasing and excellent biocompatibility. Meanwhile, biolasers can also be micro-sized or smaller lasers with embedded/integrated biological materials. This article presents the progress in biolasers, focusing on the work done over the past years, including the molecular, cellular, tissue, and organism levels. Furthermore, biolasers have been utilized and explored for broad applications in biosensing, labeling, tracking, bioimaging, and biomedical development due to a number of unique advantages. Finally, we provide the possible directions of biolasers and their applications in the future.
Collapse
Affiliation(s)
- Hongrui Shan
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Hailang Dai
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
| | - Xianfeng Chen
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; (H.S.); (H.D.)
- Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
8
|
Xu Z, Hong Q, Ge K, Shi X, Wang X, Deng J, Zhou Z, Zhai T. Random Lasing from Label-Free Living Cells for Rapid Cytometry of Apoptosis. NANO LETTERS 2022; 22:172-178. [PMID: 34978455 DOI: 10.1021/acs.nanolett.1c03580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A random laser carrying the scattering information on a biological host is a promising tool for the characterization of biophysical properties. In this work, random lasing from label-free living cells is proposed to achieve rapid cytometry of apoptosis. Random lasing is achieved by adding biocompatible gain medium to a confocal dish containing cells under optically pumped conditions. The random lasing characteristics are distinct at different stages of cell apoptosis after drug treatment. By analyzing the power Fourier transform results of the random lasing spectra, the percentage of apoptotic cells could be distinguished within two seconds, which is more than an order of magnitude faster than traditional flow cytometry. These results provide a label-free approach for rapid cytometry of apoptosis, which is advantageous for further research of random lasers in the biological field.
Collapse
Affiliation(s)
- Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Qihao Hong
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Ge
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaolei Wang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jinxiang Deng
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - ZhiXiang Zhou
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
9
|
Xu Z, Zhai T, Shi X, Tong J, Wang X, Deng J. Multifunctional Sensing Based on an Ultrathin Transferrable Microring Laser. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19324-19331. [PMID: 33861082 DOI: 10.1021/acsami.1c03123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An ultrathin-film microring laser was fabricated using inkjet printing and a simple lift-off technique. Whispering-gallery-mode lasing was observed under optically pumped conditions in the film. The freestanding laser can be transferred to arbitrary surfaces for multifunctional applications, such as acoustic and relative humidity sensing. Using the first eigenmode of a membrane vibration, an acoustic sensor with a 0.15 Pa limit of detection was demonstrated via laser bandwidth broadening. A relative humidity sensor with a 1.1% limit of detection via wavelength shifts was demonstrated by placing the device on an optical fiber facet. These cost-effective, transferrable, multifunctional laser sensors will have many additional applications.
Collapse
Affiliation(s)
- Zhiyang Xu
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Tianrui Zhai
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Shi
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Junhua Tong
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaolei Wang
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Jinxiang Deng
- College of Physics and Optoelectronics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Man Z, Cui H, Lv Z, Xu Z, Wu Z, Wu Y, Liao Q, Liu M, Xi P, Zheng L, Fu H. Organic Nanoparticles-Assisted Low-Power STED Nanoscopy. NANO LETTERS 2021; 21:3487-3494. [PMID: 33848175 DOI: 10.1021/acs.nanolett.1c00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy plays a key role in achieving sub-50 nm high spatial resolution for subcellular live-cell imaging. To avoid re-excitation, the STED wavelength has to be tuned at the red tail of the emission spectrum of fluorescent probes, leading to high depletion laser power that might damage the cell viability and functionality. Herein, with the highly emissive silica-coated core-shell organic nanoparticles (CSONPs) enabling a giant Stokes shift of 150 nm, ultralow power STED is achieved by shifting the STED wavelength to the emission maximum at 660 nm. The stimulated emission cross section is increased by ∼20-fold compared to that at the emission red tail. The measured saturation intensity and lateral resolution of our CSONP are 0.0085 MW cm-2 and 25 nm, respectively. More importantly, long-term (>3 min) dynamic super-resolution imaging of the lysosomal fusion-fission processes in living cells is performed with a resolution of 37 nm.
Collapse
Affiliation(s)
- Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongtu Cui
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing 100191, China
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Zhaoyang Wu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Meihui Liu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing 100191, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100160, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China
- Institute of Molecular Plus, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Toropov N, Cabello G, Serrano MP, Gutha RR, Rafti M, Vollmer F. Review of biosensing with whispering-gallery mode lasers. LIGHT, SCIENCE & APPLICATIONS 2021; 10:42. [PMID: 33637696 PMCID: PMC7910454 DOI: 10.1038/s41377-021-00471-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Lasers are the pillars of modern optics and sensing. Microlasers based on whispering-gallery modes (WGMs) are miniature in size and have excellent lasing characteristics suitable for biosensing. WGM lasers have been used for label-free detection of single virus particles, detection of molecular electrostatic changes at biointerfaces, and barcode-type live-cell tagging and tracking. The most recent advances in biosensing with WGM microlasers are described in this review. We cover the basic concepts of WGM resonators, the integration of gain media into various active WGM sensors and devices, and the cutting-edge advances in photonic devices for micro- and nanoprobing of biological samples that can be integrated with WGM lasers.
Collapse
Affiliation(s)
- Nikita Toropov
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| | - Gema Cabello
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Mariana P Serrano
- Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rithvik R Gutha
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Matías Rafti
- Departamento de Química, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Frank Vollmer
- Department of Physics and Astronomy, Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
12
|
Yuan Z, Tan X, Gong X, Gong C, Cheng X, Feng S, Fan X, Chen YC. Bioresponsive microlasers with tunable lasing wavelength. NANOSCALE 2021; 13:1608-1615. [PMID: 33439198 DOI: 10.1039/d0nr07921a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lasing particles are emerging tools for amplifying light-matter interactions at the biointerface by exploiting its strong intensity and miniaturized size. Recent advances in implementing laser particles into living cells and tissues have opened a new frontier in biological imaging, monitoring, and tracking. Despite remarkable progress in micro- and nanolasers, lasing particles with surface functionality remain challenging due to the low mode-volume while maintaining a high Q-factor. Herein, we report the novel concept of bioresponsive microlasers by exploiting interfacial energy transfer based on whispering-gallery-mode (WGM) microdroplet cavities. Lasing wavelengths were manipulated by energy transfer-induced changes of a gain spectrum resulting from the binding molecular concentrations at the cavity surface. Both protein-based and enzymatic-based interactions were demonstrated, shedding light on the development of functional microlasers. Finally, tunable lasing wavelengths over a broad spectral range were achieved by selecting different donor/acceptor pairs. This study not only opens new avenues for biodetection, but also provides deep insights into how molecules modulate laser light at the biointerface, laying the foundation for the development of smart bio-photonic devices at the molecular level.
Collapse
Affiliation(s)
- Zhiyi Yuan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Li X, Zhang W, Wang WY, Wu X, Li Y, Tan X, Matera DL, Baker BM, Paulus YM, Fan X, Wang X. Optical coherence tomography and fluorescence microscopy dual-modality imaging for in vivo single-cell tracking with nanowire lasers. BIOMEDICAL OPTICS EXPRESS 2020; 11:3659-3672. [PMID: 33014558 PMCID: PMC7510899 DOI: 10.1364/boe.395369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 05/24/2023]
Abstract
Emerging cell-based therapies such as stem cell therapy and immunotherapy have attracted broad attention in both biological research and clinical practice. However, a long-standing technical gap of cell-based therapies is the difficulty of directly assessing treatment efficacy via tracking therapeutically administered cells. Therefore, imaging techniques to follow the in vivo distribution and migration of cells are greatly needed. Optical coherence tomography (OCT) is a clinically available imaging technology with ultrahigh-resolution and excellent imaging depth. It also shows great potential for in vivo cellular imaging. However, due to the homogeneity of current OCT cell labeling contrast agents (such as gold and polymer nanoparticles), only the distribution of entire cell populations can be observed. Precise tracking of the trajectory of individual single cells is not possible with such conventional contrast agents. Microlasers may provide a route to track unique cell identifiers given their small size, high emission intensities, rich emission spectra, and narrow linewidths. Here, we demonstrate that nanowire lasers internalized by cells provide both OCT and fluorescence signal. In addition, cells can be individually identified by the unique lasing emission spectra of the nanowires that they carry. Furthermore, single cell migration trajectories can be monitored both in vitro and in vivo with OCT and fluorescence microscopy dual-modality imaging system. Our study demonstrates the feasibility of nanowire lasers combined with the dual-modality imaging system for in vivo single cell tracking with a high spatial resolution and identity verification, an approach with great utility for stem cell and immunomodulatory therapies.
Collapse
Affiliation(s)
- Xuzhou Li
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109, USA
- Xuzhou Li and Wei Zhang contributed equally to this work
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Xuzhou Li and Wei Zhang contributed equally to this work
| | - William Y Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Xiaoqin Wu
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Daniel L Matera
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Yannis M Paulus
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall St, Ann Arbor, MI 48105, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Wang J, Zhang S, Xu X, Xing Y, Li Z, Wang J. Fast DNA Extraction with Polyacrylamide Microspheres for Polymerase Chain Reaction Detection. ACS OMEGA 2020; 5:13829-13839. [PMID: 32566849 PMCID: PMC7301550 DOI: 10.1021/acsomega.0c01181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 05/31/2023]
Abstract
The fast and cost-effective DNA extraction is critical for all DNA-based detections. Here, we fabricated a new kind of polyacrylamide microsphere (PAMMP) in various sizes with two methods, spot polymerization (large size but low yield) and modified inverse microemulsion polymerization (small size but high yield). The fabricated PAMMPs have strong autofluorescence (fPAMMPs), including both visible fluorescence (VF) and near-infrared fluorescence (NIRF), which can remain very stable in various stringent conditions including strong acid and alkali and high temperature. The fabricated fPAMMPs were also highly positively charged, which could be used to effectively capture various biomolecules such as IRDye 800-labeled streptavidin and DNA. We thus developed a new method for rapid extraction (3-5 min) of DNA from various samples including bacteria, mammalian cells, plant and animal solid tissues, and human blood plasma using fPAMMPs. Moreover, the DNA captured on fPAMMPs (fPAMMP@DNA) could be effectively detected by both normal and quantitative PCR amplifications. Finally, we showed that NaBH4 treatment removed autofluorescence in fPAMMPs (PAMMPs), which could also be applied to DNA extraction and PCR detection. In conclusion, we here fabricated new kinds of fPAMMPs and PAMMPs, developed a new rapid DNA extraction method, and demonstrated their useful applications in PCR detection.
Collapse
Affiliation(s)
- Jun Wang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Shuyan Zhang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Xinhui Xu
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| | - Yujun Xing
- Institute
of Food Quality Safety and Nutrition, Jiangsu
Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zongru Li
- Department
of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston 60208-3109, Illinois, United States
| | - Jinke Wang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 210096, China
| |
Collapse
|
15
|
Man Z, Lv Z, Xu Z, Cui H, Liao Q, Zheng L, Jin X, He Q, Fu H. Organic nanoparticles with ultrahigh stimulated emission depletion efficiency for low-power STED nanoscopy. NANOSCALE 2019; 11:12990-12996. [PMID: 31264678 DOI: 10.1039/c9nr02781e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a powerful sub-diffraction imaging tool to probe subcellular structures and organelles. Conventional organic dyes require high STED power (PSTED) to obtain sub-diffraction resolution, leading to serious photo-bleaching. Herein, this study demonstrates highly emissive silica-coated core-shell organic nanoparticles (CSONPs) as a new type of photostable probe with ultrahigh stimulated emission depletion efficiency for low-power super-resolution STED nanoscopy. The CSONPs offer (i) efficient red emission with high solid-state fluorescence quantum yields around 0.6, (ii) large Stokes shift of 150 nm and (iii) high photostability owing to silica shell protection. The stimulated emission depletion efficiency (η) of CSONPs was extremely high up to η = 99% (the highest value reported so far) with a saturation intensity as low as Isat = 0.18 MW cm-2. Moreover, this research demonstrates the super-resolution imaging of living HeLa cells stained using CSONPs with a lateral spatial resolution of 63 nm at an extremely low depletion power of ISTED = 0.89 MW cm-2 and a long-term stability >600 s at η = 80% without obvious fatigue. The excellent and comprehensive performances of the CSONPs are promising for super-resolution imaging in biological applications.
Collapse
Affiliation(s)
- Zhongwei Man
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zheng Lv
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Hongtu Cui
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China.
| | - Lemin Zheng
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Xue Jin
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Qihua He
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, the Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Health Science Center, Beijing 100191, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing 100048, China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Institute of Molecular Plus, Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|