1
|
Terzapulo X, Dyussupova A, Ilyas A, Boranova A, Shevchenko Y, Mergenbayeva S, Filchakova O, Gaipov A, Bukasov R. Detection of Cancer Biomarkers: Review of Methods and Applications Reported from Analytical Perspective. Crit Rev Anal Chem 2025:1-46. [PMID: 40367278 DOI: 10.1080/10408347.2025.2497868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
One in five deaths in developed countries is related to cancer. The cancer prevalence is likely to grow with aging population. The affordable and accurate early diagnostics of cancer based on detection of cancer biomarkers at low concentration during its early stages is one of the most efficient way to decrease mortality and human suffering from cancer. The data from 201 analytical papers are tabulated in 9 tables, illustrated in 8 figures and used for comparative analysis of methods applied for cancer biomarker detection, including polymerase chain reaction, Loop-mediated isothermal amplification (LAMP), mass spectrometry, enzyme-linked immunosorbent assay, electroanalytical methods, immunoassays, surface enhanced Raman scattering, Fourier Transform Infrared and others in terms of above-mentioned performance parameters. Median and/or average limit of detection (LOD) are calculated and compared between different analytical methods. We also described and compared LOD of the methods used for detection of three frequently detected cancer biomarkers: carcinoembryonic antigen, prostate-specific antigen and alpha-fetoprotein. Among those methods of detection, the reported electrochemical sensors often demonstrate relatively high sensitivity/low LOD while they often have a moderate instrumental cost and fast time to results. The review tabulates, compares and discusses analytical papers, which report LOD of cancer biomarkers and comprehensive quantitative comparison of various analytical methods is made. The discussion of those techniques applied for cancer biomarker detection included brief summary of pro and cons for each of those methods.
Collapse
Affiliation(s)
- Xeniya Terzapulo
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Dyussupova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aisha Ilyas
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Aigerim Boranova
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Yegor Shevchenko
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Saule Mergenbayeva
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Olena Filchakova
- Biology Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Abduzhappar Gaipov
- Department of Medicine, Nazarbayev University School of Medicine, Astana, Republic of Kazakhstan
| | - Rostislav Bukasov
- Chemistry Department, School of Sciences and Humanities, Nazarbayev University, Astana, Republic of Kazakhstan
| |
Collapse
|
2
|
Fan M, Brolo AG. Factors that Affect Quantification in Surface-Enhanced Raman Scattering. ACS NANO 2025; 19:3969-3996. [PMID: 39855155 DOI: 10.1021/acsnano.4c15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
Surface-enhanced Raman scattering (SERS) is an analytical technique capable of detecting trace amounts of specific species. The uniqueness of vibrational signatures is a major advantage of SERS. This combination of sensitivity and specificity has motivated researchers to develop diverse analytical methodologies leveraging SERS. However, even 50 years after its first observation, SERS is still perceived as an unreliable technique for quantification. This perception has precluded the application of SERS in laboratories that rely on consistent quantification (for regulatory purposes, for instance). In this review, we describe some of the aspects that lead to SERS intensity variations and how those challenges were addressed in the 50 years of the technique. The goal is to identify the sources of variations in SERS intensities and then demonstrate that, even with these pitfalls, the technique can be used for quantification when factors such as nature of the substrate, experimental conditions, sample preparation, surface chemistry, and data analysis are carefully considered and tailored for a particular application.
Collapse
Affiliation(s)
- Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
3
|
Zhao LY, Shen GD, Wang DH, Zhang W, Zhao HQ, Ma RN, Wang HS. An ingenious electrochemical system based on naphthalenediimide derivatives for ultrasensitive immunosensing of alpha-fetoprotein. Talanta 2025; 283:127135. [PMID: 39488157 DOI: 10.1016/j.talanta.2024.127135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
It is crucial to develop highly efficient electrochemistry systems for sensitive detection of tumour markers. In this work, naphthalenediimide derivatives with electrochemical application potential were successfully synthesized and characterized. Electrochemistry and calculation of density functional theory (DFT) showed that 2,7-bis(4-(dimethylamino)phenyl)benzo[lmn] [3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI-1) was an ideal candidate for electrochemical probe construction. Subsequently, based on the cyclic catalytic effect between NDI-1 and K2S2O8, a satisfying composite of GO/NDI-1/AuNPs was prepared and used to construct electrochemical probe for the design of ingenious sandwiched electrochemical immunosensor. Taking alpha-fetoprotein (AFP) as the model target biomarker, the designed immunosensor showed good detection performance for AFP, which exhibited wide range of linear response (10 fg/mL - 10 ng/mL), low detection limit (3.3 fg/mL). Moreover, the proposed immunosensor has been successfully applied to AFP detection in human serum, which provides the possibility for clinical applications. The designed electrochemical system provides a new electrochemical probe for the construction of immunosensors and may be extended to the electroanalysis of other biomolecules with recognition units.
Collapse
Affiliation(s)
- Ling-Yu Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, PR China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China
| | - Guo-Dong Shen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China
| | - De-He Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, PR China.
| | - Rong-Na Ma
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China.
| | - Huai-Sheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, PR China.
| |
Collapse
|
4
|
Zheng P, Wu L, Raj P, Kim JH, Paidi SK, Semancik S, Barman I. Multiplexed SERS Detection of Serum Cardiac Markers Using Plasmonic Metasurfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405910. [PMID: 39404188 PMCID: PMC11615760 DOI: 10.1002/advs.202405910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Indexed: 12/06/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) possesses exquisite molecular-specific properties with single-molecule sensitivity. Yet, translation of SERS into a quantitative analysis technique remains elusive owing to considerable fluctuation of the SERS intensity, which can be ascribed to the SERS uncertainty principle, a tradeoff between "reproducibility" and "enhancement". To provide a potential solution, herein, an integrated multiplexed SERS biosensing strategy is proposed, which features two distinct advantages. First, a subwavelength-structured plasmonic metasurface consisting of alternately stacked metal-dielectric pyramidal meta-atoms is fabricated and could provide simultaneously enhanced electric and magnetic fields to enable spatially extended and weakly wavelength-dependent SERS. Second, nanomechanical perturbations are harnessed to transduce signals in the form of SERS frequency shifts, which are not directly affected by the SERS uncertainty principle. By also employing 3D printing methods, a proof-of-concept study of multiplexed detection of a panel of serum cardiac biomarkers for acute myocardial infarction is provided. Success in the development of both the electric and magnetic fields-active plasmonic metasurfaces could transform future designs of SERS substrates with newly endowed functionalities, and frequency shift-based SERS multiplexing could open new opportunities to develop innovative quantitative optical techniques for applications in chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Biomolecular Measurement DivisionMaterial Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | - Lintong Wu
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Piyush Raj
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Jeong Hee Kim
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Santosh Kumar Paidi
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Steve Semancik
- Biomolecular Measurement DivisionMaterial Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMD20899USA
| | - Ishan Barman
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of OncologyJohns Hopkins University School of MedicineBaltimoreMD21287USA
- The Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD21287USA
| |
Collapse
|
5
|
Detassis S, Precazzini F, Brentari I, Ruffilli R, Ress C, Maglione A, Pernagallo S, Denti MA. SA-ODG platform: a semi-automated and PCR-free method to analyse microRNAs in solid tissues. Analyst 2024; 149:3891-3899. [PMID: 38994789 DOI: 10.1039/d4an00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Over the past two decades, numerous techniques have been developed for analysing microRNAs in body fluids and tissues. However, these techniques still face technical challenges, particularly when compared to well-established techniques for proteins and metabolites. Recently, the ODG platform was introduced, which is an innovative technology that allows for the direct detection and quantification of microRNAs in liquid biopsies without requiring extraction or amplification. This study presents the implementation of the ODG platform within a semi-automated protocol to create the "SA-ODG" platform, enhancing the efficiency and precision of microRNA testing while reducing hands-on time required by laboratory staff. For the first time, the SA-ODG platform has been used to directly quantify microRNAs in solid tissues. The results demonstrate precise analysis of miR-122-5p in mouse liver tissues using SA-ODG. These developments represent a crucial step forward in advancing the field of extraction and amplification-free microRNA detection and quantification.
Collapse
Affiliation(s)
- S Detassis
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - F Precazzini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - I Brentari
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - R Ruffilli
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - C Ress
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - A Maglione
- OPTOI SRL, Via Vienna 8, 38121, Trento, Italy.
| | - S Pernagallo
- DESTINA Genomica SL, Parque Tecnológico de la Salud (PTS), Avenida de la Innovación 1, 18016 Granada, Spain
| | - M A Denti
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123, Trento, Italy
| |
Collapse
|
6
|
Lee S, Dang H, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J, Lu M, Chen L, Joo SW, Choo J. SERS-based microdevices for use as in vitro diagnostic biosensors. Chem Soc Rev 2024; 53:5394-5427. [PMID: 38597213 DOI: 10.1039/d3cs01055d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Advances in surface-enhanced Raman scattering (SERS) detection have helped to overcome the limitations of traditional in vitro diagnostic methods, such as fluorescence and chemiluminescence, owing to its high sensitivity and multiplex detection capability. However, for the implementation of SERS detection technology in disease diagnosis, a SERS-based assay platform capable of analyzing clinical samples is essential. Moreover, infectious diseases like COVID-19 require the development of point-of-care (POC) diagnostic technologies that can rapidly and accurately determine infection status. As an effective assay platform, SERS-based bioassays utilize SERS nanotags labeled with protein or DNA receptors on Au or Ag nanoparticles, serving as highly sensitive optical probes. Additionally, a microdevice is necessary as an interface between the target biomolecules and SERS nanotags. This review aims to introduce various microdevices developed for SERS detection, available for POC diagnostics, including LFA strips, microfluidic chips, and microarray chips. Furthermore, the article presents research findings reported in the last 20 years for the SERS-based bioassay of various diseases, such as cancer, cardiovascular diseases, and infectious diseases. Finally, the prospects of SERS bioassays are discussed concerning the integration of SERS-based microdevices and portable Raman readers into POC systems, along with the utilization of artificial intelligence technology.
Collapse
Affiliation(s)
- Sungwoon Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Joung-Il Moon
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Sohyun Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Qian Yu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Jiadong Chen
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Mengdan Lu
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Yantai 264003, China.
| | - Sang-Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
7
|
Cheng HP, Yang TH, Wang JC, Chuang HS. Recent Trends and Innovations in Bead-Based Biosensors for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2024; 24:2904. [PMID: 38733011 PMCID: PMC11086254 DOI: 10.3390/s24092904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Demand is strong for sensitive, reliable, and cost-effective diagnostic tools for cancer detection. Accordingly, bead-based biosensors have emerged in recent years as promising diagnostic platforms based on wide-ranging cancer biomarkers owing to the versatility, high sensitivity, and flexibility to perform the multiplexing of beads. This comprehensive review highlights recent trends and innovations in the development of bead-based biosensors for cancer-biomarker detection. We introduce various types of bead-based biosensors such as optical, electrochemical, and magnetic biosensors, along with their respective advantages and limitations. Moreover, the review summarizes the latest advancements, including fabrication techniques, signal-amplification strategies, and integration with microfluidics and nanotechnology. Additionally, the challenges and future perspectives in the field of bead-based biosensors for cancer-biomarker detection are discussed. Understanding these innovations in bead-based biosensors can greatly contribute to improvements in cancer diagnostics, thereby facilitating early detection and personalized treatments.
Collapse
Affiliation(s)
- Hui-Pin Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
| | - Tai-Hua Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Department of Orthopedic Surgery, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jhih-Cheng Wang
- Department of Urology, Chimei Medical Center, Tainan 710, Taiwan
- Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan (T.-H.Y.)
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Wang J, Liu S, Wei B, Liu Y. Frequency shift Raman-based sensing of serum MicroRNA for ultrasensitive cervical cancer diagnosis. Photodiagnosis Photodyn Ther 2024; 46:104105. [PMID: 38677498 DOI: 10.1016/j.pdpdt.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Cervical cancer is the most common gynaecological tumor. The development of a sensor for the ultrasensitive detection of cervical cancer is significant in guaranteeing its prognosis. Herein, we proposed a novel surface-enhanced Raman scattering (SERS) analysis platform using a frequency shifts-based sensing model for rapid and ultrasensitive microRNA (miRNA) assay. During the analysis process, miR-21 can be captured by the single-stranded DNA (ssDNA) modified on the platform which is complementary pairing with miR-21. The connection of miR-21 can lead to the variation of the molecular weight and result in the deformation extent of the Raman report molecule 6Thioguanine (6TG); thus, the peak at 1301 cm-1 due to the ring C-N stretches of 6TG shifts to lower frequency. The detection limit (LOD) of the proposed SERS analysis platform is as low as 8.32 aM. Moreover, the platform also has excellent specificity and repeatability, with the relative standard deviation (RSD) value of 6.53 %. Serum samples of cervical cancer patients and healthy subjects were analyzed via the platform and the accuracy of the detection results was verified by qRT-PCR, revealing that SERS results and qRT-PCR results have high homogeneity. Thus, the platform can serve as a potential tool for clinical diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Shenxiang Liu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Benfei Wei
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou 225000, China
| | - Yulong Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.
| |
Collapse
|
9
|
Wang Y, Shao L, Zhao Z, Huang C, Jiao Y, Sun D, Liu R, Jiang D, Gao X. Simultaneous detection of dual microRNAs related to EV71 using ICP-MS based on metal nanoparticle labeling with hybridization chain reaction. Anal Chim Acta 2024; 1294:342272. [PMID: 38336408 DOI: 10.1016/j.aca.2024.342272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Hand, foot, and mouth (HMFD) disease caused by enterovirus 71 (EV 71), is closely associated with severe clinical manifestations and can be deadly. Early detection of EV 71 can be achieved by detecting the increment in miR296 and miR16 in the serum. Using HCR to amplify signals and convert biological signals into metal nanoparticle signals detectable by ICP-MS is a detection method that can collect more accurate and reliable information, compared with traditional methods, in the detection of biological samples. RESULTS We described a strategy for the simultaneous detection of miR296 and miR16 by ICP-MS based on metal nanoparticles (NPs) labeling with HCR. Briefly, single-stranded DNA (ssDNA) and magnetic beads (MBs), as well as NPs and signal probes for miRNA (Sp-miR) were firstly conjugated via the streptavidin-biotin recognition system, constituting ssDNA-MBs and NPs-Sp-miR complex, respectively. The latter complex then hybridized with the former through HCR, generating the nanosensors for targets. Then, the targets were added and hybridized with ssDNA, and the HCR complex with NPs was released into the solution. Finally, the corresponding signals of the NPs were measured by ICP-MS. Results demonstrated that the developed method had good sensitivity and satisfactory selectivity and precision. Furthermore, when applied to biological samples with a complex matrix, the developed method also showed good recovery (88 % - 92 %) and reproducibility (RSD<10 %). SIGNIFICANCE This method contributes to the early diagnosis of HFMD and opens up ideas for the further development of high-throughput biomarker detection. The strategy has practical potential for miR296 and miR16 detection in biological samples and provides a promising tool for multiple miRNA detection.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China; Department of Transfusion Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Zhigang Zhao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Chao Huang
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dapeng Sun
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Rui Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China; Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, Jinan, PR China.
| | - Xibao Gao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, PR China.
| |
Collapse
|
10
|
Li G, Yan R, Chen W, Wu R, Liang J, Chen J, Zhou Z. Fluorescence/electrochemical dual-mode strategy for Golgi protein 73 detection based on molybdenum disulfide/ferrocene/palladium nanoparticles and nitrogen-doped graphene quantum dots. Mikrochim Acta 2024; 191:190. [PMID: 38460000 DOI: 10.1007/s00604-024-06262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 03/11/2024]
Abstract
Golgi protein 73 (GP73) is a new serum marker associated with early diagnosis and postoperative assessment of hepatocellular carcinoma (HCC). Herein, an electrochemical/fluorescence dual-signal biosensor was designed for determination of GP73 based on molybdenum disulfide/ferrocene/palladium nanoparticles (MoS2-Fc-PdNPs) and nitrogen-doped graphene quantum dots (NGQDs). GP73 aptamer (Apt) was labeled with NGQDs to form the NGQDs-Apt fluorescence probe. MoS2-Fc-PdNPs served not only as the fluorescence quencher but also as electrochemical enhancer. The sensing platform (NGQDs-Apt/MoS2-Fc-PdNPs) was formed based on the fluorescence resonance energy transfer (FRET) mechanism. In the presence of GP73, the specific binding of NGQDs-Apt to GP73 interrupted FRET, restoring the fluorescence of NGQDs-Apt at λex/em = 348/438 nm and enhancing the oxidation current of Fc in MoS2-Fc-PdNPs at 0.04 V through differential pulse voltammetry (DPV). Under the optimal conditions, the DPV current change and fluorescence recovery have a good linear relationship with GP73 concentration from 1.00 to 10.0 ng/mL. The calibration equation for the fluorescence mode was Y1 = (0.0213 ± 0.00127)X + (0.0641 ± 0.00448) and LOD was 0.812 ng/mL (S/N = 3). The calibration equation of the electrochemical mode was Y2 = (3.41 ± 0.111)X + (1.62 ± 0.731), and LOD of 0.0425 ng/mL (S/N = 3). The RSDs of fluorescence mode and electrochemical mode after serum detection were 1.62 to 5.21% and 0.180 to 6.62%, respectively. By combining the electrochemical and fluorescence assay, more comprehensive and valuable information for GP73 was provided. Such dual-mode detection platform shows excellent reproducibility, stability, and selectivity and has great application potential.
Collapse
Affiliation(s)
- Guiyin Li
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
| | - Ruijie Yan
- College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming, Guangdong, 525000, People's Republic of China
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Wei Chen
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China
| | - Runqiang Wu
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China
| | - Jintao Liang
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| | - Jiejing Chen
- Department of Clinical Laboratory, The 924th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Guilin, Guangxi, 541002, China.
| | - Zhide Zhou
- School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
11
|
Zhang X, Fan A, Shu Z, Ma W, Zhang X. Surface-enhanced Raman database of 24 metabolites: Stable measurement of spectra, extraction and analysis of the main features. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123587. [PMID: 37918093 DOI: 10.1016/j.saa.2023.123587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has been used in Raman-based metabolomics to provide abundant molecular fingerprint information in situ with extremely high sensitivity, without damaging the sample. However, poor reproducibility, caused by the randomness of the adsorption sites, and the short-range effect of SERS have hindered the development of SERS in metabolomics, resulting in very few SERS reference databases for small-molecule metabolites. In this work, our previously proposed large laser spot-swift mapping SERS method was adopted for the measurement of 24 commercially available metabolite standards, to provide reproducible and reliable references for Raman-based metabolomics study. Among these 24 metabolites, 22 contained no Raman data in PubChem. Other than the SERS spectra data, we extracted and explained the molecular vibration information of these metabolites, and combined with the density functional theory (DFT) calculations, we provided a new possibility for the fast Raman recognition of small-molecule metabolites. Accordingly, a large laser spot-swift mapping SERS database of metabolites in human serum was initially established, which contained not only the original spectral data but also other detailed feature information regarding the Raman peaks. With continuous accumulation, this database could play a promising role in Raman-based metabolomics and other Raman-related research.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Aoran Fan
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Zixin Shu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Zheng P, Raj P, Wu L, Mizutani T, Szabo M, Hanson WA, Barman I. Quantitative Detection of Thyroid-Stimulating Hormone in Patient Samples with a Nanomechanical Single-Antibody Spectro-Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305110. [PMID: 37752776 PMCID: PMC10922205 DOI: 10.1002/smll.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
13
|
Lian S, Li X, Lv X. Density Functional Theory Study on the Interaction between Aflatoxin B1/M1 and Gold Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1804-1816. [PMID: 38183291 DOI: 10.1021/acs.langmuir.3c03069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Aflatoxin M1 (AFM1) and its precursor, Aflatoxin B1 (AFB1), are highly pathogenic and mutagenic substances, making the detection and sensing of AFB1/M1 a long-standing focus of researchers. Among various detection techniques, surface-enhanced Raman spectroscopy (SERS) is considered an ideal method for AFB1/M1 detection due to its ability not only to enhance characteristic frequencies but also to detect shifts in these frequencies with high repeatability. Therefore, we employed density functional theory in conjunction with surface-enhanced Raman spectroscopy to investigate the interaction between AFB1/M1 and a Au substrate in the context of the SERS effect for the first time. To predict the potential binding sites of AFB1/M1 and Au within the SERS effect, we performed calculations on the molecular electrostatic potential of AFB1/M1. Considering the crucial role of the binding energy in molecular docking studies, we computed the binding energy between two molecules interacting with Au at different binding sites. The molecular frontier orbitals and related chemical parameters of AFB1/M1 and "molecular-Au" complexes were computed to elucidate the alterations in AFB1/M1 molecules under the SERS effect. Subsequently, the theoretical Raman spectra of AFB1/M1 and the complexes were compared and analyzed, enabling determination of the adsorption conformation of AFB1/M1 on the gold surface based on SERS surface selection rules. These findings not only provide a deeper understanding of the interaction mechanism between molecules and substrates in the SERS effect but also offer theoretical support for developing novel aflatoxin SERS sensors.
Collapse
Affiliation(s)
- Shuai Lian
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoqiong Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xuefei Lv
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Issatayeva A, Farnesi E, Cialla-May D, Schmitt M, Rizzi FMA, Milanese D, Selleri S, Cucinotta A. SERS-based methods for the detection of genomic biomarkers of cancer. Talanta 2024; 267:125198. [PMID: 37722343 DOI: 10.1016/j.talanta.2023.125198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Genomic biomarkers of cancer are based on changes in nucleic acids, which include abnormal expression levels of some miRNAs, point mutations in DNA sequences, and altered levels of DNA methylation. The presence of tumor-related nucleic acids in body fluids (blood, saliva, or urine) makes it possible to achieve a non-invasive early-stage cancer diagnosis. Currently existing techniques for the discovery of nucleic acids require complex, time-consuming, costly assays and have limited multiplexing abilities. Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that is able to provide molecular specificity combined with trace sensitivity. SERS has gained research attention as a tool for the detection of nucleic acids because of its promising potential: label-free SERS can decrease the complexity of assays currently used with fluorescence-based detection due to the absence of the label, while labeled SERS may outperform the gold standard in terms of the multiplexing ability. The first papers about SERS-based methods for the measurement of genomic biomarkers were written in 2008, and since then, more than 150 papers have been published. The aim of this paper is to review and evaluate the proposed SERS-based methods in terms of their level of development and their potential for liquid biopsy application, as well as to contribute to their further evolution by attracting research attention to the field. This goal will be reached by grouping, on the basis of their experimental protocol, all the published manuscripts on the topic and evaluating each group in terms of its limit of detection and applicability to real body fluids. Thus, the methods are classified according to their working principles into five main groups, including capture-based, displacement-based, sandwich-based, enzyme-assisted, and specialized protocols.
Collapse
Affiliation(s)
- Aizhan Issatayeva
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy.
| | - Edoardo Farnesi
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Dana Cialla-May
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany
| | | | - Daniel Milanese
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Stefano Selleri
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| | - Annamaria Cucinotta
- Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/a, 43124, Parma, Italy
| |
Collapse
|
15
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
16
|
Dallari C, Lenci E, Trabocchi A, Bessi V, Bagnoli S, Nacmias B, Credi C, Pavone FS. Multilayered Bioorthogonal SERS Nanoprobes Selectively Aggregating in Human Fluids: A Smart Optical Assay for β-Amyloid Peptide Quantification. ACS Sens 2023; 8:3693-3700. [PMID: 37758234 PMCID: PMC10616841 DOI: 10.1021/acssensors.3c00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/02/2023] [Indexed: 09/30/2023]
Abstract
Alzheimer's disease (AD) is a debilitating neurological condition characterized by cognitive decline, memory loss, and behavioral skill impairment, features that worsen with time. Early diagnosis will likely be the most effective therapy for Alzheimer's disease since it can ensure timely pharmacological treatments that can reduce the irreversible progression and delay the symptoms. Amyloid β-peptide 1-42 (Aβ (1-42)) is considered one of the key pathological AD biomarkers that is present in different biological fluids. However, Aβ (1-42) detection still relies on colorimetric and enzyme-linked immunoassays as the gold standard characterized by low accuracy or high costs, respectively. In this context, optical detection techniques based on surface-enhanced Raman spectroscopy (SERS) through advanced nanoconstructs are promising alternatives for the development of novel rapid and low-cost methods for the targeting of Aβ pathological biomarkers in fluids. Here, a multilayered nanoprobe constituted by bioorthogonal Raman reporters (RRs) embedded within two layers of gold nanoparticles (Au@RRs@AuNPs) has been developed and successfully validated for specific detection of Aβ (1-42) in the human cerebrospinal fluid (CSF) with sensitivity down to pg/mL. The smart double-layer configuration enables us to exploit the outer gold NP surfaces for selective absorption of targeted peptide whose concentration controls the aggregation behavior of Au@RRs@AuNPs, proportionally reflected in Raman intensity changes, providing high specificity and sensitivity and representing a significant step ahead of the state of the art on SERS for clinical analyses.
Collapse
Affiliation(s)
- Caterina Dallari
- European
Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department
of Physics, University of Florence, Sesto Fiorentino 50019, Italy
- National
Institute of Optics (INO), National Research
Council (CNR), Sesto Fiorentino 50019, Italy
| | - Elena Lenci
- Department
of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Trabocchi
- Department
of Chemistry, University of Florence, Sesto Fiorentino 50019, Italy
| | - Valentina Bessi
- Department
of Neurological and Psychiatric Sciences (NeuroFarba), University of Florence, Firenze 50134, Italy
| | - Silvia Bagnoli
- Department
of Neurological and Psychiatric Sciences (NeuroFarba), University of Florence, Firenze 50134, Italy
| | - Benedetta Nacmias
- Department
of Neurological and Psychiatric Sciences (NeuroFarba), University of Florence, Firenze 50134, Italy
- IRCCS Fondazione
Don Carlo Gnocchi, Firenze 50143, Italy
| | - Caterina Credi
- European
Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National
Institute of Optics (INO), National Research
Council (CNR), Sesto Fiorentino 50019, Italy
| | - Francesco Saverio Pavone
- European
Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department
of Physics, University of Florence, Sesto Fiorentino 50019, Italy
- National
Institute of Optics (INO), National Research
Council (CNR), Sesto Fiorentino 50019, Italy
| |
Collapse
|
17
|
Yu S, Zhang J, Hu Y, Li L, Kong J, Zhang X. Ultrasensitive detection of miRNA-21 by click chemistry and fluorescein-mediated photo-ATRP signal amplification. Anal Chim Acta 2023; 1277:341661. [PMID: 37604612 DOI: 10.1016/j.aca.2023.341661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
The development of a convenient and efficient assay using miRNA-21 as a lung cancer marker is of great importance for the early prevention of cancer. Herein, an electrochemical biosensor for the detection of miRNA-21 was successfully fabricated under blue light excitation using click chemistry and photocatalytic atom transfer radical polymerization (photo-ATRP). By using hairpin DNA as a recognition probe, the electrochemical sensor deposits numerous electroactive monomers (ferrocenylmethyl methacrylate) on the electrode surface under the reaction of photocatalyst (fluorescein) and pentamethyldiethylenetriamine, thereby achieving signal amplification. This biosensor is sensitive, precise and selective for miRNA-21, and is highly specific for RNAs with different base mismatches. Under optimal conditions, the biosensor showed a linear relationship in the range of 10 fM ∼1 nM (R2 = 0.995), with a detection limit of 1.35 fM. Furthermore, the biosensor exhibits anti-interference performance when analyzing RNAs in serum samples. The biosensor is based on green chemistry and has the advantages of low cost, specificity and anti-interference ability, providing economic benefits while achieving detection objectives, which makes it highly promising for the analysis of complex samples.
Collapse
Affiliation(s)
- Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jian Zhang
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, 211200, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
18
|
Xue G, Cheng Y, Xu H, Xue C. Target-Induced Stepwise Disintegration of Starlike Branched and Multiplex Embedded Systems for Amplified Detection of Serum MicroRNA. Anal Chem 2023; 95:13140-13148. [PMID: 37602702 DOI: 10.1021/acs.analchem.3c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
DNA nanotechnology has shown great promise for biosensing and molecular recognition. However, the practical application of conventional DNA biosensors is constrained by inadequate target stimuli, intricate design schemes, multicomponent systems, and susceptibility to nuclease degradation. To overcome these limitations, we present a class of starlike branched and multiplex embedded system (SBES) with an integrated functional design and cascade exponential amplification for serum microRNA (miRNA) detection. The DNA arms can be integrated into an all-in-one system by surrounding a branch point, with each arm endowed with specific functionalities by embedding different DNA fragments. These fragments include a segment complementary to the target miRNA for the recognition element, palindromic tails for self-primed polymerization, and a region with the same sequences as the target serving as the target analogue. Upon exposure to a target miRNA, the DNA arms unwind in a stepwise manner through palindrome-mediated dimerization and polymerization. This enables target recycling for subsequent reactions while releasing the target analogue to generate a secondary response in a feedback manner. A comparative analysis illustrates that the signal-to-noise ratio (SNR) of a full SBES with a feedback strategy is approximately 250% higher than the system without a feedback design. We demonstrate that the four-arm 4pSBES has the benefits of multifunctional integration, enhanced sensitivity, and low false-positive signals, which makes this approach ideally suited for clinical diagnosis. Moreover, an upgraded SBES with additional DNA arms (e.g., 6pSBES) can be constructed to allow multifunctional extension, offering unprecedented opportunities to build versatile DNA nanostructures for biosensing.
Collapse
Affiliation(s)
- Guohui Xue
- Department of Clinical Laboratory, Jiujiang No.1 People's Hospital, Jiujiang, Jiangxi 332000, P. R. China
| | - Yinghao Cheng
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, China
| | - Chang Xue
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, P. R. China
| |
Collapse
|
19
|
Zhang Z, Shang C, Hu C, Liu Y, Han J. Branched DNA-Based Electrochemical Biosensor for Sensitive Nucleic Acids Analysis with Gold Nanoparticles as Amplifier. Int J Mol Sci 2023; 24:12565. [PMID: 37628745 PMCID: PMC10454004 DOI: 10.3390/ijms241612565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/23/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
A branched DNA-based electrochemical biosensor was designed to sensitively detect specific nucleic acids. On this platform, novel a branched DNA with three sticky ends could be used as a biosensor to sensitively and specifically detect nucleic acids. Meanwhile, we also employed branched DNA-modified AuNPs as a signal amplifier to further improve the sensitivity. Branched DNA sensors, target DNA, and DNA-modified AuNPs formed a sandwich structure to produce an electronic signal for target DNA detection. The reaction primarily involved DNA hybridization without bulky thermal cyclers and enzymes. We proved that the hybridization reaction easily occurred under different conditions, such as the NaCl concentration, reaction time, pH, and temperature, except for a pH lower than 4. The limit of detection could go as low as 0.09 pM (S/N = 3) with excellent specificity and selectivity. There was a correlation curve relationship between the peak current and the logarithm of the target DNA concentration (0.10 pM to 10 nM). The correlation coefficient reached 0.987. The electrochemical platform enables a branched DNA nanostructure to determine nucleic acids for disease diagnosis.
Collapse
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | | | | | | | - Jilong Han
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
20
|
Qian Q, Tang Y, Miao P. Quantification of Multiplex miRNAs by Mass Spectrometry with Duplex-Specific Nuclease-Mediated Amplification. Anal Chem 2023; 95:11578-11582. [PMID: 37498281 DOI: 10.1021/acs.analchem.3c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Early quantification of multiplex biomarkers such as microRNAs (miRNAs) is critical during disease pathologic development and therapy. To tackle challenges of low abundance and multiplexing, we herein report a mass-encoded biosensing approach with duplex-specific nuclease (DSN) mediated signal amplification. Magnetic Fe3O4 cores are coated with small gold nanoparticles (AuNPs), which are applied to achieve facile DNA immobilization subsequent separation. This biosensor integrates multiple mass reporters corresponding to different targets (five miRNAs as examples). Due to the excellent resolution of mass spectrometry, these targets can be successfully distinguished in a single spectrum. Wide detection ranges from 10 fM to 1 nM are achieved, and the limits of detection are estimated to be 10 fM. High selectivity is promised due to the enzyme activity of DSN, and practical application in human serum samples performs satisfactorily. The number of targets to be tested can be further expanded by designing different specific mass tags in theory. Therefore, the proposed method can be utilized as an important and valuable tool to quantify multiplex miRNAs for disease screening as well as biomedical investigations.
Collapse
Affiliation(s)
- Qing Qian
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
21
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
22
|
Zeng Z, Zhou X, Zhou R, Zeng Z, Sun R, Zhang X, Li H, Zhang D, Zhu Q, Chen C. Rational design of nonlinear hybridization immunosensor chain reactions for simultaneous ultrasensitive detection of two tumor marker proteins. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1422-1430. [PMID: 36857646 DOI: 10.1039/d2ay01941h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sensitive biomarker detection techniques are beneficial for both disease diagnosis and postoperative examinations. The nonlinear hybridization chain reaction (NHCR) is widely used as an output signal amplification technique for biosensor platforms. A novel hairpin-free NHCR was developed in this study as a flow cytometric immunoassay to detect alpha-fetoprotein (AFP) and prostate specific antigen (PSA). First, the target AFP is captured on magnetic beads (MBs) that are modified with capture antibodies. Then, the prepared biotin-streptavidin-biotin (B-S-B) system, which links biotinylated detection antibodies and biotinylated trigger DNA together through the high affinity between biotin-streptavidin interaction, is added to label the target AFP, forming a sandwich complex with three trigger DNA chains. Each trigger DNA chain grows a dendritic DNA nanostructure following a nonlinear hybridization chain reaction. As the substrate flue chains are labeled with fluorophores, the self-assembly process of dendritic DNA is accompanied by the continuous release of fluorophores. Dendrites with strong fluorescence then form on the surface of MBs. Finally, the target AFP is quantified by analyzing the fluorescent MBs using flow cytometry. The proposed immunoassay has a high selectivity along with isothermal, enzyme-free, and exponential amplification efficiency. It shows a limit of detection (LOD) of 1.74 pg mL-1. The proposed biosensor was also successfully used to quantitatively detect AFP in serum samples. It may be utilized to detect multiple tumor markers simultaneously by changing the size of MBs and antibody-antigen pairs. Most tumor markers are only related to tumor diagnosis but without specificity, so the combined detection of multiple tumor markers can improve the accuracy of early tumor diagnoses.
Collapse
Affiliation(s)
- Zhaokui Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Rong Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Zhuoer Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Ruowei Sun
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Xun Zhang
- Hunan Zaochen Nanorobot Co., Ltd, Liuyang 410300, China
| | - Huimin Li
- Yueyang Inspection and Testing Center, Yueyang 414000, China
| | - Di Zhang
- Department of Laboratory, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.
| |
Collapse
|
23
|
Hu Y, Yu S, Ma N, Kong J, Zhang X. Rose bengal-mediated photoinduced atom transfer radical polymerization for high sensitivity detection of target DNA. Talanta 2023; 254:124104. [PMID: 36521324 DOI: 10.1016/j.talanta.2022.124104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Convenient and sensitive detection of biomolecules is of utmost importance in the field of early disease screening. In this study, a Rose Bengal-Mediated photoinduced atom transfer radical polymerization (photoATRP) method was used to achieve highly sensitive detection of target DNA (tDNA). The tDNA was specifically recognized using PNA with terminal modified sulfhydryl groups, and the initiator α-bromophenylacetic acid (BPAA) was attached to the electrode surface via a phosphate-Zr4+-carboxylate acid structure. Under the excitation of blue light, rose bengal (RB) acts as a photocatalyst, β-nicotinamide adenine dinucleotide (NADH) as an electron donor, and ferrocenylmethyl methacrylate (FMMA) as a monomer to activate the photoATRP reaction and generate a large number of electroactive polymer chains on the electrode surface. Under optimal conditions, the method can be used for the quantitative analysis of tDNA in the concentration range of 1-105 fM (R2 = 0.994) with a limit of detection (LOD) of 0.115 fM. This metal-free mediated photoATRP biosensor, with low cost and environmental friendliness, has great potential in the field of highly sensitive biomolecule detection.
Collapse
Affiliation(s)
- Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
24
|
Li Y, Huang Z, Li Z, Li C, Liu R, Lv Y. Mass Spectrometric Multiplex Detection of MicroRNA and Protein Biomarkers for Liver Cancer. Anal Chem 2022; 94:17248-17254. [PMID: 36448711 DOI: 10.1021/acs.analchem.2c04171] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The occurrence of cancers is often accompanied by the abnormal expression of several sorts of biomarkers (e.g., nucleic acids and proteins). The multiplex assessment of them would substantially aid in the early detection and precise diagnosis, which is often hampered by their different detection schemes, different reaction matrix and reagents, and spectral overlapping. Herein, we propose a simple and sensitive mass spectrometric method for the multiplex detection of nucleic acid and protein, in which liver cancer-related biomarkers miRNA 223 and alpha-fetoprotein (AFP) were selected as model analytes. The self-amplification effect of metal atom-based nanoparticle probes can provide high sensitivity in complex serum samples without any additional amplification procedure. The detection limits for the simultaneous detection of miRNA 223 and AFP were 103 (2.1 pM) and 219 amol (0.15 ng/mL), respectively, with high specificity and selectivity. The proposed method is potentially useful for the rapid screening of cancers.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Zili Huang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Ziyan Li
- Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| | - Caixia Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064 Sichuan, China.,Analytical & Testing Center, Sichuan University, Chengdu 610064 Sichuan, China
| |
Collapse
|
25
|
Zhang Z, Zhang L, Liu Y, Hu C, Liu Q. Sensitive DNA Detection using a Branched DNA as a Sensor Coupled with Hybridization Chain Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202201891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Zhikun Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Liu Zhang
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Yumin Liu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Cuixia Hu
- School of Chemical and Pharmaceutical Engineering Hebei University of Science and Technology Shijiazhuang 050018 China
| | - Qingju Liu
- Beijing Research Center for Agriculture Standards and Testing Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| |
Collapse
|
26
|
Zheng P, Raj P, Wu L, Szabo M, Hanson WA, Mizutani T, Barman I. Leveraging Nanomechanical Perturbations in Raman Spectro-Immunoassays to Design a Versatile Serum Biomarker Detection Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204541. [PMID: 36117050 PMCID: PMC9948683 DOI: 10.1002/smll.202204541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Indexed: 05/28/2023]
Abstract
While immunoassays are pivotal to medical diagnosis and bioanalytical chemistry, the current landscape of public health has catalyzed an important shift in the requirements of immunoassays that demand innovative solutions. For example, rapid, label-free, and low-cost screening of a given analyte is required to inform the best countermeasures to combat infectious diseases in a timely manner. Yet, the current design of immunoassays cannot accommodate such requirements as constraint by accumulative challenges, such as repeated incubation and washing, and the need of two types of antibodies in the sandwich format. To provide a potential solution, herein, a plasmonic Raman immunoassay with single-antibody, multivariate regression, and shift-of-peak strategies, coined as the PRISM assay, for serum biomarkers detection, is reported. The PRISM assay relies on Raman reporter-antibody conjugates to capture analytes on a plasmonic substrate. The ensuing nanomechanical perturbations to vibration of Raman reporters induce subtle but characteristic spectral changes that encode rich information related to the captured analytes. By fusing Raman spectroscopy and chemometric analysis, both Raman frequency shift- and multivariate regression models for sensitive detection of biomarkers are developed. The PRISM assay is expected to find a wide range of applications in clinical diagnosis, food safety surveillance, and environmental monitoring.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
27
|
Ni J, Huang M, Ji W, Wang L, Sun T. Recent advances in Surface-enhanced Raman Scattering for Liver Cancer Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Qiao W, Wang Y, Zhao Z, Wang Y, Chen K, Zhao Z, Li M. A novel SERS substrate of MIL-100(Fe)/AgNFs for sensitive detection of ascorbic acid in cellular media. RSC Adv 2022; 12:24101-24106. [PMID: 36093242 PMCID: PMC9400642 DOI: 10.1039/d2ra04146d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
A novel SERS substrate of MIL-100(Fe)/AgNFs was firstly prepared for sensitive and selective detection of ascorbic acid (L-AA), with a LOD of 10-11 M. A spectral decrease of MIL-100(Fe)/AgNFs towards L-AA solution thanks to the efficient capture and reduction of Fe3+ in MIL-100(Fe) constituted the assay, which was demonstrated to function well in food samples and in cellular media for L-AA sensing.
Collapse
Affiliation(s)
- Wang Qiao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Yiran Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Zhenxia Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
| | - Yujiao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Guangxi University Nanning 530004 China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China limin/ihep.ac.cn
| |
Collapse
|
29
|
Zheng P, Wu L, Raj P, Mizutani T, Szabo M, Hanson WA, Barman I. A Dual-Modal Single-Antibody Plasmonic Spectro-Immunoassay for Detection of Small Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200090. [PMID: 35373504 PMCID: PMC9302383 DOI: 10.1002/smll.202200090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Indexed: 05/03/2023]
Abstract
Small molecules play a pivotal role in regulating physiological processes and serve as biomarkers to uncover pathological conditions and the effects of therapeutic treatments. However, it remains a significant challenge to detect small molecules given the size as compared to macromolecules. Recently, the newly emerging plasmonic immunoassays based on surface-enhanced Raman scattering (SERS) offer great promise to deliver extraordinary sensitivity. Nevertheless, they are limited by the intrinsic SERS intensity fluctuations associated with the SERS uncertainty principle. The single transducer that relies on the intensity change is also prone to false signals. Additionally, the prevailing sandwich immunoassay format proves less effective towards detecting small molecules. To circumvent these critical issues, a dual-modal single-antibody approach that synergizes both the intensity and shift of the peak-based immunoassay with Raman enhancement, coined as the INSPIRE assay, is developed for small molecules detection. With two independent transduction mechanisms, it allows better prediction of analyte concentration and attenuation of signal artifacts, providing a new and robust strategy for molecular analysis. With a proof-of-concept demonstration for detection of free T4 and testosterone in serum matrix, the authors envision that the INSPIRE assay could be expanded for a wide spectrum of applications in biomedical diagnosis, discovery of new biopharmaceuticals, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- To whom the correspondence should be addressed.
| |
Collapse
|
30
|
Li L, Dong K, Wang X, Zhang M, Li J, Nussler AK, Xiao X, Wang H, Wu Y. DNA origami‐based nano‐hunter enriches low‐abundance point mutations by targeting wild-type gene segments. CHINESE CHEM LETT 2022; 33:2052-2056. [DOI: 10.1016/j.cclet.2021.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Wang J, Wang X, Li J, Xia Y, Gao M, Zhang X, Huang LH. A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides. J Mater Chem B 2022; 10:2011-2018. [PMID: 35244662 DOI: 10.1039/d1tb02827h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effective analysis of glycoproteomics in clinical complex samples is of vital importance for the diagnosis and therapy of diseases. In this study, a hydrophilic MOFs-303-functionalized magnetic probe (GO@Fe3O4@MOF-303) is designed and fabricated to profile N-linked glycopeptides. Owing to its strong magnetic property, large surface area (845 m2 g-1), excellent hydrophilicity and suitable porous structure, the GO@Fe3O4@MOF-303 probe exhibits an ultralow detection limit (0.1 fmol μL-1), perfect size-exclusion effect (HRP digests/BSA protein/HRP protein, 1 : 1000 : 1000, w/w/w), a high binding capacity (200 mg g-1) and excellent reusability in the capture of standard N-linked glycopeptides. More excitingly, the GO@Fe3O4@MOF-303 probe also shows remarkable performance in practical applications, where 274 N-linked glycopeptides from 101 glycoproteins were identified in total for healthy controls, while a total of 265 N-linked glycopeptides from 102 glycoproteins were identified in serum (1 μL) with hepatocellular carcinoma (HCC). In addition, we discovered 4 up-regulated and 19 down-regulated serum glycoproteins in HCC patients by the hierarchical clustering heatmap. All results demonstrated that the reusable GO@Fe3O4@MOF-303 probe has great potential in profiling different N-linked glycopeptides in complex clinical samples. This study not only developed a novel probe for the highly effective capture of N-linked glycopeptides but also contributed to further understanding the mechanism of HCC and provides guidance for the development of novel clinical diagnostic methods.
Collapse
Affiliation(s)
- Jiaxi Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China. .,Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Xinmei Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Jie Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Yan Xia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Mingxia Gao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Xiangmin Zhang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Department of Chemistry and Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
32
|
Wu X, Li R, Lai T, Tao G, Liu F, Li N. Universal Nanoparticle Counting Platform for Tetraplexed Biomarkers by Integrating Immunorecognition and Nucleic Acid Hybridization in One Assay. Anal Chem 2021; 93:16873-16879. [PMID: 34874148 DOI: 10.1021/acs.analchem.1c03858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of a simple and universal strategy for simultaneous quantification of proteins and nucleic acid biomarkers in one assay is valuable, particularly for disease diagnosis and pathogenesis studies. Herein, a universal and amplification-free quantum dot-doped nanoparticle counting platform was developed by integrating immunorecognition and nucleic acid hybridization in one assay. The assay can be performed at room temperature, which is friendly for routine analysis. Multiplexed biomarkers associated with Alzheimer's disease (AD) including proteins and nucleic acids were detected. For simultaneous detection of tetraplex biomarkers, the assay for amyloid β 1-42 (Aβ42), tau protein, miR-146a, and miR-138 presented limit of detection values of 250 pg/mL, 55.7 pg/mL, 52.5 pM, and 0.62 pM, respectively. By spiking all the above four biomarkers in one artificial cerebrospinal fluid sample, the recoveries were found to be 94.7-117.2%. Using tau protein as the model, four measurements in 88 days presented a coefficient of variance of 7.5%. The proposed platform for the multiplexed assay of proteins and nucleic acids presents the universality, reasonable sensitivity, and repeatability, which may open a new door for early diagnosis and pathogenesis research for AD and other diseases.
Collapse
Affiliation(s)
- Xi Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Education Department of Heilongjiang Province, Harbin 150001, China
| | - Rongsheng Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tiancheng Lai
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangyu Tao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Na Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
34
|
Non-Coding RNA-Based Biosensors for Early Detection of Liver Cancer. Biomedicines 2021; 9:biomedicines9080964. [PMID: 34440168 PMCID: PMC8391662 DOI: 10.3390/biomedicines9080964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022] Open
Abstract
Primary liver cancer is an aggressive, lethal malignancy that ranks as the fourth leading cause of cancer-related death worldwide. Its 5-year mortality rate is estimated to be more than 95%. This significant low survival rate is due to poor diagnosis, which can be referred to as the lack of sufficient and early-stage detection methods. Many liver cancer-associated non-coding RNAs (ncRNAs) have been extensively examined to serve as promising biomarkers for precise diagnostics, prognostics, and the evaluation of the therapeutic progress. For the simple, rapid, and selective ncRNA detection, various nanomaterial-enhanced biosensors have been developed based on electrochemical, optical, and electromechanical detection methods. This review presents ncRNAs as the potential biomarkers for the early-stage diagnosis of liver cancer. Moreover, a comprehensive overview of recent developments in nanobiosensors for liver cancer-related ncRNA detection is provided.
Collapse
|
35
|
Lima C, Muhamadali H, Goodacre R. The Role of Raman Spectroscopy Within Quantitative Metabolomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:323-345. [PMID: 33826853 DOI: 10.1146/annurev-anchem-091420-092323] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ninety-four years have passed since the discovery of the Raman effect, and there are currently more than 25 different types of Raman-based techniques. The past two decades have witnessed the blossoming of Raman spectroscopy as a powerful physicochemical technique with broad applications within the life sciences. In this review, we critique the use of Raman spectroscopy as a tool for quantitative metabolomics. We overview recent developments of Raman spectroscopy for identification and quantification of disease biomarkers in liquid biopsies, with a focus on the recent advances within surface-enhanced Raman scattering-based methods. Ultimately, we discuss the applications of imaging modalities based on Raman scattering as label-free methods to study the abundance and distribution of biomolecules in cells and tissues, including mammalian, algal, and bacterial cells.
Collapse
Affiliation(s)
- Cassio Lima
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Howbeer Muhamadali
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular, and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom;
| |
Collapse
|
36
|
Zhu W, Hutchison JA, Dong M, Li M. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. ACS Sens 2021; 6:1704-1716. [PMID: 33939402 DOI: 10.1021/acssensors.1c00393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitive and selective detection of biomarkers for human health remains one of the grand challenges of the analytical sciences. Compared to established methods (colorimetric, (chemi) luminescent), surface-enhanced Raman spectroscopy (SERS) is an emerging alternative with enormous potential for ultrasensitive biological detection. Indeed even attomolar (10-18 M) detection limits are possible for SERS due to an orders-of-magnitude boosting of Raman signals at the surface of metallic nanostructures by surface plasmons. However, challenges remain for SERS assays of large biomolecules, as the largest enhancements require the biomarker to enter a "hot spot" nanogap between metal nanostructures. The frequency-shift SERS method has gained popularity in recent years as an alternative assay that overcomes this drawback. It measures frequency shifts in intense SERS peaks of a Raman reporter during binding events on biomolecules (protein coupling, DNA hybridization, etc.) driven by mechanical transduction, charge transfer, or local electric field effects. As such, it retains the excellent multiplexing capability of SERS, with multiple analytes being identifiable by a spectral fingerprint in a single read-out. Meanwhile, like refractive index surface plasmon resonance methods, frequency-shift SERS measures the shift of an intense signal rather than resolving a peak above noise, easing spectroscopic resolution requirements. SERS frequency-shift assays have proved particularly suitable for sensing large, highly charged biomolecules that alter hydrogen-bonding networks upon specific binding. Herein we discuss the frequency-shift SERS method and promising applications in (multiplex) biomarker sensing as well as extensions to ion and gas sensing and much more.
Collapse
Affiliation(s)
- Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - James Andell Hutchison
- School of Chemistry, University of Melbourne, 30 Flemington Road, Parkville 3052, Victoria, Australia
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Silver-amplified fluorescence immunoassay via aggregation-induced emission for detection of disease biomarker. Talanta 2021; 225:121963. [DOI: 10.1016/j.talanta.2020.121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/19/2022]
|
38
|
Er E, Sánchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzán LM, Prato M, Criado A. Metal Nanoparticles/MoS 2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8823-8831. [PMID: 33583183 PMCID: PMC7908013 DOI: 10.1021/acsami.0c22203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
The detection of cancer biomarkers at an early stage of tumor development is vital for effective diagnosis and treatment of cancer. Current diagnostic tools can often detect cancer only when the biomarker levels are already too high, so that the tumors have spread and treatments are less effective. It is urgent therefore to develop highly sensitive assays for the detection of such biomarkers at the lowest possible concentration. In this context, we developed a sandwich immunoassay based on surface-enhanced Raman scattering (SERS) for the ultrasensitive detection of α-fetoprotein (AFP), which is typically present in human serum as a biomarker indicative of early stages of hepatocellular carcinoma. In the immunoassay design, molybdenum disulfide (MoS2) modified with a monoclonal antibody was used as a capture probe for AFP. A secondary antibody linked to an SERS-encoded nanoparticle was employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex "capture probe/target/SERS tag" was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of "hot spots" on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL-1 to 10 ng mL-1) with a limit of detection as low as 0.03 pg mL-1 toward AFP with good reproducibility (RSD < 6%) and stability. These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the detection of early-stage cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Engin Er
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Ana Sánchez-Iglesias
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Alessandro Silvestri
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Blanca Arnaiz
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|
39
|
Credi C, Bibikova O, Dallari C, Tiribilli B, Ratto F, Centi S, Pini R, Artyushenko V, Cicchi R, Pavone FS. Fiber-cap biosensors for SERS analysis of liquid samples. J Mater Chem B 2021; 8:1629-1639. [PMID: 32011615 DOI: 10.1039/c9tb01866b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Optical detection techniques based on surface enhanced Raman spectroscopy (SERS) are a powerful tool for biosensing applications. Meanwhile, due to technological advances, different approaches have been investigated to integrate SERS substrates on the tip of optical fibres for molecular probing in liquids. To further demonstrate the perspectives offered by SERS-on-fiber technology for diagnostic purposes, in this study, novel cap-shaped SERS sensors for reversible coupling with customized multimodal probes were prototyped via low-cost polymer casting of polydimethylsiloxane (PDMS) and further assembly of gold nanoparticles (Au NPs) of varied sizes and shapes. To demonstrate the feasibility of liquid sensing with cap sensors using backside illumination and detection, the spectra of rhodamine were acquired by coupling the caps with the fiber. As expected by UV-vis, the highest SERS efficiency was observed for NP-decorated substrates with plasmonic properties in resonance with the irradiation wavelength. Then, SERS biosensors for the specific detection of amyloid-β (Aβ) neurotoxic biomarkers were realized by covalent grafting of Aβ antibodies. As attested by fluorescence images and SERS measurements, the biosensors successfully exhibited enhanced Aβ affinity compared to the bare sensors without ligands. Finally, these versatile (bio)sensors are a powerful tool to transform any milli-sized fibers into functional (bio)sensing platforms with plasmonic and biochemical properties tailored for specific applications.
Collapse
Affiliation(s)
- Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy. and Department of Information Engineering, University of Florence, Via di S. Marta 3, 50139, Firenze, Italy
| | - Olga Bibikova
- Art Photonics GmbH, Rudower Chaussee 46, 12489 Berlin, Germany
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
| | - Bruno Tiribilli
- Institute for Complex Systems, National Research Council (ISC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Fulvio Ratto
- Institute of Applied Physics "N. Carrara", National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Sonia Centi
- Institute of Applied Physics "N. Carrara", National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics "N. Carrara", National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Riccardo Cicchi
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy. and National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy. and National Institute of Optics, National Research Council (INO-CNR), Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and Department of Physics, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
40
|
Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci 2021; 22:ijms22031176. [PMID: 33503982 PMCID: PMC7865473 DOI: 10.3390/ijms22031176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.
Collapse
|
41
|
Kumar S, Kumari P, Rathee G, Rathi B. Nanomaterials for Early Cancer Diagnostics. NANOMEDICINE FOR CANCER DIAGNOSIS AND THERAPY 2021:97-114. [DOI: 10.1007/978-981-15-7564-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
42
|
Yi R, Wu Y. Research Progress on Surface-Enhanced Raman Spectroscopy Technique for the Detection of microRNA. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Avram L, Stefancu A, Crisan D, Leopold N, Donca V, Buzdugan E, Craciun R, Andras D, Coman I. Recent advances in surface-enhanced Raman spectroscopy based liquid biopsy for colorectal cancer (Review). Exp Ther Med 2020; 20:213. [PMID: 33149777 DOI: 10.3892/etm.2020.9342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
As colorectal cancer (CRC) is one of the forms of cancer with the highest prevalence globally and with a high mortality, screening and early detection remains a major issue. Colonoscopy is still the gold standard for detecting premalignant lesions, but it is burdened by some complications. For instance, it is laborious, with some difficulties of acceptance for some patients, and is ultimately an imperfect standard, given that some premalignant lesions or incipient malignancies can be missed by colonoscopic evaluation. In this context, new non-invasive approaches such as surface-enhanced Raman spectroscopy (SERS) based liquid biopsy have gained ground in recent years, showing promising results in oncological pathology diagnosis. These new methods have enabled the detection of subtle molecular profile alterations prior to any macroscopic morphological changes, thus providing a useful tool for early CRC detection. In the present review, we provide a summary of published studies applying SERS in CRC detection, along with our personal experience in using SERS in the diagnosis of different oncological pathologies, including CRC.
Collapse
Affiliation(s)
- Lucretia Avram
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Andrei Stefancu
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania
| | - Dana Crisan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Nicolae Leopold
- Faculty of Physics, 'Babe?-Bolyai' University, 400084 Cluj-Napoca, Romania.,MEDFUTURE Research Center for Advanced Medicine, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Valer Donca
- Medical Specialities Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Elena Buzdugan
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Rares Craciun
- Internal Medicine Department, 5th Medical Clinic, 'Iuliu Hatieganu' University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - David Andras
- Surgery Department, 1st Surgery Clinic, 'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioan Coman
- Urology Department,'Iuliu Hatieganu'University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
44
|
Dong Y, Yao C, Zhu Y, Yang L, Luo D, Yang D. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chem Rev 2020; 120:9420-9481. [DOI: 10.1021/acs.chemrev.0c00294] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuhang Dong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yi Zhu
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Lu Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
45
|
Highly sensitive vertical flow based point-of-care immunokit for rapid and early detection of human CRP as a cardiovascular risk factor. Biomed Microdevices 2020; 22:28. [DOI: 10.1007/s10544-020-00480-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Li P, Long F, Chen W, Chen J, Chu PK, Wang H. Fundamentals and applications of surface-enhanced Raman spectroscopy–based biosensors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2019.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
47
|
Lu L, Yu J, Liu X, Yang X, Zhou Z, Jin Q, Xiao R, Wang C. Rapid, quantitative and ultra-sensitive detection of cancer biomarker by a SERRS-based lateral flow immunoassay using bovine serum albumin coated Au nanorods. RSC Adv 2020; 10:271-281. [PMID: 35492524 PMCID: PMC9047559 DOI: 10.1039/c9ra09471g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
A rapid, sensitive, and stable SERRS-LFIA strip was developed for AFP detection using BSA-coated AuNRs as SERRS nanotags.
Collapse
Affiliation(s)
- Luchun Lu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Jiangliu Yu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Xiaoxian Liu
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Xingsheng Yang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Zihui Zhou
- Anhui Provincial Key Laboratory of Veterinary Pathobiology and Disease Control
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Qing Jin
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
| | - Rui Xiao
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| | - Chongwen Wang
- College of Life Sciences
- Anhui Agricultural University
- Hefei 230036
- PR China
- Beijing Institute of Radiation Medicine
| |
Collapse
|
48
|
Liu B, Sun H, Li L, Zhang J, Kong J, Zhang X. A dual signal amplification strategy combining thermally initiated SI-RAFT polymerization and DNA-templated silver nanoparticles for electrochemical determination of DNA. Mikrochim Acta 2019; 187:35. [PMID: 31820104 DOI: 10.1007/s00604-019-3912-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
A highly sensitive method is described for determination of DNA. It is based on dual signal amplification, viz. (a)DNA-templated metal deposition, and (b) thermally initiated surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. A peptide nucleic acid (PNA) with a terminal thiol group was grasped onto a gold electrode by self-assembly. The modified electrode serves as a probe to selectively capture target DNA (tDNA). In the next step, Zr(IV) ions are bound to the phosphate groups of the tDNA. A chain-transfer agent (CTA) for thermally initiated SI-RAFT polymerization, 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD), was immobilized on tDNA by conjugation of the carboxy group to Zr(IV) ions. Subsequently, numerous monomers of glycosyloxyethyl methacrylate (GEMA) were connected to the CPAD by thermally initiated SI-RAFT polymerization with azobisisobutyronitrile (AIBN) serving as the free-radical thermal initiator. Afterwards, hydroxyl groups of the GEMA were oxidized to aldehyde groups reacting with sodium periodate, and silver nanoparticles were further introduced on the surface of electrode via "silver mirror reaction". This results in a large electrochemical signal amplification. Under optimized conditions, the electrochemical signal (best measured at a working potential of 0 V vs. SCE (KCl; 3 M)) increases linearly with the logarithm of tDNA concentration in the 10 to 106 aM concentration range. The detection limit is as low as 5.6 aM (~34 molecules in a 10 μL sample). This is lower by factors between 2 and 1800 times than detection limits of most other ultra-sensitive electrochemical DNA assays. Graphical abstractSchematic representation of a dual signal amplification strategy combining thermally initiated surface-initiated reversible addition-fragmentation chain transfer polymerization (SI-RAFT) and DNA-templated silver nanoparticles for electrochemical determination of DNA.
Collapse
Affiliation(s)
- Bang Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Haobo Sun
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Qixia District, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, People's Republic of China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, People's Republic of China
| |
Collapse
|
49
|
Guerrini L, Alvarez-Puebla RA. Surface-Enhanced Raman Spectroscopy in Cancer Diagnosis, Prognosis and Monitoring. Cancers (Basel) 2019; 11:E748. [PMID: 31146464 PMCID: PMC6627759 DOI: 10.3390/cancers11060748] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 12/28/2022] Open
Abstract
As medicine continues to advance our understanding of and knowledge about the complex and multifactorial nature of cancer, new major technological challenges have emerged in the design of analytical methods capable of characterizing and assessing the dynamic heterogeneity of cancer for diagnosis, prognosis and monitoring, as required by precision medicine. With this aim, novel nanotechnological approaches have been pursued and developed for overcoming intrinsic and current limitations of conventional methods in terms of rapidity, sensitivity, multiplicity, non-invasive procedures and cost. Eminently, a special focus has been put on their implementation in liquid biopsy analysis. Among optical nanosensors, those based on surface-enhanced Raman scattering (SERS) have been attracting tremendous attention due to the combination of the intrinsic prerogatives of the technique (e.g., sensitivity and structural specificity) and the high degree of refinement in nano-manufacturing, which translate into reliable and robust real-life applications. In this review, we categorize the diverse strategic approaches of SERS biosensors for targeting different classes of tumor biomarkers (cells, nucleic acids and proteins) by illustrating key recent research works. We will also discuss the current limitations and future research challenges to be addressed to improve the competitiveness of SERS over other methodologies in cancer medicine.
Collapse
Affiliation(s)
- Luca Guerrini
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
| | - Ramon A Alvarez-Puebla
- Department of Physical and Inorganic Chemistry and EMaS, Universitat Rovira I Virgili, Carrer de Marcel.lí Domingo s/n, 43007 Tarragona, Spain.
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
50
|
Jiang Y, Tang Y, Miao P. Polydopamine nanosphere@silver nanoclusters for fluorescence detection of multiplex tumor markers. NANOSCALE 2019; 11:8119-8123. [PMID: 30994693 DOI: 10.1039/c9nr01307e] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is an increasing demand to establish a convenient and stable analytical methodology for screening multiplex tumor markers in early diagnosis of cancers. In this work, an innovative fluorescence method is proposed for simultaneous detection of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA). A polydopamine nanosphere@silver nanocluster (PDAN@AgNC) system is introduced for fluorescence quenching and recovery. The AgNCs with different emissions are synthesized using different DNA templates, which also contain aptamer sequences towards AFP and CEA, respectively. These single-stranded DNA sequences could be adsorbed on the surface of the PDAN through π-π stacking, which results in the quenching of AgNCs. However, in the presence of the corresponding tumor marker, the aptamer/target complex forms which releases AgNCs from the surface of the PDAN and the recovered fluorescence could be used to indicate the concentration of the tumor marker. This PDAN@AgNC system has been validated preliminarily to screen human serum samples with excellent results. Taking advantages of simplicity, enzyme/antibody-free nature, low cost and convenient operation, the proposed biosensor has great potential to be used in biomedical research studies and clinical diagnosis.
Collapse
Affiliation(s)
- Yiting Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China.
| | | | | |
Collapse
|