1
|
Xue N, Li S, Yang H. Facile Fabrication of Robust Supraparticles for Spatially Orthogonal Cascade Catalysis. Angew Chem Int Ed Engl 2025:e202425342. [PMID: 40052920 DOI: 10.1002/anie.202425342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
Macroscopically sized supraparticles (SPs) are emerging as cutting-edge materials for industrial applications because of their unique properties unachievable for their nano-building blocks, but their effective methods are lacking. Here, a conceptually novel strategy is developed to assemble binary or ternary nanoparticles (NPs) within compartments of droplets through electrostatic interactions, making it possible to facilely fabricate millimeter-sized multicomponent ionic supraparticles (ISPs). The assembled ISPs possess unexpectedly high mechanical strength (50 N per bead), being amenable to practical applications. The key factors governing the assembly behavior of nano-building blocks within water droplet compartments are identified through regulating the size and charge density of NPs or ionic strength, providing key insights into the multileveled assembly of NPs beyond the conventional assembly. The strategy is demonstrated to be versatile since a library of tailor-made ISPs containing multicomponent, diversely shaped, and differently sized NPs can be facilely fabricated. As proof of this concept, it is showcased that this method enables the preparation of spatially orthogonal cascade catalysts by co-assembling acidic, basic, and metal sites in single millimeter-scaled particles. The catalysts exhibit significantly enhanced catalytic efficiency in a one-pot cascade synthesis of α-alkylated nitriles and high operational stability (200 h) in industrially preferred fixed-bed reactors.
Collapse
Affiliation(s)
- Nan Xue
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Shengjie Li
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Hengquan Yang
- Engineering Research Center of Ministry of Education for Fine Chemicals, Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
2
|
Höppel A, Bahr O, Ebert R, Wittmer A, Seidenstuecker M, Carolina Lanzino M, Gbureck U, Dembski S. Cu-doped calcium phosphate supraparticles for bone tissue regeneration. RSC Adv 2024; 14:32839-32851. [PMID: 39429940 PMCID: PMC11483895 DOI: 10.1039/d4ra04769a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Calcium phosphate (CaP) minerals have shown great promise as bone replacement materials due to their similarity to the mineral phase of natural bone. In addition to biocompatibility and osseointegration, the prevention of infection is crucial, especially due to the high concern of antibiotic resistance. In this context, a controlled drug release as well as biodegradation are important features which depend on the porosity of CaP. An increase in porosity can be achieved by using nanoparticles (NPs), which can be processed to supraparticles, combining the properties of nano- and micromaterials. In this study, Cu-doped CaP supraparticles were prepared to improve the bone substitute properties while providing antibacterial effects. In this context, a modified sol-gel process was used for the synthesis of CaP NPs, where a Ca/P molar ratio of 1.10 resulted in the formation of crystalline β-tricalcium phosphate (β-TCP) after calcination at 1000 °C. In the next step, CaP NPs with Cu2+ (0.5-15.0 wt%) were processed into supraparticles by a spray drying method. Cu release experiments of the different Cu-doped CaP supraparticles demonstrated a long-term sustained release over 14 days. The antibacterial properties of the supraparticles were determined against Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, where complete antibacterial inhibition was achieved using a Cu concentration of 5.0 wt%. In addition, cell viability assays of the different CaP supraparticles with human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) exhibited high biocompatibility with particle concentrations of 0.01 mg mL-1 over 72 hours.
Collapse
Affiliation(s)
- Anika Höppel
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
| | - Olivia Bahr
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg 97074 Würzburg Germany
| | - Annette Wittmer
- Medical Center University of Freiburg, Faculty of Medicine, Institute for Microbiology and Hygiene 79104 Freiburg Germany
| | - Michael Seidenstuecker
- G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg 79106 Freiburg Germany
| | - M Carolina Lanzino
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IFKB), University of Stuttgart 70569 Stuttgart Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg 97070 Würzburg Germany
| | - Sofia Dembski
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg 97070 Würzburg Germany
- Fraunhofer Institute for Silicate Research ISC 97082 Würzburg Germany
| |
Collapse
|
3
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Shneidman AV, Zhang CTY, Mandsberg NK, Picece VCTM, Shirman E, Paink GK, Nicolas NJ, Aizenberg J. Functional supraparticles produced by the evaporation of binary colloidal suspensions on superhydrophobic surfaces. SOFT MATTER 2024; 20:7502-7511. [PMID: 39268682 DOI: 10.1039/d4sm00458b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles. We extend this method to raspberry colloid templating, in which the binary suspension consists of titania nanoparticles together with gold-decorated polystyrene colloids. Following removal of the polymer particles, we demonstrate catalytic oxidative coupling of methanol to methyl formate using the resulting mesoporous supraparticles, showcasing their practical application.
Collapse
Affiliation(s)
- Anna V Shneidman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Cathy T Y Zhang
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Nikolaj K Mandsberg
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS) Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Vittoria C T M Picece
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Department of Materials, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland
| | - Elijah Shirman
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Gurminder K Paink
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Natalie J Nicolas
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
| | - Joanna Aizenberg
- Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
- Department of Chemistry and Chemical Biology, Harvard Univeristy 12 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
5
|
Lee JH, Tsubota H, Tachibana T. Controllable Drug-Release Ratio and Rate of Doxorubicin-Loaded Natural Composite Films Based on Polysaccharides: Evaluation of Transdermal Permeability Potential. ACS OMEGA 2024; 9:1936-1944. [PMID: 38222617 PMCID: PMC10785063 DOI: 10.1021/acsomega.3c08834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
In drug delivery systems, it is crucial to develop a drug carrier capable of regulating both the drug-release rate and the drug-release ratio. This study proposes a method for controlling the drug-release ratio/rate using doxorubicin-loaded natural composite films composed of polysaccharides (cellulose, chitin, chitosan, or cellulose nanocrystal) and mineral substances (MMT: montmorillonite). We succeeded in controlling the doxorubicin release ratio from 25 to 88% depending on the natural polysaccharide. Likewise, the reduction rate differed depending on the type of natural polysaccharide, whereas the reduction in release was achieved by mixing MMT. Cellulose had the largest reduction in the drug release ratio, approximately 30%, and cellulose nanocrystals showed little change. Furthermore, we conducted a skin permeation test on the natural polysaccharide film with the highest release rate to confirm its transdermal permeability potential. The polysaccharide doxorubicin-loaded film sustainably released doxorubicin for 2 days, which indicated the potential of a carrier for DDS applications.
Collapse
Affiliation(s)
- Ji Ha Lee
- Chemical Engineering Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroya Tsubota
- Chemical Engineering Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Tomoyuki Tachibana
- Chemical Engineering Program,
Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
6
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gunewardene N, Ma Y, Lam P, Wagstaff S, Cortez-Jugo C, Hu Y, Caruso F, Richardson RT, Wise AK. Developing the supraparticle technology for round window-mediated drug administration into the cochlea. J Control Release 2023; 361:621-635. [PMID: 37572963 DOI: 10.1016/j.jconrel.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 μg of NT3 loaded per SP that weights ~50 μg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 μg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 μg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
8
|
Feng K, Huangfu L, Liu C, Bonfili L, Xiang Q, Wu H, Bai Y. Electrospinning and Electrospraying: Emerging Techniques for Probiotic Stabilization and Application. Polymers (Basel) 2023; 15:polym15102402. [PMID: 37242977 DOI: 10.3390/polym15102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Probiotics are beneficial for human health. However, they are vulnerable to adverse effects during processing, storage, and passage through the gastrointestinal tract, thus reducing their viability. The exploration of strategies for probiotic stabilization is essential for application and function. Electrospinning and electrospraying, two electrohydrodynamic techniques with simple, mild, and versatile characteristics, have recently attracted increased interest for encapsulating and immobilizing probiotics to improve their survivability under harsh conditions and promoting high-viability delivery in the gastrointestinal tract. This review begins with a more detailed classification of electrospinning and electrospraying, especially dry electrospraying and wet electrospraying. The feasibility of electrospinning and electrospraying in the construction of probiotic carriers, as well as the efficacy of various formulations on the stabilization and colonic delivery of probiotics, are then discussed. Meanwhile, the current application of electrospun and electrosprayed probiotic formulations is introduced. Finally, the existing limitations and future opportunities for electrohydrodynamic techniques in probiotic stabilization are proposed and analyzed. This work comprehensively explains how electrospinning and electrospraying are used to stabilize probiotics, which may aid in their development in probiotic therapy and nutrition.
Collapse
Affiliation(s)
- Kun Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Chuanduo Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Laura Bonfili
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
9
|
Tao L, Wang P, Zhang T, Ding M, Liu L, Tao N, Wang X, Zhong J. Preparation of Multicore Millimeter-Sized Spherical Alginate Capsules to Specifically and Sustainedly Release Fish Oil. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Sala-Jarque J, García-Lara E, Carreras-Domínguez P, Zhou C, Rabaneda-Lombarte N, Solà C, M Vidal-Taboada J, Feiler A, Abrahamsson N, N Kozlova E, Saura J. Mesoporous silica particles are phagocytosed by microglia and induce a mild inflammatory response in vitro. Nanomedicine (Lond) 2022; 17:1077-1094. [PMID: 35997151 DOI: 10.2217/nnm-2022-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Mesoporous silica particles (MSPs) are broadly used drug delivery carriers. In this study, the authors analyzed the responses to MSPs of astrocytes and microglia, the two main cellular players in neuroinflammation. Materials & methods: Primary murine cortical mixed glial cultures were treated with rhodamine B-labeled MSPs. Results: MSPs are avidly internalized by microglial cells and remain inside the cells for at least 14 days. Despite this, MSPs do not affect glial cell viability or morphology, basal metabolic activity or oxidative stress. MSPs also do not affect mRNA levels of key proinflammatory genes; however, in combination with lipopolysaccharide, they significantly increase extracellular IL-1β levels. Conclusion: These results suggest that MSPs could be novel tools for specific drug delivery to microglial cells.
Collapse
Affiliation(s)
- Júlia Sala-Jarque
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Elisa García-Lara
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Paula Carreras-Domínguez
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | | | - Neus Rabaneda-Lombarte
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Carme Solà
- Department of Cerebral Ischemia and Neurodegeneration, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Jose M Vidal-Taboada
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Peripheral Nervous System, Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Catalonia, Spain
| | - Adam Feiler
- Nanologica AB, Södertälje, Sweden.,KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Josep Saura
- Biochemistry and Molecular Biology Unit, Department of Biomedical Sciences, School of Medicine, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Catalonia, Spain.,Institute of Neurosciences, University of Barcelona, Catalonia, Spain
| |
Collapse
|
11
|
Marovic D, Par M, Tauböck TT, Haugen HJ, Negovetic Mandic V, Wüthrich D, Burrer P, Zheng K, Attin T, Tarle Z, Boccaccini AR. Impact of Copper-Doped Mesoporous Bioactive Glass Nanospheres on the Polymerisation Kinetics and Shrinkage Stress of Dental Resin Composites. Int J Mol Sci 2022; 23:ijms23158195. [PMID: 35897771 PMCID: PMC9332616 DOI: 10.3390/ijms23158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/24/2022] Open
Abstract
We embedded copper-doped mesoporous bioactive glass nanospheres (Cu-MBGN) with antibacterial and ion-releasing properties into experimental dental composites and investigated the effect of Cu-MBGN on the polymerisation properties. We prepared seven composites with a BisGMA/TEGDMA (60/40) matrix and 65 wt.% total filler content, added Cu-MBGN or a combination of Cu-MBGN and silanised silica to the silanised barium glass base, and examined nine parameters: light transmittance, degree of conversion (DC), maximum polymerisation rate (Rmax), time to reach Rmax, linear shrinkage, shrinkage stress (PSS), maximum PSS rate, time to reach maximum PSS rate, and depth of cure. Cu-MBGN without silica accelerated polymerisation, reduced light transmission, and had the highest DC (58.8 ± 0.9%) and Rmax (9.8 ± 0.2%/s), but lower shrinkage (3 ± 0.05%) and similar PSS (0.89 ± 0.07 MPa) versus the inert reference (0.83 ± 0.13 MPa). Combined Cu-MBGN and silica slowed the Rmax and achieved a similar DC but resulted in higher shrinkage. However, using a combined 5 wt.% Cu-MBGN and silica, the PSS resembled that of the inert reference. The synergistic action of 5 wt.% Cu-MBGN and silanised silica in combination with silanised barium glass resulted in a material with the highest likelihood for dental applications in future.
Collapse
Affiliation(s)
- Danijela Marovic
- Department of Endodontics and Restorative Dentistry, University of Zagreb, 10000 Zagreb, Croatia; (V.N.M.); (Z.T.)
- Correspondence: (D.M.); (M.P.); Tel.: +385-14899203 (D.M. & M.P.)
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb, 10000 Zagreb, Croatia; (V.N.M.); (Z.T.)
- Correspondence: (D.M.); (M.P.); Tel.: +385-14899203 (D.M. & M.P.)
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (T.T.T.); (D.W.); (P.B.); (T.A.)
| | - Håvard J. Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway;
| | - Visnja Negovetic Mandic
- Department of Endodontics and Restorative Dentistry, University of Zagreb, 10000 Zagreb, Croatia; (V.N.M.); (Z.T.)
| | - Damian Wüthrich
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (T.T.T.); (D.W.); (P.B.); (T.A.)
| | - Phoebe Burrer
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (T.T.T.); (D.W.); (P.B.); (T.A.)
| | - Kai Zheng
- Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Centre for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (T.T.T.); (D.W.); (P.B.); (T.A.)
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, University of Zagreb, 10000 Zagreb, Croatia; (V.N.M.); (Z.T.)
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany;
| |
Collapse
|
12
|
Tonkin RL, Klöckner A, Najer A, Simoes da Silva CJ, Echalier C, Dionne MS, Edwards AM, Stevens MM. Bacterial Toxin-Triggered Release of Antibiotics from Capsosomes Protects a Fly Model from Lethal Methicillin-Resistant Staphylococcus aureus (MRSA) Infection. Adv Healthc Mater 2022; 11:e2200036. [PMID: 35481905 PMCID: PMC7615487 DOI: 10.1002/adhm.202200036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance is a severe global health threat and hence demands rapid action to develop novel therapies, including microscale drug delivery systems. Herein, a hierarchical microparticle system is developed to achieve bacteria-activated single- and dual-antibiotic drug delivery for preventing methicillin-resistant Staphylococcus aureus (MRSA) bacterial infections. The designed system is based on a capsosome structure, which consists of a mesoporous silica microparticle coated in alternating layers of oppositely charged polymers and antibiotic-loaded liposomes. The capsosomes are engineered and shown to release their drug payloads in the presence of MRSA toxins controlled by the Agr quorum sensing system. MRSA-activated single drug delivery of vancomycin and synergistic dual delivery of vancomycin together with an antibacterial peptide successfully kills MRSA in vitro. The capability of capsosomes to selectively deliver their cargo in the presence of bacteria, producing a bactericidal effect to protect the host organism, is confirmed in vivo using a Drosophila melanogaster MRSA infection model. Thus, the capsosomes serve as a versatile multidrug, subcompartmentalized microparticle system for preventing antibiotic-resistant bacterial infections, with potential applications to protect wounds or medical device implants from infections.
Collapse
Affiliation(s)
- Renée L. Tonkin
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anna Klöckner
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonSW7 2AZUK
| | - Adrian Najer
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Carolina J. Simoes da Silva
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonSW7 2AZUK
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Cécile Echalier
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
- Hybrid Technology Hub‐Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0315Norway
| | - Marc S. Dionne
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonSW7 2AZUK
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and InfectionImperial College LondonLondonSW7 2AZUK
| | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
13
|
Wu Y, Cui J, Ling Y, Wang X, Fu J, Jing C, Cheng J, Ma Y, Liu J, Liu S. Polypyrrole Cubosomes with Ordered Ultralarge Mesopore for Controllable Encapsulation and Release of Albumin. NANO LETTERS 2022; 22:3685-3690. [PMID: 35446565 DOI: 10.1021/acs.nanolett.2c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite substantial progress in porous materials over past years, controllable preparation of conductive polymers (CPs) with continuous large pores is challenging, which are important for diverse applications, including energy storage, electrocatalysis, and biological separations. Here, we develop an unprecedented ordered bicontinuous mesoporous PPy cubosomes (mPPy-cs) using a soft-template strategy, resulting in ultralarge pores of ∼45 nm and high specific surface area of 69.5 m2 g-1. Along with their unique characteristics of adjustable surface charges and sensitivity to pH, mPPy-cs exhibited a near quantitative adsorption of albumin within 30 min, enabling efficient separation from immunoglobulin G, a typical inclusion in commercial albumin products. Moreover, the absorbed albumin could be further released in a controlled manner by lowering the pH. This work provides a feasible strategy for bottom-up construction of CPs with tailored pore sizes and nanoarchitectures, expected to attract significant attention to their properties and applications.
Collapse
Affiliation(s)
- Yong Wu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| | - Jing Cui
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
- Shanghai Academy of Quality Management, Shanghai 200050, China
| | - Yang Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyue Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, 75 Daxue Road, Zhengzhou 450052, P.R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P.R. China
| | - Yanhang Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P.R. China
| |
Collapse
|
14
|
Li M, Mu Y, Cai H, Wu H, Ding Y. Application of New Materials in Auditory Disease Treatment. Front Cell Neurosci 2022; 15:831591. [PMID: 35173583 PMCID: PMC8841849 DOI: 10.3389/fncel.2021.831591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory diseases are disabling public health problems that afflict a significant number of people worldwide, and they remain largely incurable until now. Driven by continuous innovation in the fields of chemistry, physics, and materials science, novel materials that can be applied to hearing diseases are constantly emerging. In contrast to conventional materials, new materials are easily accessible, inexpensive, non-invasive, with better acoustic therapy effects and weaker immune rejection after implantation. When new materials are used to treat auditory diseases, the wound healing, infection prevention, disease recurrence, hair cell regeneration, functional recovery, and other aspects have been significantly improved. Despite these advances, clinical success has been limited, largely due to issues regarding a lack of effectiveness and safety. With ever-developing scientific research, more novel materials will be facilitated into clinical use in the future.
Collapse
|
15
|
Gunewardene N, Lam P, Ma Y, Caruso F, Wagstaff S, Richardson RT, Wise AK. Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea. J Control Release 2022; 342:295-307. [PMID: 34999140 DOI: 10.1016/j.jconrel.2021.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Hearing loss is the most prevalent sensory disorder affecting nearly half a billion people worldwide. Aside from devices to assist hearing, such as hearing aids and cochlear implants, a drug treatment for hearing loss has yet to be developed. The neurotrophin family of growth factors has long been established as a potential therapy, however delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We previously demonstrated that direct delivery of exogenous neurotrophin-3 (NT3) in the guinea pig cochleae via a bolus injection was rapidly cleared from the inner ear, with almost complete elimination 3 days post-treatment. Here, we explored the potential of suprapaticles (SPs) for NT3 delivery to the inner ear to achieve sustained delivery over time. SPs are porous spheroid structures comprised of smaller colloidal silica nanoparticles that provide a platform for long-term controlled release of therapeutics. This study aimed to assess the pharmacokinetics and biodistribution of SP-delivered NT3. We used a radioactive tracer (iodine 125: 125I) to label the NT3 to determine the loading, retention and distribution of NT3 delivered via SPs. Gamma measurements taken from 125I NT3 loaded SPs revealed high drug loading (an average of 5.3 μg of NT3 loaded per SP weighing 50 μg) and elution capacities in vitro (67% cumulative release over one month). Whole cochlear gamma measurements from SP-implanted cochleae harvested at various time points revealed detection of 125I NT3 in the guinea pig cochlea after one month, with 3.6 and 10% of the loaded drug remaining in the intracochlear and round window-implanted cochleae respectively. Autoradiography analysis of cochlear micro-sections revealed widespread 125I NT3 distribution after intracochlear SP delivery, but more restricted distribution with the round window delivery approach. Collectively, drug delivery into the inner ear using SPs support sustained, long-term availability and release of neurotrophins in the inner ear.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia.
| | | | - Yutian Ma
- Bionics Institute, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Rachael T Richardson
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia; Department of Surgery (Otolaryngology), University of Melbourne, Australia
| | - Andrew K Wise
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia; Department of Surgery (Otolaryngology), University of Melbourne, Australia.
| |
Collapse
|
16
|
Gurner KH, Richardson JJ, Harvey AJ, Gardner DK. A pilot study investigating a novel particle-based growth factor delivery system for preimplantation embryo culture. Hum Reprod 2021; 36:1776-1783. [PMID: 33975346 DOI: 10.1093/humrep/deab105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/22/2021] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION Can vascular endothelial growth factor (VEGF)-loaded silica supraparticles (V-SPs) be used as a novel mode of delivering VEGF to the developing preimplantation embryo in vitro? SUMMARY ANSWER Supplementation of embryo culture media with V-SPs promoted embryonic development in a manner equivalent to media supplemented with free VEGF. WHAT IS KNOWN ALREADY VEGF is a maternally derived growth factor that promotes preimplantation embryonic development in vitro. However, its use in clinical media has limitations due to its low stability in solution. STUDY DESIGN, SIZE, DURATION This study was a laboratory-based analysis utilising a mouse model. V-SPs were prepared in vitro and supplemented to embryonic culture media. The bioactivity of V-SPs was determined by analysis of blastocyst developmental outcomes (blastocyst development rate and total cell number). PARTICIPANTS/MATERIALS, SETTING, METHODS SPs were loaded with fluorescently labelled VEGF and release kinetics were characterised. Bioactivity of unlabelled VEGF released from V-SPs was determined by analysis of embryo developmental outcomes (blastocyst developmental rate and total cell number) following individual mouse embryo culture in 20 µl of G1/G2 media at 5% oxygen, supplemented with 10 ng/ml recombinant mouse VEGF in solution or with V-SPs. The bioactivity of freeze-dried V-SPs was also assessed to determine the efficacy of cryostorage. MAIN RESULTS AND THE ROLE OF CHANCE VEGF release kinetics were characterised by an initial burst of VEGF from loaded spheres followed by a consistent lower level of VEGF release over 48 h. VEGF released from V-SPs resulted in significant increases in total blastocyst cell number relative to the control (P < 0.001), replicating the effects of medium freely supplemented with fresh VEGF (P < 0.001). Similarly, freeze dried V-SPs exerted comparable effects on embryonic development (P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this proof of principle study, the effects of V-SPs on embryonic development were only analysed in a mouse model. WIDER IMPLICATIONS OF THE FINDINGS These findings suggest that SPs represent a novel method by which a targeted dose of therapeutic agents (e.g. bioactive VEGF) can be delivered to the developing in vitro embryo to promote embryonic development, an approach that negates the breakdown of VEGF associated with storage in solution. As such, V-SPs may be an alternative and effective method of delivering bioactive VEGF to the developing in vitro embryo; however, the potential use of V-SPs in clinical IVF requires further investigation. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the University of Melbourne. The authors have no conflict of interest to declare.
Collapse
Affiliation(s)
- Kathryn H Gurner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Alexandra J Harvey
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - David K Gardner
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Melbourne IVF, East Melbourne, VIC, Australia
| |
Collapse
|
17
|
Kim J, Hwang H, Butt HJ, Wooh S. Designing the shape of supraparticles by controlling the apparent contact angle and contact line friction of droplets. J Colloid Interface Sci 2021; 588:157-163. [PMID: 33388581 DOI: 10.1016/j.jcis.2020.12.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 10/22/2022]
Abstract
Surface-templated evaporation-driven supraparticle synthesis is a versatile method for supraparticle fabrication. A supraparticle is formed by drying droplet of a colloidal dispersion on liquid repellent surfaces, allowing precise control of the size and mean composition of the supraparticles. The crucial factor determining the morphology is the motion of the contact line of the dispersion droplet on the liquid repellent surface. Here, we study effects of (i) the apparent contact angle and (ii) the contact line friction of a droplet on the shape of the supraparticle. In order to change the initial apparent contact angle of the dispersion droplet a surfactant was added to decrease surface tension. In addition, two different liquid repellent surfaces were used: a polydimethysiloxane (PDMS) grafted surface and a lubricated surface. Both surfaces exhibited distinctly different contact line friction during evaporation. As the initial contact angle of a droplet decreases and friction of a contact line increases, flatter supraparticles are fabricated. By using this simple manipulation principle, eventually, various shapes of supraparticles can be obtained, such as mushroom, hemispherical, convex lens, and disk shapes. This study presents fundamental and critical information that allow us to manipulate the shape of a supraparticle via surface-templated evaporation-driven synthesis that increases the scalability of supraparticles for use in a wide range of applications.
Collapse
Affiliation(s)
- Jihye Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hyesun Hwang
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sanghyuk Wooh
- School of Chemical Engineering & Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
18
|
Kim J, Shim W, Jo SM, Wooh S. Evaporation driven synthesis of supraparticles on liquid repellent surfaces. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Zheng K, Sui B, Ilyas K, Boccaccini AR. Porous bioactive glass micro- and nanospheres with controlled morphology: developments, properties and emerging biomedical applications. MATERIALS HORIZONS 2021; 8:300-335. [PMID: 34821257 DOI: 10.1039/d0mh01498b] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, porous bioactive glass micro/nanospheres (PBGSs) have emerged as attractive biomaterials in various biomedical applications where such engineered particles provide suitable functions, from tissue engineering to drug delivery. The design and synthesis of PBGSs with controllable particle size and pore structure are critical for such applications. PBGSs have been successfully synthesized using melt-quenching and sol-gel based methods. The morphology of PBGSs is controllable by tuning the processing parameters and precursor characteristics during the synthesis. In this comprehensive review on PBGSs, we first overview the synthesis approaches for PBGSs, including both melt-quenching and sol-gel based strategies. Sol-gel processing is the primary technology used to produce PBGSs, allowing for control over the chemical compositions and pore structure of particles. Particularly, the influence of pore-forming templates on the morphology of PBGSs is highlighted. Recent progress in the sol-gel synthesis of PBGSs with sophisticated pore structures (e.g., hollow mesoporous, dendritic fibrous mesoporous) is also covered. The challenges regarding the control of particle morphology, including the influence of metal ion precursors and pore expansion, are discussed in detail. We also highlight the recent achievements of PBGSs in a number of biomedical applications, including bone tissue regeneration, wound healing, therapeutic agent delivery, bioimaging, and cancer therapy. Finally, we conclude with our perspectives on the directions of future research based on identified challenges and potential new developments and applications of PBGSs.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
20
|
Dichiarante V, Pigliacelli C, Metrangolo P, Baldelli Bombelli F. Confined space design by nanoparticle self-assembly. Chem Sci 2020; 12:1632-1646. [PMID: 34163923 PMCID: PMC8179300 DOI: 10.1039/d0sc05697a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Nanoparticle (NP) self-assembly has led to the fabrication of an array of functional nanoscale systems, having diverse architectures and functionalities. In this perspective, we discuss the design and application of NP suprastructures (SPs) characterized by nanoconfined compartments in their self-assembled framework, providing an overview about SP synthetic strategies reported to date and the role of their confined nanocavities in applications in several high-end fields. We also set to give our contribution towards the formation of more advanced nanocompartmentalized SPs able to work in dynamic manners, discussing the opportunities of further advances in NP self-assembly and SP research.
Collapse
Affiliation(s)
- Valentina Dichiarante
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Claudia Pigliacelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano Via Luigi Mancinelli 7 20131 Milan Italy
| |
Collapse
|
21
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
22
|
Lam P, Gunewardene N, Ma Y, Caruso F, Nguyen T, Flynn B, Wise AK, Richardson RT. A radiolabeled drug tracing method to study neurotrophin-3 retention and distribution in the cochlea after nano-based local delivery. MethodsX 2020; 7:101078. [PMID: 33072529 PMCID: PMC7549113 DOI: 10.1016/j.mex.2020.101078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/02/2022] Open
Abstract
Hearing loss is the most common sensory deficit worldwide with no approved therapeutics for treatment. Local neurotrophin delivery into the cochlea has shown great potential in protecting and repairing the sensory cells important for hearing. However, delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We have developed a method to test the pharmacokinetics of neurotrophin released from porous silica particles called ‘supraparticles’ that can provide sustained release of neurotrophins to the inner ear.This report describes a radiolabeling method to examine neurotrophin retention and distribution in the cochlea. The neurotrophin was labeled with a radioactive tracer (iodine 125: 125I) and delivered into the cochlea via the supraparticle system. Gamma counts reveal drug levels and clearance in the intact cochlea, as well as accumulation in off-target organs (safety test). Autoradiography analyses using film and emulsion permit quantification and visualization of drug distribution at the cellular level. The method has a detection limit of 0.8 pg of radiolabeled neurotrophin-3 in cochlear sections exposed to film. The tracer 125I with a half-life of 59.4 days can be used to label other drugs/substances with a tyrosine residue and therefore be broadly applicable for long-term pharmacokinetic studies in other systems.
Collapse
Affiliation(s)
- Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trung Nguyen
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Brianna Flynn
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Andrew K. Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
- University of Melbourne, Department of Otolaryngology, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Rachael T. Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Medical Bionics, University of Melbourne, Fitzroy, Victoria 3065, Australia
- University of Melbourne, Department of Otolaryngology, The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Corresponding author at: Bionics Institute, East Melbourne, Victoria 3002, Australia.
| |
Collapse
|
23
|
Liu Y, Wang X, Gu Y, Zhang M, Cao Y, Zhu Z, Lu S, Chai Y, Chen X, Hong Z. Covalent Design of Cell Membrane Stationary Phase with Enhanced Stability for Fast Screening P-Glycoprotein Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:5000-5006. [PMID: 35021677 DOI: 10.1021/acsabm.0c00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell membrane chromatography (CMC) has been widely used for characterizing the interaction between drugs and membrane receptors to screen target components from herbal medicines. However, the column life, stability, and the efficiency cannot meet the needs of high-throughput screening purpose. In this study, a P-glycoprotein immobilized cell membrane stationary phase (P-gp/CMSP) was prepared with a simple and mild two-step aldehyde modification, realizing the covalent bonding between cell membrane and stationary phase. The column life and stability were significantly enhanced compared with the unmodified columns. The P-gp/CMC column was equipped into a comprehensive 2D P-gp/CMC/Capcell-C18/TOFMS system, which actualizes the automated and high-throughput analytical process and rapid identification of complex chemical samples with no data loss. Five compounds with significant retention were screened out and unambiguously identified by the comprehensive 2D analytical system. Baicalin was confirmed as a P-gp inhibitor with ATP depletion inhibition ratio of 83.4%. Moreover, the reversal index of baicalin on DOX significantly increased to 11.13 when its concentration reached 25 μM, revealing that baicalin could effectively reverse the MDR cell model induced by DOX. The integrated system is a practical drug discovery platform and could be applied to other transmembrane protein models.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaoyu Wang
- Institute of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200032, P. R. China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, 280 Mohe Road, Shanghai 201999, China
| | - Mingyong Zhang
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Shan Lu
- Department of Biochemistry and Molecular Biology, Naval Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Yifeng Chai
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhanying Hong
- School of Pharmacy, Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
24
|
Wang P, Li M, Wei D, Ding M, Tao L, Liu X, Zhang F, Tao N, Wang X, Gao M, Zhong J. Electrosprayed Soft Capsules of Millimeter Size for Specifically Delivering Fish Oil/Nutrients to the Stomach and Intestines. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6536-6545. [PMID: 31940164 DOI: 10.1021/acsami.9b23623] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Contrasting to the traditional centimeter-sized soft capsules that are difficult to swallow or micro/nanometer-sized soft capsules that suffer from limited loading capacity for fish oil/nutrients and lowered stability, the millimeter-sized soft capsules with good enough stability could be a potential solution in solving these problems. Herein, we report millimeter-sized soft core-shell capsules of 0.42-1.85 mm with an inner diameter of 0.36-1.75 mm, for fish oil/nutrients, obtained through an electrospray approach upon optimization of different fabrication parameters such as applied voltage, sodium alginate concentration, shell/core feeding rate ratio, times of feeding rate, and types of coaxial needles. Further in vitro and in vivo studies reveal that the resulting soft capsules were apparently weakened and became mechanically destructive in the simulated small intestine solution and were totally destroyed in the simulated small intestine solution if they were first treated in the simulated stomach solution but not in the simulated stomach solution, which makes the millimeter-sized capsules useful as containers for specific delivery of fish oils and lipophilic nutrients to the stomach and intestines with excellent in vivo bioavailability (>90%). The whole fabrication approach is very facile with no complicated polymer modification and formulations involved, which endows the resulting soft capsules with broad application prospect in food and drug industries.
Collapse
Affiliation(s)
- Panpan Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Min Li
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Daixu Wei
- College of Life Sciences and Medicine , Northwest University , Xi'an , Shaanxi 710069 , People's Republic of China
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences , Tsinghua University , Beijing 100084 , China
| | - Mengzhen Ding
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Lina Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xunwei Liu
- Department of Medical Image , 960 Hospital of PLA (Jinan Military General Hospital) , No. 25, Shifan Road , Jinan City , Shandong Province 250031 , People's Republic of China
| | - Fengping Zhang
- Sichuan Willtest Technology Co., Ltd., Chengdu, Sichuan Province, China,Key Laboratory of Nutritional and Healty Cultivation of Aquatic-Product and Livestock-Poultry, Ministry of Agriculture and Rural Affairs of the People's Republic of China , Tongwei Co., Ltd. , Chengdu , Sichuan Province 610041 , China
| | - Ningping Tao
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| | - Mingyuan Gao
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology , Shanghai Ocean University , Shanghai 201306 , China
| |
Collapse
|
25
|
Lin Z, Zhou J, Cortez-Jugo C, Han Y, Ma Y, Pan S, Hanssen E, Richardson JJ, Caruso F. Ordered Mesoporous Metal–Phenolic Network Particles. J Am Chem Soc 2019; 142:335-341. [DOI: 10.1021/jacs.9b10835] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhixing Lin
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yiyuan Han
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yutian Ma
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuaijun Pan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J. Richardson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Björnmalm M, Wong LM, Wojciechowski JP, Penders J, Horgan CC, Booth MA, Martin NG, Sattler S, Stevens MM. In vivo biocompatibility and immunogenicity of metal-phenolic gelation. Chem Sci 2019; 10:10179-10194. [PMID: 31700596 PMCID: PMC6837883 DOI: 10.1039/c9sc03325d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
In vivo forming hydrogels are of interest for diverse biomedical applications due to their ease-of-use and minimal invasiveness and therefore high translational potential. Supramolecular hydrogels that can be assembled using metal-phenolic coordination of naturally occurring polyphenols and group IV metal ions (e.g. TiIV or ZrIV) provide a versatile and robust platform for engineering such materials. However, the in situ formation and in vivo response to this new class of materials has not yet been reported. Here, we demonstrate that metal-phenolic supramolecular gelation occurs successfully in vivo and we investigate the host response to the material over 14 weeks. The TiIV-tannic acid materials form stable gels that are well-tolerated following subcutaneous injection. Histology reveals a mild foreign body reaction, and titanium biodistribution studies show low accumulation in distal tissues. Compared to poloxamer-based hydrogels (commonly used for in vivo gelation), TiIV-tannic acid materials show a substantially improved in vitro drug release profile for the corticosteroid dexamethasone (from <1 day to >10 days). These results provide essential in vivo characterization for this new class of metal-phenolic hydrogels, and highlight their potential suitability for biomedical applications in areas such as drug delivery and regenerative medicine.
Collapse
Affiliation(s)
- Mattias Björnmalm
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Lok Man Wong
- National Heart and Lung Institute
, Imperial College London
,
London W12 0NN
, UK
.
| | - Jonathan P. Wojciechowski
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Jelle Penders
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Conor C. Horgan
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Marsilea A. Booth
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| | - Nicholas G. Martin
- Trace Element Laboratory
, North West London Pathology
,
Charing Cross Hospital
, London W6 8RF
, UK
| | - Susanne Sattler
- National Heart and Lung Institute
, Imperial College London
,
London W12 0NN
, UK
.
| | - Molly M. Stevens
- Department of Materials
, Department of Bioengineering
, Institute of Biomedical Engineering
, Imperial College London
,
London SW7 2AZ
, UK
.
| |
Collapse
|
27
|
Ma Y, Cortez-Jugo C, Li J, Lin Z, Richardson RT, Han Y, Zhou J, Björnmalm M, Feeney OM, Zhong QZ, Porter CJH, Wise AK, Caruso F. Engineering Biocoatings To Prolong Drug Release from Supraparticles. Biomacromolecules 2019; 20:3425-3434. [DOI: 10.1021/acs.biomac.9b00710] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | | | | | | | | | | | - Mattias Björnmalm
- Bionics Institute, East Melbourne, Victoria 3002, Australia
- Department of Materials, Department of Bioengineering, and the Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Orlagh M. Feeney
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Christopher J. H. Porter
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew K. Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | |
Collapse
|
28
|
Xu L, Chu Z, Wang H, Cai L, Tu Z, Liu H, Zhu C, Shi H, Pan D, Pan J, Fei X. Electrostatically Assembled Multilayered Films of Biopolymer Enhanced Nanocapsules for on-Demand Drug Release. ACS APPLIED BIO MATERIALS 2019; 2:3429-3438. [DOI: 10.1021/acsabm.9b00381] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Li Xu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zihan Chu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hailong Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lawrence Cai
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hanqing Liu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunyin Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Donghui Pan
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jia Pan
- Novo Nordisk Research Center−Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Xiang Fei
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
29
|
Ma Y, Wise AK, Shepherd RK, Richardson RT. New molecular therapies for the treatment of hearing loss. Pharmacol Ther 2019; 200:190-209. [PMID: 31075354 DOI: 10.1016/j.pharmthera.2019.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
An estimated 466 million people suffer from hearing loss worldwide. Sensorineural hearing loss is characterized by degeneration of key structures of the sensory pathway in the cochlea such as the sensory hair cells, the primary auditory neurons and their synaptic connection to the hair cells - the ribbon synapse. Various strategies to protect or regenerate these sensory cells and structures are the subject of intensive research. Yet despite recent advances in our understandings of the capacity of the cochlea for repair and regeneration there are currently no pharmacological or biological interventions for hearing loss. Current research focusses on localized cochlear drug, gene and cell-based therapies. One of the more promising drug-based therapies is based on neurotrophic factors for the repair of the ribbon synapse after noise exposure, as well as preventing loss of primary auditory neurons and regrowth of the auditory neuron fibers after severe hearing loss. Drug therapy delivery technologies are being employed to address the specific needs of neurotrophin and other therapies for hearing loss that include the need for high doses, long-term delivery, localised or cell-specific targeting and techniques for their safe and efficacious delivery to the cochlea. Novel biomaterials are enabling high payloads of drugs to be administered to the cochlea with subsequent slow-release properties that are proving to be beneficial for treating hearing loss. In parallel, new gene therapy technologies are addressing the need for cell specificity and high efficacy for the treatment of both genetic and acquired hearing loss with promising reports of hearing recovery. Some biomaterials and cell therapies are being used in conjunction with the cochlear implant ensuring therapeutic benefit to the primary neurons during electrical stimulation. This review will introduce the auditory system, hearing loss and the potential for repair and regeneration in the cochlea. Drug delivery to the cochlea will then be reviewed, with a focus on new biomaterials, gene therapy technologies, cell therapy and the use of the cochlear implant as a vehicle for drug delivery. With the current pre-clinical research effort into therapies for hearing loss, including clinical trials for gene therapy, the future for the treatment for hearing loss is looking bright.
Collapse
Affiliation(s)
- Yutian Ma
- Bionics Institute, East Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia; University of Melbourne, Department of Chemical Engineering, Parkville, Victoria, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Robert K Shepherd
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Australia; University of Melbourne, Medical Bionics Department, East Melbourne, Australia; University of Melbourne, Department of Surgery - Otolaryngology, East Melbourne, Australia.
| |
Collapse
|