1
|
Puniyanikkottil MA, Mal SS. Polyoxometalate Integrated with Conducting Polymer Nanocomposites for Supercapacitor and Biological Sensor Applications. Inorg Chem 2025; 64:8222-8237. [PMID: 40233350 DOI: 10.1021/acs.inorgchem.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Nanostructured redox-active composite electrode materials have been developed for energy storage applications to address conventional carbon-based supercapacitor's limited electrochemical performance. Polyoxometalates (POMs) and conducting polymers (CP) have significantly enhanced the pseudocapacitive activity of these electrode materials. In this study, we synthesized H4[PVW11O40]·xH2O (PVW11) and combined it with polypyrrole (PPy) and polyaniline (PAni) separately to improve energy performance and conduct electrochemical analysis. The PVW11-PPy outperformed the PVW11-PAni composite, achieving an energy density of 49.07 W h kg-1 and a specific capacitance of 405.16 F g-1. The supercapacitor cells showed a cyclic retention of 85.13% and 99.99% Coulombic efficiency after 6000 galvanostatic charge-discharge (GCD) cycles. The PVW11-PPy composite was fabricated into a supercapacitor device that powered a set of 10 LED bulbs for 2 min using an active mass of 76 mg. Additionally, the PVW11-PPy composite material was employed to sense glucose solutions with concentrations ranging from 0.04 to 0.4 mM, providing a sensitivity of 0.325 mA mM-1 cm-2, with limits of detection (LOD) and quantification (LOQ) of 0.381 mM and 1.270 mM, respectively.
Collapse
Affiliation(s)
- Muhammed Anees Puniyanikkottil
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Sib Sankar Mal
- Materials and Catalysis Lab, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 575025, India
| |
Collapse
|
2
|
Huang Z, Zhou W, Li D, Xu J. MOFs-Derived Nanoarrays: A Promising Strategy for Next-Generation Supercapacitors. CHEM REC 2025; 25:e202400233. [PMID: 40130653 DOI: 10.1002/tcr.202400233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/11/2025] [Indexed: 03/26/2025]
Abstract
Developing high-performance electrode materials for supercapacitors is one of the keys to improving their overall performance. Metal-organic framework (MOF) is a kind of crystalline porous material with periodic network structure, which is connected by inorganic metal centres and bridged organic ligands through self-assembly. It has the advantages of a large specific surface area, controllable pore size, excellent stability and ordered crystal structure. MOF-derived nanoarrays exhibit excellent electrochemical performance due to their unique structure, rich activation points, close interface contact, and easy electron migration and mass transfer, which have attracted extensive attention in supercapacitor applications. This study mainly reviews the synthesis methods of MOF array electrodes and their applications in supercapacitors. In addition, we also described the challenges and prospects of MOF-derived array electrodes in the application of supercapacitors. This paper has important reference value for the design of MOF-derived array electrodes and advanced energy storage systems. The progress of advanced energy storage systems will further promote the development of sustainable renewable energy, avoid adverse climate and greenhouse effect caused by excessive use of fossil fuels, and achieve a green energy future.
Collapse
Affiliation(s)
- Zian Huang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Weiqiang Zhou
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Danqin Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang, 330013, PR China
| |
Collapse
|
3
|
Wang S, Li Y, Wei L, Zhu J, Zhang Q, Lan L, Tang L, Wang F, Zhang Z, Wang L, Mao J. Strain-Insensitive Supercapacitors for Self-Powered Sensing Textiles. ACS NANO 2025; 19:6357-6370. [PMID: 39913174 DOI: 10.1021/acsnano.4c16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Yarn-based supercapacitors and sensors can be easily integrated into textiles to form flexible and lightweight self-powered wearable electronic devices, which enable stable and continuous signal detection without an external power source. However, most current supercapacitors for self-powered systems lack the stretchability to adapt to complex human body deformations, which restricts their application as a stable wearable power source. This study presents a high-performance strain-insensitive yarn supercapacitor via prestretching in situ polymerization strategy, which can be integrated into self-powered wearable sensing textiles. The supercapacitor delivers a high specific capacitance of 20.79 mF cm-1 (116.94 F g-1), a power density of 37.54 μW cm-1 (211.22 W kg-1), and an energy density of 1.85 μWh cm-1 (10.39 Wh kg-1). The strain-insensitive ability is demonstrated with nearly unchanged performance at a high static strain of 200%, dynamic strain rates of 10% s-1, and retains 96.46% of its capacitance after 3500 cycles under 50% strain. The pressure sensor, featuring a striped coating structure, shows a high sensitivity of 0.67 kPa-1 and a short response time of 100 ms. The strain-insensitive yarn supercapacitors with superior reliability serve as an energy source to power pressure sensors that efficiently recognize Morse code, showing great potential in truly wearable health monitoring and rehabilitation training applications.
Collapse
Affiliation(s)
- Shasha Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yimeng Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Leqian Wei
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jianhua Zhu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Qian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Lizhen Lan
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Liqin Tang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Fujun Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Ze Zhang
- Axe Médecine Régénératrice, Centre de Recherche du CHU de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Lu Wang
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Jifu Mao
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Gaba L, Siwach P, Aggarwal K, Dahiya S, Punia R, Maan AS, Singh K, Ohlan A. Hybridization of metal-organic frameworks and MXenes: Expanding horizons in supercapacitor applications. Adv Colloid Interface Sci 2024; 332:103268. [PMID: 39121831 DOI: 10.1016/j.cis.2024.103268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Metal-organic frameworks (MOFs) and MXenes have gained prominence in the queue of advanced material research. Both materials' outstanding physical and chemical characteristics prominently promote their utilization in diverse fields, especially the electrochemical energy storage (EES) domain. The collective contribution of extremely high specific surface area (SSA), customizable pores, and abundant active sites propose MOFs as integral materials for EES devices. However, conventional MOFs endure low conductivity, constraining their utility in practical applications. The development of hybrid materials via integrating MOFs with various conductive materials stands out as an effective approach to improvising MOF's conductivity. MXenes, formulated as two-dimensional (2D) carbides and nitrides of transition metals, fall in the category of the latest 2D materials. MXenes possess extensive structural diversity, impressive conductivity, and rich surface chemical characteristics. The electrochemical characteristics of MOF@MXene hybrids outperform MOFs and MXenes individually, credited to the synergistic effect of both components. Additionally, the MOF derivatives coupled with MXene, exhibiting unique morphologies, demonstrate outstanding electrochemical performance. The important attributes of MOF@MXene hybrids, including the various synthesis protocols, have been summarized in this review. This review delves into the architectural analysis of both MOFs and MXenes, along with their advanced hybrids. Furthermore, the comprehensive survey of the latest advancements in MOF@MXene hybrids as electroactive material for supercapacitors (SCs) is the prime objective of this review. The review concludes with an elaborate discussion of the current challenges faced and the future outlooks for optimizing MOF@MXene composites.
Collapse
Affiliation(s)
- Latisha Gaba
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India
| | - Priya Siwach
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India.
| | - Kanika Aggarwal
- Department of Physics, Sant Longowal Institute of Engineering & Technology (SLIET), Longowal 148106, India
| | - Sajjan Dahiya
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India
| | - Rajesh Punia
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India
| | - A S Maan
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India
| | - Kuldeep Singh
- CSIR-Central Electrochemical Research Institute (CECRI) Chennai Unit, CSIR Madras Complex, Taramani, Chennai 600113, India
| | - Anil Ohlan
- Department of Physics, Maharshi Dayanand University, Rohtak 124001, India.
| |
Collapse
|
5
|
Saha R, Gómez García CJ. Extrinsically conducting MOFs: guest-promoted enhancement of electrical conductivity, thin film fabrication and applications. Chem Soc Rev 2024; 53:9490-9559. [PMID: 39171560 DOI: 10.1039/d4cs00141a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conductive metal-organic frameworks are of current interest in chemical science because of their applications in chemiresistive sensing, electrochemical energy storage, electrocatalysis, etc. Different strategies have been employed to design conductive frameworks. In this review, we discuss the influence of different types of guest species incorporated within the pores or channels of metal-organic frameworks (MOFs) and porous coordination polymers (PCPs) to generate charge transfer pathways and modulate their electrical conductivity. We have classified dopants or guest species into three different categories: (i) metal-based dopants, (ii) molecule and molecular entities and (iii) organic conducting polymers. Different types of metal ions, metal nano-clusters and metal oxides have been used to enhance electrical conductivity in MOFs. Metal ions and metal nano-clusters depend on the hopping process for efficient charge transfer whereas metal-oxides show charge transport through the metal-oxygen pathway. Several types of molecules or molecular entities ranging from neutral TCNQ, I2, and fullerene to ionic methyl viologen, organometallic like nickelcarborane, etc. have been used. In these cases, the charge transfer process varies with the guest species. When organic conducting polymers are the guest, the charge transport occurs through the polymer chains, mostly based on extended π-conjugation. Here we provide a comprehensive and critical review of these strategies to add electrical conductivity to the, in most cases, otherwise insulating MOFs and PCPs. We point out the guest encapsulation process, the geometry and structure of the resulting host-guest complex, the host-guest interactions and the charge transport mechanism for each case. We also present the methods for thin film fabrication of conducting MOFs (both, liquid-phase and gas-phase based methods) and their most relevant applications like electrocatalysis, sensing, charge storage, photoconductivity, photocatalysis,… We end this review with the main obstacles and challenges to be faced and the appealing perspectives of these 21st century materials.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| | - Carlos J Gómez García
- Departamento de Química Inorgánica, Universidad de Valencia, Dr Moliner 50, 46100 Burjasot (Valencia), Spain.
| |
Collapse
|
6
|
Zhai X, Li Q, Cao Y, Han M, Sun H, Du L, Yang X, Wei Y, Yu C. Polypyrrole deposited on the core-shell structured nitrogen-doped porous carbon@Ag-MOF for signal amplification detection of chloride ions. Mikrochim Acta 2024; 191:524. [PMID: 39112828 DOI: 10.1007/s00604-024-06601-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
An electrochemical platform for signal amplification probing chloride ions (Cl-) is constructed by the composite integrating core-shell structured nitrogen-doped porous carbon@Ag-based metal-organic frameworks (NC@Ag-MOF) with polypyrrole (PPy). It is based on the signal of solid-state AgCl derived from Ag-MOF, since both NC and PPy have good electrical conductivity and promote the electron transport capacity of solid-state AgCl. NC@Ag-MOF was firstly synthesized with NC as the scaffold and then, PPy was anchored on NC@Ag-MOF by chemical polymerization. The composite NC@Ag-MOF-PPy was utilized to modify the electrode, which exhibited a higher peak current and lower peak potential during Ag oxidation compared with those of Ag-MOF and NC@Ag-MOF-modified electrodes. More importantly, in the coexistence of chloride (Cl-) ions in solution, the NC@Ag-MOF-PPy-modified electrode displayed a fairly stable and sharp peak of solid-state AgCl with the peak potentials gradually approaching zero, which might effectively overcome the background interference caused by electroactive substances. The oxidation peak currents of solid-state AgCl increased linearly with the concentration of Cl- ions in a broad range of 0.15 µM-40 mM and 40-250 mM, with detection limits of 0.10 µM and 40 mM, respectively. The practical applicability for Cl- ions determination was demonstrated using human serum and urine samples. The results suggest that NC@Ag-MOF-PPy composite could be a promising candidate for the construction of the electrochemical sensor.
Collapse
Affiliation(s)
- Xiurong Zhai
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China.
| | - Qian Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yang Cao
- Ecological and Environmental Affairs Center of Jining City, Jining City, Shandong Province, 272000, People's Republic of China
| | - Mengjie Han
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| | - Hailian Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| | - Lelin Du
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| | - Xiyun Yang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| | - Yuxin Wei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| | - Congcong Yu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu City, Shandong Province, 273155, People's Republic of China
| |
Collapse
|
7
|
Liu Y, Zhou X, Qiu T, Yao R, Yu F, Song T, Lang X, Jiang Q, Tan H, Li Y, Li Y. Co-Assembly of Polyoxometalates and Porphyrins as Anode for High-Performance Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407705. [PMID: 38925587 DOI: 10.1002/adma.202407705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Polyoxometalates (POMs) have been considered one of the most promising anode candidates for lithium-ion batteries (LIBs) in virtue of their high theoretical capacity and reversible multielectron redox properties. However, the poor intrinsic electronic conductivity, low specific surface area, and high solubility in organic electrolytes hinder their widespread applications in LIBs. Herein, a novel hybrid nanomaterial is synthesized by co-assembling POMs and porphyrins (PMo12/CoTPyP) through a facile solvothermal method. The POM clusters are stabilized by porphyrin units through electrostatic interactions, which simultaneously realize the uniform dispersion of POMs and porphyrin units. Benefiting from the generated sub-1 nm channels for fast ion transport and the synergistic effect between evenly distributed PMo12 clusters and high-conductive CoTPyP units, the LIB based on the optimized PMo12/CoTPyP anode exhibits significantly improved Li+ storage capability as well as superior rate and cycling performance. The results of density functional theory simulations further reveal that the co-assembly of PMo12 and CoTPyP can accelerate the mobility of Li+ and electrons, which in turn promotes the enhancement of LIBs performance. This work paves a strategy for synthesizing POMs-based anode materials with simultaneously high dispersibility, redox activity, and stability.
Collapse
Affiliation(s)
- Yanchun Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xianggang Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tianyu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ruiqi Yao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Feiyang Yu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tingting Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xingyou Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education and School of Materials Science and Engineering, Jilin University, Changchun, 130024, China
| | - Huaqiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yingqi Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yangguang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
8
|
Liu Q, Li R, Li J, Zheng B, Song S, Chen L, Li T, Ma Y. The Utilization of Metal-Organic Frameworks and Their Derivatives Composite in Supercapacitor Electrodes. Chemistry 2024; 30:e202400157. [PMID: 38520385 DOI: 10.1002/chem.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Up to now, the mainstream adoption of renewable energy has brought about substantial transformations in the electricity and energy sector. This shift has garnered considerable attention within the scientific community. Supercapacitors, known for their exceptional performance metrics like good charge/discharge capability, strong power density, as well as extended cycle longevity, have gained widespread traction across various sectors, including transportation and aviation. Metal-organic frameworks (MOFs) with unique traits including adaptable structure, highly customizable synthetic methods, and high specific surface area, have emerged as strong candidates for electrode materials. For enhancing the performance, MOFs are commonly compounded with other conducting materials to increase capacitance. This paper provides a detailed analysis of various common preparation strategies and characteristics of MOFs. It summarizes the recent application of MOFs and their derivatives as supercapacitor electrodes alongside other carbon materials, metal compounds, and conductive polymers. Additionally, the challenges encountered by MOFs in the realm of supercapacitor applications are thoroughly discussed. Compared to previous reviews, the content of this paper is more comprehensive, offering readers a deeper understanding of the diverse applications of MOFs. Furthermore, it provides valuable suggestions and guidance for future progress and development in the field of MOFs.
Collapse
Affiliation(s)
- Qianwen Liu
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Ruidong Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Jie Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Bingyue Zheng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Shuxin Song
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Lihua Chen
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| |
Collapse
|
9
|
Yang Y, Guo K, Zhu M, Zhang A, Xing M, Lu Y, Bai X, Ji X, Hu Y, Liu S. Exploring Electron Transfer Mechanism in Synergistic Interactional Reduced Polyoxometalate-Based Cu(I)-Organic Framework for Photocatalytic Removal of U(VI). Inorg Chem 2024; 63:7876-7885. [PMID: 38608259 DOI: 10.1021/acs.inorgchem.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Photocatalytic reduction of U(VI) is a promising method for removing uranium containing pollutants. However, using polyoxometalate-based metal-organic frameworks (POMOFs) for photoreduction of U(VI) is rare, and the relevant charge transfer pathway is also not yet clear. In this article, we demonstrate a highly efficient strategy and revealed a clearly electron transfer pathway for the photoreduction of U(VI) with 99% removal efficiency by using a novel POMOF, [Cu(4,4'-bipy)]5·{AsMo4VMo6VIV2VO40(VIVO)[VIVO(H2O)]}·2H2O (1), as catalyst. The POMOF catalyst was constructed by the connection of reduced {AsMo10V4} clusters and Cu(I)-MOF chains through Cu-O coordination bonds, which exhibits a broader and stronger light absorption capacity due to the presence of reduced {AsMo10V4} clusters. Significantly, the transition of electrons from Cu(I)-MOF to {AsMo10V4} clusters (Cu → Mo/V) greatly inhibits the recombination of photogenerated carriers, thereby advancing electron transfer. More importantly, the {AsMo10V4} clusters are not only adsorption sites but also catalytically active sites. This causes the fast transfer of photogenerated electrons from Mo/V to UO22+(Mo/V → O → U) via the surface oxygen atoms. The shorter electron transmission distance between catalytic active sites and UO22+ achieves faster and more effective electron transport. All in all, the highly effective photocatalytic removal of U(VI) using the POMOF as a catalyst is predominantly due to the synergistic interaction between Cu(I)-MOFs and reduced {AsMo10V4} clusters.
Collapse
Affiliation(s)
- Yanli Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Keke Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Maochun Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ange Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Min Xing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xiaoying Ji
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yingjie Hu
- Nanjing Key Laboratory of Advanced Functional Materials, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, P. R. China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
10
|
Xin J, Pang H, Gómez-García CJ, Jin Z, Wang Y, Au CM, Ma H, Wang X, Yang G, Yu WY. Nitrogen doped 1 T/2H mixed phase MoS 2/CuS heterostructure nanosheets for enhanced peroxidase activity. J Colloid Interface Sci 2024; 659:312-319. [PMID: 38176240 DOI: 10.1016/j.jcis.2023.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot, Spain
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Ying Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
11
|
Peng CH, Li G, Li KC, Cui XB. Six polyoxotungstate-based transition metal compounds for electrochemical capacitor application and a comparative analysis of factors affecting capacitances. Dalton Trans 2024; 53:3499-3510. [PMID: 38270509 DOI: 10.1039/d3dt04052f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Six different polyoxotungstate-based transition metal complexes were synthesized, namely [Cu5(2,2'-bpy)5(μ2-Cl)2(PO4)2(H2O)2][HPW12O40]·2H2O (1), [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]3[H1.5PW12O40]2·16.25H2O (2), [Cu(2,2'-bpy)2]2[SiW12O40]·10H2O (3), [Zn(phen)3]2[PWVWVI11O40]·5H2O (4), [Zn(phen)2(H2O)]2[SiW12O40]·2H2O (5), and [Zn(2,2'-bpy)2]2[SiW12O40] (6) (2,2'-bpy = 2,2'-bipyridine, inic = isonicotinic acid, phen = 1,10-phenanthroline). Compound 1 is based on [HPW12O40]2- anions, which are accommodated within the open channels of a supramolecular network formed by novel Cu-P-Cl coordination clusters. Compound 2 is constructed from [H1.5PW12O40]1.5- and novel [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]+ coordination fragments, and polyoxoanions are encapsulated within the pores created by the copper coordination fragments, resulting in a unique three-dimensional supramolecular architecture. Compound 3 is a two-dimensional structure formed through the covalent linkage between [SiW12O40]4- and [Cu(2,2'-bpy)2]2+. Compound 4 is a supramolecular architecture formed by [PWVWVI11O40]4- and [Zn(phen)3]2+ coordination fragments, while compound 5 is a supramolecular structure based on POM bi-supported Zn coordination complexes. Compound 6 is a two-dimensional framework structure constituted by [SiW12O40]4- and [Zn(2,2'-bpy)2]2+via covalent interactions. In addition, electrochemical measurement results show that the copper-based tungstate compounds 1-3 and zinc-based tungstate compounds 4-6 exhibit different performances and durabilities as electrochemical capacitors (compound 1 shows the highest specific capacitance of 94.0 F g-1 at 1.5 A g-1, whereas compound 6 maintains the best cycling stability with the capacity retention of 80.7% after 1000 cycles at 4 A g-1.). This study contributes to the development of POM-based transition metal complexes with high capacitance by providing insights into the design and synthesis process.
Collapse
Affiliation(s)
- Cai-Hong Peng
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Guanghua Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Ke-Chang Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Xiao-Bing Cui
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| |
Collapse
|
12
|
Vello TP, Albano LGS, Dos Santos TC, Colletti JC, Santos Batista CV, Leme VFC, Dos Santos TC, Miguel MPDC, de Camargo DHS, Bof Bufon CC. Electrical Conductivity Boost: In Situ Polypyrrole Polymerization in Monolithically Integrated Surface-Supported Metal-Organic Framework Templates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305501. [PMID: 37752688 DOI: 10.1002/smll.202305501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Indexed: 09/28/2023]
Abstract
Recent progress in synthesizing and integrating surface-supported metal-organic frameworks (SURMOFs) has highlighted their potential in developing hybrid electronic devices with exceptional mechanical flexibility, film processability, and cost-effectiveness. However, the low electrical conductivity of SURMOFs has limited their use in devices. To address this, researchers have utilized the porosity of SURMOFs to enhance electrical conductivity by incorporating conductive materials. This study introduces a method to improve the electrical conductivity of HKUST-1 templates by in situ polymerization of conductive polypyrrole (PPy) chains within the SURMOF pores (named as PPy@HKUST-1). Nanomembrane-origami technology is employed for integration, allowing a rolled-up metallic nanomembrane to contact the HKUST-1 films without causing damage. After a 24 h loading period, the electrical conductivity at room temperature reaches approximately 5.10-6 S m-1 . The nanomembrane-based contact enables reliable electrical characterization even at low temperatures. Key parameters of PPy@HKUST-1 films, such as trap barrier height, dielectric constant, and tunneling barrier height, are determined using established conduction mechanisms. These findings represent a significant advancement in real-time control of SURMOF conductivity, opening pathways for innovative electronic-optoelectronic device development. This study demonstrates the potential of SURMOFs to revolutionize hybrid electronic devices by enhancing electrical conductivity through intelligent integration strategies.
Collapse
Affiliation(s)
- Tatiana Parra Vello
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Department of Physical Chemistry, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
| | - Luiz Gustavo Simão Albano
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Thamiris Cescon Dos Santos
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| | - Julia Cantovitz Colletti
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Carlos Vinícius Santos Batista
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
| | - Vitória Fernandes Cintra Leme
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Thamiris Costa Dos Santos
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Maria Paula Dias Carneiro Miguel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Davi Henrique Starnini de Camargo
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-970, Brazil
| | - Carlos César Bof Bufon
- Department of Physical Chemistry, Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, São Paulo, 13083-862, Brazil
- Postgraduate Program in Materials Science and Technology (POSMAT), São Paulo State University (UNESP), Bauru, São Paulo, 17033-360, Brazil
- Mackenzie Evangelical Faculty of Paraná (FEMPAR), Curitiba, Paraná, 80730-000, Brazil
- Mackenzie Presbyterian Institute (IPM), São Paulo, São Paulo, 01302-907, Brazil
| |
Collapse
|
13
|
Hou Y, Han P, Li H, Zhang S, Qin M, Zhang N, Fu B, Mao R, Ge S. Bifunctional 3D POM-based coordination polymers for improved pseudocapacitance and catalytic oxidation performance. Dalton Trans 2024; 53:1541-1550. [PMID: 38164075 DOI: 10.1039/d3dt03650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing novel high-efficiency supercapacitors as energy storage devices to solve the energy crisis is of vital significance. Meanwhile, designing highly active and selective oxidation catalysts for various sulfides is desirable but still a big challenge. To work out these problems, three novel 3D POM-based coordination polymers (POMCPs), formulated as [{Ag6(pytz)4}{SiMo12O40}] (1), [{Cu3(pytz)4}{SiMo12O40}]·5.5H2O (2) and [{Cu6(pytz)6}{SiMo12O40}]·2H2O (3) (pytz = 4-(5-(4-pyridyl)-1H-tetrazole)), are successfully prepared via a one-step synthetic strategy by changing different temperatures under hydrothermal or solvothermal conditions. In compounds 1 and 2, {SiMo12}, as 9-capped and 2-capped polyoxoanions, are engaged among the 2D Ag/Cu-organic sheets to generate the novel 3D POM-based coordination polymers. In addition, 1D Cu-organic chains are combined with 3-capped {SiMo12} polyoxoanions to construct 2D POM-based coordination polymers in 3. To our delight, as electrode materials for supercapacitors, the three compounds exhibit excellent specific capacitances of 261.76 F g-1, 248.82 F g-1 and 156.47 F g-1 at 0.5 A g-1, respectively. Besides, they can effectively and selectively catalyze the oxidation of various sulfides to sulfoxides.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Peilin Han
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Hao Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Shixing Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Mengge Qin
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Nan Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Bingbing Fu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Ruitao Mao
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Suxiang Ge
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| |
Collapse
|
14
|
Xin J, Pang H, Gómez-García CJ, Sun W, Wu Q, Au CM, Ma H, Wang X, Yang G, Yu WY. One-Step Synthesis of Hollow CoS 2 Spheres Derived from Polyoxometalate-Based Metal-Organic Frameworks with Peroxidase-like Activity. Inorg Chem 2024; 63:860-869. [PMID: 38141027 DOI: 10.1021/acs.inorgchem.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 μM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot 46100, Spain
| | - Wenlong Sun
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, Yunnan, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
15
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
16
|
Pagar SB, Ghorude TN, Nikolova MP, SenthilKannan K. Synthesis, physical, chemical, biological, mechanical and electronic studies of polypyrrole (PPy) of versatile scales for electro-mechano, pharmaceutical utilities. Heliyon 2023; 9:e20086. [PMID: 37809715 PMCID: PMC10559841 DOI: 10.1016/j.heliyon.2023.e20086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The Polypyrrole is properly synthesized with the customary ammonium persulphate as an oxidizing agent. The number of reactions for versatile molar ratios (oxidant: monomer) is addressed and pronounced. Powder X-ray diffraction (XRD) analysis revealed the material amorphous nature by wide peak from 20° to 30°. As the molar ratio is changed, the Fourier Transform Infra Red (FTIR) spectrum shows the substantiation of functional groups and peaks are shifted for each specimen slightly. UV-visible spectral study shows a major peak at 320 nm, for typical π-π* transitions. Scanning Electron Microscopic (SEM) study confirmed the agglomerated polypyrrole sample for the surface morphological periphery. It is enabled for electronic filter influx property with versatile macro scale in microns as 3.7874, Polypyrrole is tried for electronic filters as the influx in microns of different scales. Hardness profile for RISE effectiveness and in the biomedical sector as a better anti-diabetic agent by IC-50 values. The hardness value for Vicker's scale of 100 g is 97.9 kg/mm2.
Collapse
Affiliation(s)
- Sahebrao B. Pagar
- Department of Physics, G.E. Society's HPT Arts and RYK Science College, Nashik, 422 005, Maharashtra, India
| | - Tatyarao N. Ghorude
- Department of Physics, G.E. Society's N. B. Mehta (Valwada) Science College, Bordi, 401 701, Maharashtra, India
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7000, Ruse, Bulgaria
| | - K. SenthilKannan
- Department of Physics, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamilnadu, India
| |
Collapse
|
17
|
Qu Z, Huang L, Guo M, Sun T, Xu X, Gao Z. Application of novel polypyrrole/melamine foam auxiliary electrode in promoting electrokinetic remediation of Cr(VI)-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162840. [PMID: 36924972 DOI: 10.1016/j.scitotenv.2023.162840] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Mengmeng Guo
- Jinan Ecological and Environmental Monitoring Center, Jinan 250000, China
| | - Ting Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoshen Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhenhui Gao
- Institute of Eco-Environmental Forensics of Shandong University, Qingdao 266237, China
| |
Collapse
|
18
|
Cong C, Ma H. Advances of Electroactive Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207547. [PMID: 36631286 DOI: 10.1002/smll.202207547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The preparation of electroactive metal-organic frameworks (MOFs) for applications of supercapacitors and batteries has received much attention and remarkable progress during the past few years. MOF-based materials including pristine MOFs, hybrid MOFs or MOF composites, and MOF derivatives are well designed by a combination of organic linkers (e.g., carboxylic acids, conjugated aromatic phenols/thiols, conjugated aromatic amines, and N-heterocyclic donors) and metal salts to construct predictable structures with appropriate properties. This review will focus on construction strategies of pristine MOFs and hybrid MOFs as anodes, cathodes, separators, and electrolytes in supercapacitors and batteries. Descriptions and discussions follow categories of electrochemical double-layer capacitors (EDLCs), pseudocapacitors (PSCs), and hybrid supercapacitors (HSCs) for supercapacitors. In contrast, Li-ion batteries (LIBs), Lithium-sulfur batteries (LSBs), Lithium-oxygen batteries (LOBs), Sodium-ion batteries (SIBs), Sodium-sulfur batteries (SSBs), Zinc-ion batteries (ZIBs), Zinc-air batteries (ZABs), Aluminum-sulfur batteries (ASBs), and others (e.g., LiSe, NiZn, H+ , alkaline, organic, and redox flow batteries) are categorized for batteries.
Collapse
Affiliation(s)
- Cong Cong
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| | - Huaibo Ma
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 21186, China
| |
Collapse
|
19
|
Shah R, Ali S, Raziq F, Ali S, Ismail PM, Shah S, Iqbal R, Wu X, He W, Zu X, Zada A, Adnan, Mabood F, Vinu A, Jhung SH, Yi J, Qiao L. Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214968] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Polyoxometalate-Encapsulated Metal-Organic Frameworks with Diverse Cages for the C–H Bond Oxidation of Alkylbenzenes. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Sun C, Wang W, Mu X, Zhang Y, Wang Y, Ma C, Jia Z, Zhu J, Wang C. Tuning the Electrical Conductivity of a Flexible Fabric-Based Cu-HHTP Film through a Novel Redox Interaction between the Guest-Host System. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54266-54275. [PMID: 36399651 DOI: 10.1021/acsami.2c17417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of metal-organic frameworks (MOFs) and flexible fabrics has been recently considered as a promising strategy applied in wearable electronic devices. We synthesized a flexible fabric-based Cu-HHTP film consisted of Cu2+ ions and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) via a self-sacrificial template method. The obtained Cu-HHTP film displays an outstanding nanostructured surface and uniformity. Iodine molecules are first introduced into the pores of Cu-HHTP to investigate the influence of guest molecules on electrical conductivity in a 2D guest-host system. After doping, the conductivity of the Cu-HHTP film shows an increased dependent on the doping time, and the maximum value is more than 30 times that of the original MOFs. The enhanced electrical conductivity results from an intriguing redox interaction occurred between the confined iodine molecules and the framework. The organic ligands are oxidized by iodine molecules, and generating new ions allows for subsequent participation in the regulation of the mixed valence bands of copper ions in MOFs, changing the ratio of Cu2+/Cu+, promoting the charge transport of the framework, and then synergistically enhancing the electronic conductivity. This study successfully prepared a flexible fabric-based conductive I2@Cu-HHTP film and presented insights into revealing the behavior of iodine molecules after entering the Cu-HHTP pores, expanding the possibilities of Cu-HHTP used in flexible wearable electronics.
Collapse
Affiliation(s)
- Chongcai Sun
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Weike Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Xueyang Mu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yifan Zhang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Yong Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Chuang Ma
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Zhen Jia
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| | - Jiankang Zhu
- Guangzhou Special Pressure Equipment Inspection and Research Institute National Graphene Product Quality Supervision and Inspection Center, Guangzhou, Guangdong510700, P. R. China
| | - Chengbing Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and, Functionalization for Inorganic Material Shaanxi University of Science & Technology, Xi'an, Shaanxi710021, P. R. China
| |
Collapse
|
22
|
Wang T, Lei J, Wang Y, Pang L, Pan F, Chen KJ, Wang H. Approaches to Enhancing Electrical Conductivity of Pristine Metal-Organic Frameworks for Supercapacitor Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203307. [PMID: 35843875 DOI: 10.1002/smll.202203307] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs), known as porous coordination polymers, have attracted intense interest as electrode materials for supercapacitors (SCs) owing to their advantageous features including high surface area, tunable porous structure, structural diversity, etc. However, the insulating nature of most MOFs has impeded their further electrochemical applications. A common solution for this issue is to transform pristine MOFs into more stable and conductive metal compounds/porous carbon materials through pyrolysis, which however losses the inherent merits of MOFs. To find a consummate solution, recently a surge of research devoted to improving the electrical conductivity of pristine MOFs for SCs has been carried out. In this review, the most related research work on pristine MOF-based materials is reviewed and three effective strategies (chemical structure design of conductive MOFs (c-MOFs), composite design, and binder-free structure design) which can significantly increase their conductivity and consequently the electrochemical performance in SCs are proposed. The conductivity enhancement mechanism in each approach is well analyzed. The representative research works on using pristine MOFs for SCs are also critically discussed. It is hoped that the new insights can provide guidance for developing high-performance electrode materials based on pristine MOFs with high conductivity for SCs in the future.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - You Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Le Pang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Fuping Pan
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Hongxia Wang
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
23
|
Shi R, Jiao S, Yue Q, Gu G, Zhang K, Zhao Y. Challenges and advances of organic electrode materials for sustainable secondary batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20220066. [PMID: 37325604 PMCID: PMC10190941 DOI: 10.1002/exp.20220066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Organic electrode materials (OEMs) emerge as one of the most promising candidates for the next-generation rechargeable batteries, mainly owing to their advantages of bountiful resources, high theoretical capacity, structural designability, and sustainability. However, OEMs usually suffer from poor electronic conductivity and unsatisfied stability in common organic electrolytes, ultimately leading to their deteriorating output capacity and inferior rate capability. Making clear of the issues from microscale to macroscale level is of great importance for the exploration of novel OEMs. Herein, the challenges and advanced strategies to boost the electrochemical performance of redox-active OEMs for sustainable secondary batteries are systematically summarized. Particularly, the characterization technologies and computational methods to elucidate the complex redox reaction mechanisms and confirm the organic radical intermediates of OEMs have been introduced. Moreover, the structural design of OEMs-based full cells and the outlook for OEMs are further presented. This review will shed light on the in-depth understanding and development of OEMs for sustainable secondary batteries.
Collapse
Affiliation(s)
- Ruijuan Shi
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Qianqian Yue
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Guangqin Gu
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Kai Zhang
- Frontiers Science Center for New Organic MatterRenewable Energy Conversion and Storage Center (RECAST)Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjinChina
- Haihe Laboratory of Sustainable Chemical TransformationsTianjinChina
| | - Yong Zhao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| |
Collapse
|
24
|
He YO, Fu YM, Meng X, Sun HX, Yang RG, Qu JX, Su ZM, Wang HN. Ag Nanoparticle-Modified Polyoxometalate-Based Metal-Organic Framework for Enhanced CO 2 Photoreduction. Inorg Chem 2022; 61:11359-11365. [PMID: 35819880 DOI: 10.1021/acs.inorgchem.2c01539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photoreduction deposition method is employed to fabricate a family of silver nanoparticle (Ag NP)-modified polyoxometalate-based metal-organic framework (NENU-5) photocatalysts, named Ag/NENU-5. The title photocatalysts, Ag/NENU-5, can be used for the photocatalytic reduction of CO2 and are observed to efficiently reduce CO2 into CO, in which the highest reduction rate is 22.28 μmol g-1 h-1, 3 times greater than that of NENU-5. Photocatalytic reduction performances of CO2 have been extremely improved after the incorporation of Ag NPs as the cocatalyst. The enhancement of the photocatalytic reduction of CO2 has been attributed to the synergistic effects of Ag NPs and NENU-5, inhibiting the charge recombination during the photocatalytic process and increasing the reaction active sites. Furthermore, the influence of Ag NPs on the photocatalytic activity has also been investigated. The experimental results clearly reveal that the size of Ag NPs could exert a main effect on the photocatalytic activity, and the reasonable size of Ag NPs is able to enhance the photocatalytic reduction activity toward CO2 significantly.
Collapse
Affiliation(s)
- Yu-Ou He
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Rui-Gang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Jian-Xin Qu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China.,School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
25
|
Yu L, Ning K, Chunmei W, Kai Y, Jinghua L, Chunxiao W, Baibin Z. A hybrid borotungstate-coated metal-organic framework with supercapacitance, photocatalytic dye degradation and H 2O 2 sensing properties. Dalton Trans 2022; 51:7613-7621. [PMID: 35510526 DOI: 10.1039/d2dt00976e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The compounding of polyoxometalates (POMs) with structurally well-defined and porous metal-organic frameworks (MOFs) has become a hot research topic. Here, a core-shell type hybrid, {Ag5BW12O40}@[Ag3(μ-Hbtc)(μ-H2btc)]n (called {Ag5BW12O40}@Ag-BTC-2, where BTC = 1,3,5-benzyl carboxylic acid), was successfully prepared via a simple grinding method. IR, XRD, SEM, TEM, and XPS analysis was used to confirm the structure. The specific capacitance is 179.1 F g-1 when the current density is 1 A g-1, using nickel foam as the collector, and the capacitance retention is 97.4% after 5000 cycles. The resulting aqueous-based symmetric supercapacitor has a power density of 496 W kg-1 and an energy density of 12.4 W h kg-1. In addition, the degradation rates using {Ag5BW12O40}@Ag-BTC-2 toward methylene blue (MB), rhodamine B (RhB), and methyl orange (MO) exceeded 90% in 140 min and remained essentially unchanged over five replicate experiments, showing high photocatalytic activity. Meanwhile, when {Ag5BW12O40}@Ag-BTC-2 acts as a H2O2 biosensor, it has a low detection limit (0.19 μM), a wide linear range (0.4 μM-0.27 mM) and high anti-interference properties. This shows that the synthesis of POMOFs via a grinding method is an effective strategy to improve the performance.
Collapse
Affiliation(s)
- Liang Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kang Ning
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Wang Chunmei
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Yu Kai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Lv Jinghua
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Wang Chunxiao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Zhou Baibin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, Heilongjiang 150025, China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
26
|
Sun X, Qu Y, Wang G, Chen T, Wang G. Two Coordination Polymers@Graphene Hybrid Electrodes for High‐Performance Supercapacitors with Enhanced Rate Capability and Specific Capacitance. ChemistrySelect 2022. [DOI: 10.1002/slct.202103660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xuwen Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Yan Qu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Guangming Wang
- Basic Science Institute Harbin University of Commerce Harbin 150025 P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
27
|
Liu XZ, Cui LP, Yu K, Ma Y, Lv JH, Liu YH, Zhou BB. A 3D supramolecular assembly based on a {AsW12} cluster and in-situ ligand modified metal-organic complexes for photocatalytic properties and electrocatalytic sensing for detection of hydrogen peroxide. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Xin Y, Zhou Y, Dong L, Wei P, Zou X, Zhang F, Li G. One-pot self-assembly synthesis of H3+xPMo12−xVxO40@[Cu6O(TZI)3(H2O)9(NO3)n]·(H2O)15 for enhanced proton conduction materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj06090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot self-assembly encapsulation of PMoVx in rht-MOF-1 affords enhanced the proton conduction material PMoVx@rht-MOF-1.
Collapse
Affiliation(s)
- Yuxiang Xin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yijia Zhou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Longzhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Pengpeng Wei
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xiaoyan Zou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Fengming Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
29
|
Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Sun HX, Wang HN, Fu YM, Meng X, He YO, Yang RG, Zhou Z, Su ZM. A multifunctional anionic metal-organic framework for high proton-conductivity and photoreduction of CO2 induced by cation exchange. Dalton Trans 2022; 51:4798-4805. [DOI: 10.1039/d2dt00089j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-Organic Frameworks (MOFs) provide an ideal platform for loading various guests owing to their available spaces, which can be developed as a class of multifunctional materials. Herein, we cover the...
Collapse
|
31
|
Zhuo JL, Wang YL, Wang YG, Xu MQ, Sha JQ. Surfactant-assisted fabrication and supercapacitor performances of a 12-phosphomolybdate-pillared metal–organic framework containing a helix and its SWNT nanocomposites. CrystEngComm 2022. [DOI: 10.1039/d1ce01471d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By employing a surfactant-assisted hydrothermal method, a new POMOF with a multi-fold helix was obtained, and NiPMo12/SWNTs exhibits excellent electrochemical performance and good stability as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Jin-Long Zhuo
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Yun-Liang Wang
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
| | - Yu-Guang Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Ming-Qi Xu
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Jing-Quan Sha
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| |
Collapse
|
32
|
Wang X, Li H, Lin J, Wang C, Wang XL. Capped Keggin Type Polyoxometalate-Based Inorganic-Organic Hybrids Involving In Situ Ligand Transformation as Supercapacitors and Efficient Electrochemical Sensors for Detecting Cr(VI). Inorg Chem 2021; 60:19287-19296. [PMID: 34855395 DOI: 10.1021/acs.inorgchem.1c03097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To construct polyoxometalate-based complexes as electrode materials for supercapacitors and electrochemical sensors, we intentionally used in situ ligand transformation during the reaction. Two complexes based on polyoxometalates capped by zinc ions, H{Zn4(DIBA)4[(DIBA)(HPO2)]2(α-PMoVI8MoV4O40Zn2)} (1) and [ε-PMoV8MoVI4O37(OH)3Zn4(HDBIBA)2]·6H2O (2) [DIBA = 3,5-di(1H-imidazol-1-yl)benzoic acid, and DBIBA = 3,5-bis(1H-benzoimidazol-1-yl)benzoic acid], have been prepared successfully. The DIBA and DBIBA ligands were generated in situ from initial materials 3,5-di(1H-imidazol-1-yl)benzonitrile and 3,5-di(1H-benzoimidazol-1-yl)benzonitrile. The three-dimensional structure of 1 consisted of two-dimensional interpenetrating layers and polyoxometalate-based chains composed of bicapped α-PMo12Zn2 polyoxoanions and phosphite-modified DIBA ligands. In 2, a kind of tetracapped ε-PMo12Zn4 polyoxoanion exists, which was further linked by DBIBA ligands into a one-dimensional chain. Two complexes could be employed as not only electrode materials for supercapacitors with specific capacitances of 171.17 F g-1 for 1 and 146.77 F g-1 for 2 at 0.5 A g-1 but also efficient electrochemical sensors for detecting Cr(VI) with excellent limits of detection of 0.026 μM for 1 and 0.035 μM for 2, which represents a hopeful approach for exploiting polyoxometalate-based complexes as supercapacitor and electrochemical sensor materials.
Collapse
Affiliation(s)
- Xiang Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Huan Li
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Jiafeng Lin
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Chenying Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| | - Xiu-Li Wang
- Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China
| |
Collapse
|
33
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
34
|
Wang HN, Zou YH, Fu YM, Meng X, Xue L, Sun HX, Su ZM. Integration of zirconium-based metal-organic framework with CdS for enhanced photocatalytic conversion of CO 2 to CO. NANOSCALE 2021; 13:16977-16985. [PMID: 34610078 DOI: 10.1039/d1nr04417f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is a promising strategy to prepare composite photocatalysts based on MOFs and semiconductors for enhancing photocatalytic reduction of carbon dioxide (CO2). A family of binary composite photocatalysts (CdS@UiO-66-NH2) with different CdS contents have been designed and synthesized, which have been explored for photocatalytic reduction of CO2. CdS@UiO-66-NH2 can efficiently convert CO2 into CO under visible light irradiation via the solid-gas mode in the absence of sacrificial agents and photosensitizers. The generation rate of CO can reach up to 280.5 μmol g-1 h-1, which is 2.13-fold and 2.9-fold improvements over the pristine CdS and UiO-66-NH2, respectively, and the selectivity for CO is very high. Furthermore, this kind of photocatalysts can still maintain great photocatalytic activity in CO2/N2 mixed atmosphere with different CO2 concentrations. The outstanding performances of CdS@UiO-66-NH2 may be attributed to the existence of the direct Z-scheme heterojunction, which possesses the enhanced separation and migration of photo-generated charge carriers between UiO-66-NH2 and CdS, available specific surface areas and improved visible light absorption ability as well as abundant reaction active sites. This case reveals that MOF-based composite photocatalysts exhibit promising potential applications in the field of CO2 conversion.
Collapse
Affiliation(s)
- Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, China.
| | - Zhong-Min Su
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang, 262700, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
35
|
Liu X, Cui L, Yu K, Lv J, Liu Y, Ma Y, Zhou B. Cu/Ag Complex Modified Keggin-Type Coordination Polymers for Improved Electrochemical Capacitance, Dual-Function Electrocatalysis, and Sensing Performance. Inorg Chem 2021; 60:14072-14082. [PMID: 34455794 DOI: 10.1021/acs.inorgchem.1c01397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different metal-organic units were introduced into the {PMo12} polyoxometalate (POM) system to yield three porous coordination polymers with distinct characteristics, {Cu(pra)2}[{Cu(pra)2}3{PMo11VIMoVO40}] (1), [{Ag5(pz)6(H2O)0.5Cl}{PMo11VIMoVO40}] (2), and [{Cu3(bpz)5(H2O)}{PMo12O40}] (3) (pra = pyrazole; pz = pyrazine; bpz = benzopyrazine), via an in situ hydrothermal method. In comparison with the maternal Keggin cluster and most reported POM electrode materials, compounds 1-3 exhibit larger specific capacitances (672.2, 782.1, and 765.2 F g-1 at a current density of 2.4 A g-1, respectively), superior cyclic stability (91.5%, 89.3%, and 87.8% of cycle efficiency after 5000 cycles, respectively), and boosted conductivity, which may be attributed to the introduction of metal-organic units. The result indicates that metal-organic units can effectively enhance the capacitance performance of POMs. This may be due to the fact that they provide additional redox centers, induce the formation of stable porous structures, and improve ion/electron transfer efficiency. Compounds 1-3 present excellent electrocatalytic activity in reducing peroxide (H2O2) and oxidizing ascorbic acid (AA). In addition, compound 2 shows an outstanding sensing performance detection of AA and H2O2.
Collapse
Affiliation(s)
- Xingzhi Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Liping Cui
- Academy of Life Science and Technology, State Key Laboratory of Molecular Genetics, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Yuhang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Yajie Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|
36
|
Zheng Y, Zhou W, Liu X, Yuan G, Peng J. Experimental and theoretical study of bifunctional electro-catalysts constructed from different Polyoxometalates and Ag-bimpy segments. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
|
38
|
Synthesis of POMOFs with 8-fold helix and its composite with carboxyl functionalized SWCNTs for the voltammetric determination of dopamine. Anal Bioanal Chem 2021; 413:5309-5320. [PMID: 34263347 DOI: 10.1007/s00216-021-03504-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Although many satisfactory studies have been developed for biomolecule detection, the complexity of biofluids still poses a major challenge to improve the performance of nanomaterials as electrochemical sensors. Herein, unprecedented polyoxometalate-based metal-organic frameworks (POMOFs) with 8-fold meso-helical feature, [Ag5(trz)4]2[PMo12O40] (PAZ), were synthesized and explored as electrochemical sensors to detect dopamine (DA). To improve the conductivity of PAZ and the binding ability with single-walled carbon nanotubes (SWCNTs), the nanocomposite of carboxyl functionalized SWCNTs (SWCNTs-COOH) with nano-PAZ (NPAZ), NPAZ@SWCNTs-COOH, was fabricated, and transmission electron microscopy (TEM) shows that NPAZ can interact stably and uniformly with SWCNTs-COOH, owing to more defect sites on the surface of SWCNTs-COOH. The electrochemical result of NPAZ@SWCNTs-COOH/GCE towards detecting DA shows that the linear range was from 0.05 to 100 μM with a detection limit (LOD) of 8.6 nM (S/N = 3). A new electrochemical biosensing platform by combining 8-fold helical POMOFs with SWCNTs-COOH was developed for enhancing detection of dopamine for the first time, exhibiting the lowest detection limit to date.
Collapse
|
39
|
Zhang G, Jin L, Zhang R, Bai Y, Zhu R, Pang H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213915] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Li T, He P, Dong Y, Chen W, Wang T, Gong J, Chen W. Polyoxometalate‐Based Metal‐Organic Framework/Polypyrrole Composites toward Enhanced Supercapacitor Performance. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tingyu Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| | - Peng He
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| | - Yi‐na Dong
- The Second High School in Mongolian Autonomous County of QianGorlos 138000 Songyuan Jilin China
| | - Weichao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| | - Ting Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| | - Jian Gong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| | - Weilin Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Department of Chemistry Northeast Normal University 130024 Changchun P. R. China
| |
Collapse
|
41
|
Wang J, Zhang L, Zhao L, Li T, Li S. A new polycatenated framework encapsulated Keggin-type silicotungstate crystalline compound with bifunctional electrochemical performances. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Cheng J, Chen Y, Sun S, Tian Z, He Z, Wang Y, Wang Y, Wang C, Guo L. Simultaneous zirconium substitution and polypyrrole interconnection of Na3V2(PO4)3/C nanoparticles for superior sodium storage performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Liu JH, Shen QT, Yang J, Yu MY, Ma JF. Polyoxometalate-Templated Cobalt-Resorcin[4]arene Frameworks: Tunable Structure and Lithium-Ion Battery Performance. Inorg Chem 2021; 60:3729-3740. [PMID: 33605722 DOI: 10.1021/acs.inorgchem.0c03511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By employing a bowl-like tetra(benzimidazole)resorcin[4]arene (TBR4A) ligand, two new polyoxometalate-templated metal-organic frameworks (POMOFs), [Co8Cl14(TBR4A)6]·3[H3.3SiW12O40]·10DMF·11EtOH·20H2O (1) and [Co3Cl2(TBR4A)2(DMF)4]·[SiW12O40]·2EtOH·3H2O (2), have been prepared under solvothermal conditions (DMF = N,N'-dimethylformamide). 1 shows a 2D cationic layer, whereas 2 exhibits a 3D framework. Remarkably, the Keggin POMs in 1 and 2 were located in the cavities formed by two bowl-like resorcin[4]arenes in sandwich fashions. Their framework structures were highly dependent on the coordination modes of the TBR4A ligands. To increase the conductivity of POMOFs, the samples of 1 and 2 were loaded on the conductive polypyrrole-reduced graphene oxide (PPy-RGO) via ball milling (1@PG and 2@PG). Then, the obtained composites experienced calcination at a proper temperature to produce 1@PG-A and 2@PG-A. The resulting 1@PG-A and 2@PG-A composites, with improved conductivities, uniform sizes and micropores, exhibited promising electrochemical performance for lithium-ion batteries. We herein proposed a size-controlled route for the rational fabrication of functional POMOFs and their usage in energy fields.
Collapse
Affiliation(s)
- Jin-Hua Liu
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qiu-Tong Shen
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jin Yang
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming-Yue Yu
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jian-Fang Ma
- Key Lab for Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
44
|
Zou YH, Wang HN, Meng X, Sun HX, Zhou ZY. Self-assembly of TiO 2/ZIF-8 nanocomposites for varied photocatalytic CO 2 reduction with H 2O vapor induced by different synthetic methods. NANOSCALE ADVANCES 2021; 3:1455-1463. [PMID: 36132871 PMCID: PMC9417959 DOI: 10.1039/d0na00814a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/11/2021] [Indexed: 06/16/2023]
Abstract
Photoreduction of carbon dioxide (CO2) provides an effective perspective for solving the energy crisis and environmental problems. Herein, two types of composite photocatalysts (TiO2/ZIF-8) based on ZIF-8 and TiO2 have been designed and synthesized with the help of the grinding method and the solid-synthesis method. Both composite photocatalysts are employed for the photocatalytic reduction of CO2. In composite photocatalysts prepared by the grinding method, ZIF-8 particles are distributed on the surface of TiO2, and provide extra available spaces for storing CO2, which is beneficial for improving their photoreduction performances. As a result, an enhanced CO formation rate of 21.74 μmol g-1 h-1 with a high selectivity of 99% is obtained for this family of composite photocatalysts via the solid-gas mode without photosensitizers and sacrificial agents. For comparison, the other family of composite photocatalysts synthesized via the solid-synthesis method possesses structures similar to ZIF-8, where TiO2 is encapsulated inside the framework of ZIF-8. This structural feature obstructs the contact between the active sites of TiO2 and CO2, and leads to lower activities. The best CO formation rate of this family is only 10.67 μmol g-1 h-1 with 90% selectivity. Both the structural features of the two families of photocatalysts are described to explain their differences in photoreduction performances. The experimental finding reveals that different synthetic approaches indeed result in diversified structures and varied photocatalytic performances. This work affords a new scalable and efficient approach for the rational design of efficient photocatalysts in the area of artificial photosynthesis.
Collapse
Affiliation(s)
- Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 People's Republic of China
| | - Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 People's Republic of China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 People's Republic of China
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 People's Republic of China
| | - Zi-Yan Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo 255049 People's Republic of China
| |
Collapse
|
45
|
Liu HP, Wang YC, He YC, Liu J, Wang KX, Yan YD, Yang HK, Wang XC. Synthesis, structure and properties of a novel Cu(II)-MOF {[Cu2L(OH)]·DMF}n based on a semi-rigid polycarboxylic acid ligand. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Han Z, Li X, Li Q, Li H, Xu J, Li N, Zhao G, Wang X, Li H, Li S. Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6265-6275. [PMID: 33502845 DOI: 10.1021/acsami.0c20721] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyoxometalate (POM) as an "electronic sponge" can store a great number of electrons; however, shortcomings of poor conductivity and solubility in electrolytes cause a significant decrease in specific capacity and poor rate capability. To address the aforementioned disadvantages, a dual strategy was proposed, including coating the conductive polypyrrole (PPy) and utilizing nitrogenous ligands (1,10-phenanthroline monohydrate = 1,10-phen) for metal-organic frameworks (MOFs) to fabricate a [Cu(1,10-phen)(H2O)2]2[Mo6O20]@PPy (Cu-POMOF@PPy) composite, effectively confining the POM in MOFs to avoid dissolution of POM in the electrolyte and improve electrochemical stability. Simultaneously, the PPy shell could improve the conductivity, contribute extra capacity, and alleviate volume variation of Cu-POMOF during cycling. Therefore, the final Cu-POMOF@PPy composite provides an excellent specific capacity of around 769 mA h g-1 at 0.1 A g-1 after 160 cycles and good rate performance, associated with great cycling stability (319 mA h g-1 at 2 A g-1 after 500 cycles). Moreover, the electrochemical reaction mechanism of Cu-POMOF@PPy was investigated by ex situ XPS measurements, indicating that storage of electrons results from the reduction/oxidation of Mo atoms (Mo6+ ↔ Mo4+) and Cu atoms (Cu2+ ↔ Cu0). As a consequence, this work not only proposes a novel method for preparing POM-based lithium-ion batteries but also expands the variety of anode materials.
Collapse
Affiliation(s)
- Zhiyuan Han
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Xueying Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Qiang Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hongsen Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Jie Xu
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Na Li
- School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Guoxia Zhao
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Xia Wang
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| | - Hongliang Li
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shandong Li
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, China
| |
Collapse
|
47
|
Design and Synthesis of Conductive Metal‐Organic Frameworks and Their Composites for Supercapacitors. ChemElectroChem 2021. [DOI: 10.1002/celc.202001418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
48
|
Hu H, Jia X, Wang J, Chen W, He L, Song YF. Confinement of PMo12 in hollow SiO2-PMo12@rGO nanospheres for high-performance lithium storage. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01207f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance lithium storage was achieved by the confinement of PMo12 in hollow SiO2-PMo12@rGO nanocomposites.
Collapse
Affiliation(s)
- Hanbin Hu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Xueying Jia
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Jiaxin Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- P. R. China
| |
Collapse
|
49
|
Yao S, Falaise C, Ivanov AA, Leclerc N, Hohenschutz M, Haouas M, Landy D, Shestopalov MA, Bauduin P, Cadot E. Hofmeister effect in the Keggin-type polyoxotungstate series. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00902d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The chaotropic character of Keggin-type polyoxotungstate anions was evaluated with respect to their ability to bind to γ-cyclodextrin (γ-CD) by varying the global charge density of the nanometer-sized polyanion.
Collapse
Affiliation(s)
- Sa Yao
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Clément Falaise
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Anton A. Ivanov
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - Nathalie Leclerc
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | | | - Mohamed Haouas
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| | - David Landy
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492)
- ULCO
- Dunkerque
- France
| | | | | | - Emmanuel Cadot
- Institut Lavoisier de Versailles
- UMR 8180 CNRS
- UVSQ
- Université Paris-Saclay
- Versailles
| |
Collapse
|
50
|
Wang HN, Sun HX, Fu YM, Meng X, Zou YH, He YO, Yang RG. Varied proton conductivity and photoreduction CO 2 performance of isostructural heterometallic cluster based metal–organic frameworks. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00742d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A family of isostructural heterometallic MOFs based on Fe2M clusters serve as potential proton conductors and photocatalysts for CO2 photoreduction.
Collapse
Affiliation(s)
- Hai-Ning Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Hong-Xu Sun
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yao-Mei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical; Weifang University of Science and Technology, Shouguang 262700, People's Republic of China
| | - Xing Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yan-Hong Zou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yu-Ou He
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Rui-Gang Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|