1
|
Munusamy S, Zheng H, Jahani R, Zhou S, Chen J, Kong J, Guan X. Enzyme-free immunoassay for rapid, sensitive, and selective detection of C-reactive protein. Anal Bioanal Chem 2024; 416:6985-6994. [PMID: 39419834 PMCID: PMC12007592 DOI: 10.1007/s00216-024-05598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
C-reactive protein (CRP) is a protein made by the liver, which is released into the bloodstream in response to inflammation. Furthermore, CRP is a potential risk factor for heart disease. Hence, it is of great importance to develop a rapid, sensitive, accurate, and cost-effective method for CRP detection. Herein, we report an enzyme-free fluorescent assay for the rapid and ultra-sensitive detection of CRP with a limit of detection (LOD) reaching as low as 3.08 pg/mL (i.e., ~ 27 fM). The high sensitivity of our method was simply achieved via dual-functionalized gold nanoparticles (AuNPs). By regulating the molar ratio of DNA to CRP antibody immobilized on the AuNP surface, hundreds to thousands-fold amplification in the analyte signal could be instantly accomplished. Furthermore, our sensor was selective: non-target proteins such as interleukin-6, interleukin-1β, procalcitonin, bovine serum albumin, and human serum albumin did not interfere with the target CRP detection. Moreover, simulated serum samples were successfully analyzed. Given the excellent sensitivity, selectivity, and high resistance to complicated matrices, the enzyme-free CRP detection strategy developed in this work can be used as a generic platform to construct sensors for a wide variety of protein biomarkers and hence offers potential as a tool for rapid, accurate, and low-cost medical diagnosis.
Collapse
Affiliation(s)
| | - Haiyan Zheng
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Rana Jahani
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Shuo Zhou
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jun Chen
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Juanhua Kong
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xiyun Guan
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
3
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
4
|
Li F, Han Q, Xi F. The Fabrication of a Probe-Integrated Electrochemiluminescence Aptasensor Based on Double-Layered Nanochannel Array with Opposite Charges for the Sensitive Determination of C-Reactive Protein. Molecules 2023; 28:7867. [PMID: 38067596 PMCID: PMC10708393 DOI: 10.3390/molecules28237867] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The effective and sensitive detection of the important biomarker, C-reactive protein (CRP), is of great significance in clinical diagnosis. The development of a convenient and highly sensitive electrochemiluminescence (ECL) aptasensor with an immobilized emitter probe is highly desirable. In this work, a probe-integrated ECL aptamer sensor was constructed based on a bipolar silica nanochannel film (bp-SNF) modified electrode for the highly sensitive ECL detection of CRP. The bp-SNF, modified on an ITO electrode, consisted of a dual-layered SNF film, including the negatively charged inner SNF (n-SNF) and the outer SNF with a positive charge and amino groups (p-SNF). The ECL emitter, tris(bipyridine) ruthenium (II) (Ru(bpy)32+), was stably immobilized in a nanochannel of bp-SNF using the dual electrostatic interactions with n-SNF attracting and p-SNF repelling. The amino groups on the outer surface of bp-SNF were aldehyde derivatized, allowing for the covalent immobilization of recognitive aptamers (5'-NH2-CGAAGGGGATTCGAGGGGTGATTGCGTGCTCCATTTGGTG-3'), leading to the recognition interface. When CRP bound to the aptamer on the recognition interface, the formed complex increased the interface resistance and reduced the diffusion of the co-reactant tripropylamine (TPA) into the nanochannels, leading to a decrease in the ECL signal. Based on this mechanism, the constructed aptamer sensor could achieve a sensitive ECL detection of CRP ranging from 0.01 to 1000 ng/mL, with a detection limit (DL) of 8.5 pg/mL. The method for constructing this probe-integrated ECL aptamer sensor is simple, and it offers a high probe stability, good selectivity, and high sensitivity.
Collapse
Affiliation(s)
- Feng Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianqian Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fengna Xi
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
5
|
Yan H, Hu X, Shao H, Li J, Deng J, Liu L. Low-Cost Full-Range Detection of C-Reactive Protein in Clinical Samples by Aptamer Hairpin Probes and Coprecipitation of Silver Ions and Gold Nanoparticles. Anal Chem 2023; 95:11918-11925. [PMID: 37531571 DOI: 10.1021/acs.analchem.3c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
C-reactive protein (CRP) levels can vary widely related to diverse disease contexts. However, expensive antibodies have impeded the clinical utility of antibody-based full-range CRP assays, especially in developing countries. Herein, we established a low-cost, antibody-free, 96-well plate-based full-range CRP detection method by combining gold nanoparticles (AuNPs), silver iodide (AgI), Eosin Y, and the aptamer hairpin probe (AHP) with Ag+-mediated cytosine-cytosine mismatches, that is, the Au@AgI/Eosin Y-AHP method. After binding the target CRP, the AHP released Ag+, which subsequently induced the aggregation of AuNPs on the surface of AgI colloids, resulting in a significant increase in the adsorption of Eosin Y on the surface of AuNPs. The changes in fluorescence intensity (FI) of Eosin Y in the supernate without and with CRP were proportional to the concentration of the CRP in the wide range of 0.01-40 ng/mL (r = 0.9969), and 96 samples can be detected in 96-well plates simultaneously by a microplate reader within 45 min. Remarkably, the CRP levels of 100 clinical samples achieved with the Au@AgI/Eosin Y-AHP had a good correlation with those obtained with the latex-enhanced immune turbidimetry assay (r = 0.986). Furthermore, the kit based on the Au@AgI/Eosin Y-AHP method costs only $8.1 for 100 tests. Therefore, the new method is beneficial for less developed areas where expensive assays are not affordable.
Collapse
Affiliation(s)
- Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Li H, Geng W, Qi Z, Ahmad W, Haruna SA, Chen Q. Stimuli-responsive SERS biosensor for ultrasensitive tetracycline sensing using EDTA-driven PEI@CaCO 3 microcapsule and CS@FeMMs. Biosens Bioelectron 2023; 226:115122. [PMID: 36796305 DOI: 10.1016/j.bios.2023.115122] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
In this work, a stimuli-responsive SERS biosensor was fabricated for tetracycline (TTC) by "signal-on" strategy using (EDTA)-driven polyethyleneimine grafted calcium carbonate (PEI@CaCO3) microcapsule and chitosan-Fe magnetic microbeads (CS@FeMMs). Initially, aptamer conjugated magnetic-bead CS@FeMMs@Apt with superparamagnetism and excellent biocompatibility was employed as capture probe, which facilitated the rapid and easy magnetic separation. Subsequently, the PEI cross-linked layer and aptamer network layer were constructed onto the outer layer of CaCO3@4-ATP microcapsule to form sensing probes (PEI@CaCO3@4-ATP@Apt) via the layer-by-layer assembly method. In the presence of TTC, a sandwich SERS-assay was exploited by aptamer recognition induced target-bridged strategy. When the solution of EDTA was added, the core layer of CaCO3 would be dissolved quickly, destroying the microcapsule to release 4-ATP. The released 4-ATP could be quantitatively monitored by dripping the supernatant onto the AuNTs@PDMS SERS platform, resulting in a strong Raman "signal-on". Under the optimal conditions, a good linear relationship was established with a correlation coefficient (R2) of 0.9938 and a LOD of 0.03 ng/mL. Additionally, the application capacity of the biosensor to detect TTC was also affirmed in food matrixes, and the results were consistent with the standard ELISA method (P > 0.05). Hence, this SERS biosensor affords extensive application prospects for TTC detection with multiple merits such as high sensitivity, environment friendliness, and high stability.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Wenhui Geng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhixiong Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Waqas Ahmad
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Suleiman A Haruna
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
7
|
Ma N, Luo X, Wu W, Liu J. Fabrication of a Disposable Electrochemical Immunosensor Based on Nanochannel Array Modified Electrodes and Gated Electrochemical Signals for Sensitive Determination of C-Reactive Protein. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12223981. [PMID: 36432268 PMCID: PMC9696649 DOI: 10.3390/nano12223981] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 05/05/2023]
Abstract
Sensitive determination of C-reactive protein (CRP) is of great significance because it is an early indicator of inflammation in cardiovascular disease and acute myocardial infarction. A disposable electrode with an integrated three-electrode system (working, reference, and counter electrodes) has great potential in the detection of biomarkers. In this work, an electrochemical immunosensing platform was fabricated on disposable and integrated screen-printed carbon electrode (SPCE) by introducing nanochannel arrays and gated electrochemical signals, which can achieve the sensitive detection of CRP in serum. To introduce active reactive groups for the fabrication of immuno-recognitive interface, vertically-ordered mesoporous silica-nanochannel film (VMSF) with rich amino groups (NH2-VMSF) was rapidly grown by electrochemical assisted self-assembly (EASA). The electrochemically reduced graphene oxide (ErGO) synthesized in situ during the growth of NH2-VMSF was used as a conductive adhesive glue to achieve stable bonding of the nanochannel array (NH2-VMSF/ErGO/SPCE). After the amino group on the outer surface of NH2-VMSF reacted with bifunctional glutaraldehyde (GA/NH2-VMSF/ErGO/SPCE), the converted aldehyde surface was applied for covalent immobilization of the recognitive antibody (Ab) followed with the blocking of the non-specific sites. The fabricated immunosensor, Ab/GA/NH2-VMSF/ErGO/SPCE, enables sensitive detection of CRP in the range from 10 pg/mL to 100 ng/mL with low limit of detection (LOD, 8 pg/mL, S/N = 3). The immunosensor possessed high selectivity and can realize reliable determination of CRP in human serum.
Collapse
Affiliation(s)
- Ning Ma
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuan Luo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Weidong Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (W.W.); or (J.L.)
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Correspondence: (W.W.); or (J.L.)
| |
Collapse
|
8
|
Huang S, Liu Z, Yan Y, Chen J, Yang R, Huang Q, Jin M, Shui L. Triple signal-enhancing electrochemical aptasensor based on rhomboid dodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. Biosens Bioelectron 2022; 207:114129. [DOI: 10.1016/j.bios.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
|
9
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
10
|
Nagy-Simon T, Hada AM, Suarasan S, Potara M. Recent advances on the development of plasmon-assisted biosensors for detection of C-reactive protein. J Mol Struct 2021; 1246:131178. [DOI: 10.1016/j.molstruc.2021.131178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/02/2023]
|
11
|
Noh S, Kim J, Kim G, Park C, Jang H, Lee M, Lee T. Recent Advances in CRP Biosensor Based on Electrical, Electrochemical and Optical Methods. SENSORS 2021; 21:s21093024. [PMID: 33925825 PMCID: PMC8123455 DOI: 10.3390/s21093024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is an acute-phase reactive protein that appears in the bloodstream in response to inflammatory cytokines such as interleukin-6 produced by adipocytes and macrophages during the acute phase of the inflammatory/infectious process. CRP measurement is widely used as a representative acute and chronic inflammatory disease marker. With the development of diagnostic techniques measuring CRP more precisely than before, CRP is being used not only as a traditional biomarker but also as a biomarker for various diseases. The existing commercialized CRP assays are dominated by enzyme-linked immunosorbent assay (ELISA). ELISA has high selectivity and sensitivity, but its limitations include requiring complex analytic processes, long analysis times, and professional manpower. To overcome these problems, nanobiotechnology is able to provide alternative diagnostic tools. By introducing the nanobio hybrid material to the CRP biosensors, CRP can be measured more quickly and accurately, and highly sensitive biosensors can be used as portable devices. In this review, we discuss the recent advancements in electrochemical, electricity, and spectroscopy-based CRP biosensors composed of biomaterial and nanomaterial hybrids.
Collapse
Affiliation(s)
- Seungwoo Noh
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Jinmyeong Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Gahyeon Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul 01897, Korea;
| | - Minho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (S.N.); (J.K.); (G.K.); (C.P.)
- Correspondence: (M.L.); (T.L.); Tel.: +82-2-820-8320 (M.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
12
|
|
13
|
Jang Y, Kim H, Yang SY, Jung J, Oh J. Bioactive multiple-bent MWCNTs for sensitive and reliable electrochemical detection of picomolar-level C-reactive proteins. NANOSCALE 2020; 12:9980-9990. [PMID: 32129408 DOI: 10.1039/c9nr10798c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present multiple-bent multi-walled carbon nanotubes (MWCNTs) that enable the picomolar detection of C-reactive protein (CRP), which is considered to be a promising biomarker for various diseases. The MWCNTs were grown via chemical vapor deposition repeating the asymmetric catalytic CNT growth on atypical carbon nanoparticles that were generated by carbon coating on a silicon substrate. The multiple-bent MWCNTs with the carbon film (CF) possessed abundant hydrophilic functional groups (-COOH and -OH) at their bending sites, resulting in enhanced bioadhesion to collagen and platelets, compared to MWCNTs grown without a CF layer. Interestingly, the bent MWCNTs enhanced the reliability and sensitivity of the electrochemical detection at low CRP concentrations, possibly due to molecular affinity at the bent site. The bioactive bent MWCNTs can play a significant role in ultrasensitive biosensors to improve their detection limit, thereby achieving early detection and monitoring of CRP-related diseases such as cardiovascular events and melanoma.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | | | | | | | | |
Collapse
|
14
|
Li MJ, Wang HJ, Yuan R, Chai YQ. A zirconium-based metal-organic framework sensitized by thioflavin-T for sensitive photoelectrochemical detection of C-reactive protein. Chem Commun (Camb) 2019; 55:10772-10775. [PMID: 31432820 DOI: 10.1039/c9cc05086h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a novel photoelectrochemical (PEC) assay was developed for the sensitive detection of C-reactive protein (CRP) based on a zirconium-based metal-organic framework (PCN-777) as the photoelectric material and thioflavin-T (Th-T) as the effective signal sensitizer coupled with rolling circle amplification (RCA).
Collapse
Affiliation(s)
- Meng-Jie Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | | | | | | |
Collapse
|
15
|
Hwang A, Kim E, Moon J, Lee H, Lee M, Jeong J, Lim EK, Jung J, Kang T, Kim B. Atomically Flat Au Nanoplate Platforms Enable Ultraspecific Attomolar Detection of Protein Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18960-18967. [PMID: 31062578 DOI: 10.1021/acsami.9b04363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atomically flat surfaces of single-crystalline Au nanoplates can maximize the functionality of biomolecules, thus realizing extremely high-performance biosensors. Here, we report both highly specific and supersensitive detection of C-reactive protein (CRP) by employing atomically flat Au nanoplates. CRP is a protein biomarker for inflammation and infection and can be used as a predictive or prognostic marker for various cardiovascular diseases. To maximize the binding capacity for CRP, we carefully optimized the Au nanoplate-Cys3-protein G-anti-CRP structure by observing atomic force microscopy (AFM) images. The optimally anti-CRP-immobilized Au nanoplates allowed extremely specific detection of CRP at the attomolar level. To confirm the binding of CRP onto the Au nanoplate, we assembled Au nanoparticles (NPs) onto the CRP-captured Au nanoplate by sandwich immunoreaction and obtained surface-enhanced Raman scattering (SERS) spectra and scanning electron microscopy (SEM) images. Both the SERS and SEM results showed that we completely eliminated the nonspecific binding of Au NPs onto the optimally anti-CRP-immobilized Au nanoplate. Compared with the anti-CRP-immobilized rough Au film and the randomly anti-CRP-attached Au nanoplate, the optimally anti-CRP-immobilized Au nanoplate provided a highly improved detection limit of 10-17 M. In this study, it was validated that ultraclean and ultraflat Au nanoplates can maximize the sensing capability of CRP. We expect that these Au nanoplates will enable the feasible detection of many important biomarkers with high specificity and high sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyoung Jeong
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Eun-Kyung Lim
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Juyeon Jung
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | - Taejoon Kang
- Department of Nanobiotechnology, KRIBB School of Biotechnology , UST , Daejeon 34113 , Korea
| | | |
Collapse
|