1
|
Liu K, Wang Y, Zhu H, Shi F, Lai Z, Long Y, Ren C, Li J, Yang Z. Inert-remodeling strategy to build bimetal-confined nitrogen-doped carbon nanozyme for colorimetric-chemiluminescent imaging dual-mode cascade enzyme sensing. Talanta 2025; 288:127698. [PMID: 39970801 DOI: 10.1016/j.talanta.2025.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/21/2025]
Abstract
The metal-organic frameworks (MOFs)-derived nanozymes in air atmosphere have gained great attention in biosensing fields. Nevertheless, this derivative pattern may result in the destabilization of the MOF framework and the aggregation of active sites, consequently diminishing its catalytic activity. Herein, we reported an inert-remodeling strategy to build bimetal-confined nitrogen-doped carbon nanozyme for dual-mode cascade enzyme biosensing. The strategy was easily achieved by pyrolysis of MOFs (CoNi-ZIF-67 as model) precursor in argon atmosphere, leading to the formation of CoNi bimetallic nanoparticles uniformly confined nitrogen-doped carbon (CoNi-CN) nanozyme. This derivative nanozyme exhibits significantly enhanced peroxidase (POD)-like activity, which is 4 times higher than that of NiCo2O4 nanozyme (CoNi-ZIF-67 derivative in air atmosphere) and 54 times higher than that of CoNi-ZIF-67 precursor. The excellent POD-like activity of CoNi-CN nanozyme is ascribed to the following facts: i) integrate structure with uniformly dispersed CoNi bimetal active sites; ii) confinement effect of CoNi bimetal encapsulated in CN architecture. Integrating with glucose oxidase (GOx) to prepare cascade enzyme of CoNi-CN@GOx, colorimetric-chemiluminescent imaging sensor based on CoNi-CN@GOx cascade system was developed for glucose detection. Glucose was assayed in wide linear ranges of 0.08-15 mM (colorimetric) and 0.1-30 mM (CL imaging). This research provides a promising inert-remodeling strategy to construct high-performance nanozyme for dual mode biosensing applications.
Collapse
Affiliation(s)
- Kai Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Yuru Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Haibing Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Feng Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Zijun Lai
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Yan Long
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated Yangzhou University, Yangzhou, 225001, PR China.
| | - Juan Li
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Zhanjun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
2
|
Konavarapu SK, Kim G, Shin K, Kim SY. Boosting Electrocatalytic Activity of Bimetallic CoNi-MOF for OER and HER Through a Synergistic Bimetallic Approach. Chemistry 2025; 31:e202500010. [PMID: 40095705 DOI: 10.1002/chem.202500010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
Due to the decreasing availability, reduced stability, and high cost of noble metal-based catalysts, the search for stable, efficient, and inexpensive electrocatalysts is of significant importance. In this study, three new isostructural Co(II), Ni(II), and CoNi metal-organic frameworks (MOFs) based on bis-coordinating ligand 3-pyridyl acrylic acid are explored as efficient electrocatalysts. The structure of CoNi-MOF was further confirmed by various experimental techniques. The electrocatalytic activities toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) revealed that the bimetallic CoNi-MOF demonstrated significantly greater activity towards OER and HER compared to its monometallic counterparts, Co-MOF and Ni-MOF. CoNi-MOF requires 350 mV and 150 mV overpotential to achieve a current density of 10 mA cm-2 for OER and HER, respectively. Moreover, they exhibited excellent stability for 6 hours and 1000 OER cycles, demonstrating its superiority in these reactions. The significant enhancement in the performance of CoNi-MOF is attributed to the bimetallic synergistic effects between the redox-active metal centers Co2+ and Ni2+, which increase the activity of the catalyst's surface, resulting in enhanced current density and reduced overpotential. The hydrogen bond between coordinated water molecules and un-coordinated carboxylate is essential for the electrochemical stability of the materials.
Collapse
Affiliation(s)
| | - Giyong Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Kyuchul Shin
- School of Chemical Engineering and Applied Chemistry (Graduate School) Kyungpook National University, Daegu, Republic of Korea
| | - Sung Yeol Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 702-701, Republic of Korea
| |
Collapse
|
3
|
Zhang Q, Ma S, Xie Y, Pan S, Miao Z, Wang J, Yang Z. Cobalt Incorporation Promotes CO 2 Desorption from Nickel Active Sites Encapsulated by Nitrogen-Doped Carbon Nanotubes in Urea-Assisted Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26212-26220. [PMID: 39572867 DOI: 10.1021/acs.langmuir.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The potential application prospects of urea-assisted water electrolysis toward hydrogen production in renewable energy infrastructure can effectively alleviate energy shortages and environmental pollution caused by rich urea wastewater. It is of prominent significance that adjusting the CO2 desorption of nickel-based electrocatalysts can overcome the slow reaction kinetics for urea oxidation reaction (UOR) to achieve exceptional catalytic activity. In this work, cobalt (Co) metal doping is employed to boost the UOR performance of nitrogen-doped carbon nanotubes encapsulating nickel nanoparticle electrocatalysts (Ni@N-CNT). The influence of diverse Co doping concentrations on the performance of UOR and hydrogen evolution reaction (HER) catalytic activities associated with stability are systematically investigated. The Co dopant can effectively promote the dynamical conversion of Ni to Ni3+ species; as a result, the UOR catalytic activity is improved by 1.8-fold at 1.6 V vs RHE. The DFT calculation results show that the CoNi bimetallic structure possesses a comparably lower binding energy for CO2 adsorption accelerating the rate-limiting step. Meanwhile, the Co dopant also boosts the HER performance, achieving a 57 mV reduction in overpotential at 100 mA cm-2 due to the creation of more active sites. In addition, the assembled urea-assisted water electrolysis attains 10 mA cm-2 at merely 1.51 V as well as excellent stability.
Collapse
Affiliation(s)
- Quan Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuangxiu Ma
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuyuan Pan
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhengpei Miao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiatang Wang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| |
Collapse
|
4
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Salah A, Ren HD, Al-Ansi N, Al-Salihy A, Qaraah FA, Mahyoub SA, Ahmed AA, Drmosh QA. Interface Engineering Induced by Low Ru Doping in Ni/Co@NC Derived from Ni-ZIF-67 for Enhanced Electrocatalytic Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60310-60320. [PMID: 39442079 DOI: 10.1021/acsami.4c13769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrochemical water splitting is a promising approach for hydrogen evolution reactions (HER); however, the oxygen evolution reaction (OER) remains a major bottleneck due to its high energy requirements. High-performance electrocatalysts capable of facilitating HER, OER, and overall water splitting (OWS) are highly needed to improve OER kinetics. In this work, we synthesized a trimetallic heterostructure of Ru, Ni, and Co incorporated into N-doped carbon (denoted as Ru/Ni/Co@NC) by first synthesizing Ni/Co@NC from Ni-ZIF-67 polyhedrons via high-temperature carbonization, followed by Ru doping using the galvanic replacement method. Benefiting from increased active surface sites, modulated electronic structure, and enhanced interfacial synergistic effects, Ru/Ni/Co@NC exhibited exceptional electrocatalytic performance for both HER and OER processes. The optimized Ru/Ni/Co@NC catalyst, with a minimal Ru mass ratio of ∼2.07%, demonstrated significantly low overpotential values of 34 mV for HER and 174 mV for OER at a current density of 10 mA/cm2 with corresponding Tafel slope values of 33.42 and 34.39 mV/dec, respectively. Further, the optimized catalyst was loaded onto carbon paper and used as anode and cathode materials for alkaline water splitting. Interestingly, a low cell voltage of just 1.44 V was obtained. The enhanced electrolytic performance was further elaborated by density functional theory (DFT) calculations, which confirmed that Ru doping in Ni/Co introduced additional active sites for H*, enhancing adsorption/desorption abilities for HER (ΔGH* = -0.30 eV), lowering water dissociation barrier (ΔGb = 0.49 eV) and reducing the energy barrier for the rate-determining step of OER (O* → OOH*) to 1.62 eV in an alkaline environment. These findings reflect the significant potential of ZIF-67-based catalysts in energy conversion and storage applications.
Collapse
Affiliation(s)
- Abdulwahab Salah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Hong-Da Ren
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Nabilah Al-Ansi
- National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Adel Al-Salihy
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Fahim A Qaraah
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Samah A Mahyoub
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Anas A Ahmed
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Qasem A Drmosh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
6
|
Zhu Y, Gao H, Huang L, Lv Y, Liu P. Highly efficient selective hydrogenation of adiponitrile to hexamethylene diamine over barium and melamine formaldehyde resin-modified nickel-cobalt-based zeolitic imidazolate framework-derived catalyst. J Colloid Interface Sci 2024; 668:120-131. [PMID: 38669990 DOI: 10.1016/j.jcis.2024.04.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
In the present study, the catalyst modified with alkaline oxide can enhance the selectivity to primary amines. However, the addition of alkaline oxide inevitably reduces catalytic activity. In this study, NiCo-NC@BaO-MFC catalyst derived from zeolitic imidazolate framework-67, Ba(CH3COO)2, and melamine formaldehyde (MF) resin was prepared and used for the hydrogenation of adiponitrile (ADN) to hexamethylene diamine (HDMA). The carbon layer obtained from the MF resin effectively prevents the interaction between barium (Ba) and the active center, thus improving target product selectivity without decreasing catalytic activity. The results of the density functional theory (DFT) calculation and characterization indicated that the effect of synergy between nickel (Ni) and cobalt (Co) bimetals induces an electron density growth on the Ni surface, bringing the d-band center toward the Fermi surface. Meanwhile, the high electron density of the active center compensates for the electron-deficient state of the carbon atom in -CN, thus improving the catalytic activity. Furthermore, it was found that the introduction of Ba promotes the formation of nucleophilic hydrogen anions, which facilitates the hydrogenation of 6-aminohexylimine (AHIM) to HDMA and inhibits the intramolecular condensation of AHIM, hence improving the selectivity to HDMA. The NiCo-NC@BaO-MFC catalyst gives 98.6 % ADN conversion and 97.2 % selectivity to HDMA in an alkali-free system.
Collapse
Affiliation(s)
- Yuqin Zhu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hang Gao
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Lei Huang
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China; National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
| | - Yang Lv
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China; National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China.
| | - Pingle Liu
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; Engineering Research Centre for Chemical Process Simulation and Optimization of Ministry of Education, Xiangtan University, Xiangtan 411105, China; National & Local United Engineering Research Centre for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
7
|
Li C, Yuan Y, Yue M, Hu Q, Ren X, Pan B, Zhang C, Wang K, Zhang Q. Recent Advances in Pristine Iron Triad Metal-Organic Framework Cathodes for Alkali Metal-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310373. [PMID: 38174633 DOI: 10.1002/smll.202310373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Indexed: 01/05/2024]
Abstract
Pristine iron triad metal-organic frameworks (MOFs), i.e., Fe-MOFs, Co-MOFs, Ni-MOFs, and heterometallic iron triad MOFs, are utilized as versatile and promising cathodes for alkali metal-ion batteries, owing to their distinctive structure characteristics, including modifiable and designable composition, multi-electron redox-active sites, exceptional porosity, and stable construction facilitating rapid ion diffusion. Notably, pristine iron triad MOFs cathodes have recently achieved significant milestones in electrochemical energy storage due to their exceptional electrochemical properties. Here, the recent advances in pristine iron triad MOFs cathodes for alkali metal-ion batteries are summarized. The redox reaction mechanisms and essential strategies to boost the electrochemical behaviors in associated electrochemical energy storage devices are also explored. Furthermore, insights into the future prospects related to pristine iron triad MOFs cathodes for lithium-ion, sodium-ion, and potassium-ion batteries are also delivered.
Collapse
Affiliation(s)
- Chao Li
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Yuquan Yuan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Min Yue
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Qiwei Hu
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Xianpei Ren
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Baocai Pan
- School of Physics and Electronic Engineering, Sichuan University of Science & Engineering, Yibin, 644000, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
8
|
Sun X, Song S, Yan G, Liu Y, Ding H, Zhang X, Feng Y. F-regulated Ni 2P-F3 nanosheets as efficient electrocatalysts for full-water-splitting and urea oxidation. Dalton Trans 2024; 53:8843-8849. [PMID: 38716691 DOI: 10.1039/d4dt00615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heteroatomic anion doping represents a powerful approach for manipulating the electronic configuration of the active metal locus in electrocatalysts, resulting in enhanced multifunctional electrocatalytic properties in hydrogen/oxygen evolution reactions (HER/OER). Here, fluorine-tailored Ni2P-F3 nanosheets were synthesized and evaluated as a robust multifunctional electrocatalyst for HER, OER, and UOR. Our comprehensive experimental and theoretical investigations reveal that the anionic F effectively tailored the electronic states of the Ni2P-F3 nanosheets, resulting in an elevated d-band center and optimizing the sorption capacity of intermediates. In addition to thermodynamically and kinetically favoured redox reactions, F doping facilitates the reconstruction and generation of active γ-NiOOH. Resulting from the optimized electronic configuration and nanosheet architecture, outstanding catalytic activities are demonstrated by Ni2P-F3 with low overpotentials to reach 100 mA cm-2 for HER (177 mV) and OER (293 mV), surpassing Ni2P by 234 and 205 mV, respectively. Notably, 1.618 V is required for full-water-diversion to reach 10 mA cm-2, while 1.414 V is required with urea oxidation for 100 mA cm-2.
Collapse
Affiliation(s)
- Xi Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Shixue Song
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yingchun Liu
- Jinghua Plastics Industry Co. Ltd., Langfang 065800, China.
| | - Huili Ding
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| |
Collapse
|
9
|
Alam M, Ping K, Danilson M, Mikli V, Käärik M, Leis J, Aruväli J, Paiste P, Rähn M, Sammelselg V, Tammeveski K, Haller S, Kramm UI, Starkov P, Kongi N. Iron Triad-Based Bimetallic M-N-C Nanomaterials as Highly Active Bifunctional Oxygen Electrocatalysts. ACS APPLIED ENERGY MATERIALS 2024; 7:4076-4087. [PMID: 38756864 PMCID: PMC11095250 DOI: 10.1021/acsaem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The use of precious metal electrocatalysts in clean electrochemical energy conversion and storage applications is widespread, but the sustainability of these materials, in terms of their availability and cost, is constrained. In this research, iron triad-based bimetallic nitrogen-doped carbon (M-N-C) materials were investigated as potential bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The synthesis of bimetallic FeCo-N-C, CoNi-N-C, and FeNi-N-C catalysts involved a precisely optimized carbonization process of their respective metal-organic precursors. Comprehensive structural analysis was undertaken to elucidate the morphology of the prepared M-N-C materials, while their electrocatalytic performance was assessed through cyclic voltammetry and rotating disk electrode measurements in a 0.1 M KOH solution. All bimetallic catalyst materials demonstrated impressive bifunctional electrocatalytic performance in both the ORR and the OER. However, the FeNi-N-C catalyst proved notably more stable, particularly in the OER conditions. Employed as a bifunctional catalyst for ORR/OER within a customized zinc-air battery, FeNi-N-C exhibited a remarkable discharge-charge voltage gap of only 0.86 V, alongside a peak power density of 60 mW cm-2. The outstanding stability of FeNi-N-C, operational for about 55 h at 2 mA cm-2, highlights its robustness for prolonged application.
Collapse
Affiliation(s)
- Mahboob Alam
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Kefeng Ping
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Mati Danilson
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Valdek Mikli
- Department
of Materials and Environmental Technology, Tallinn University of Technology, Tallinn 19086, Estonia
| | - Maike Käärik
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Leis
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Jaan Aruväli
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Päärn Paiste
- Institute
of Ecology and Earth Sciences, University
of Tartu, Tartu 50411, Estonia
| | - Mihkel Rähn
- Institute
of Physics, University of Tartu, Tartu 50411, Estonia
| | | | - Kaido Tammeveski
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| | - Steffen Haller
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Ulrike I. Kramm
- Department
of Chemistry, Catalysts and Electrocatalysts Group, Technical University of Darmstadt, Darmstadt 64287, Germany
| | - Pavel Starkov
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, Tallinn 12618, Estonia
| | - Nadezda Kongi
- Institute
of Chemistry, University of Tartu, Tartu 50411, Estonia
| |
Collapse
|
10
|
Wang R, Zhang L, Wang N, Zhang X, Huang L, Zhang Q, Lin H, Chen J, Jiao Y, Xu Y. Transforming electrochemical hydrogen Production: Tannic Acid-Boosted CoNi alloy integration with Multi-Walled carbon nanotubes for advanced bifunctional catalysis. J Colloid Interface Sci 2024; 661:113-122. [PMID: 38295693 DOI: 10.1016/j.jcis.2024.01.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 02/27/2024]
Abstract
The dimensions of alloy nanoparticles or nanosheets have emerged as a critical determinant for their prowess as outstanding electrocatalysts in water decomposition. Remarkably, the reduction in nanoparticle size results in an expanded active specific surface area, elevating reaction kinetics and showcasing groundbreaking potential. In a significant leap towards innovation, we introduced tannic acid (TA) to modify multi-walled carbon nanotubes (MWCNTs) and CoNi alloys. This ingenious strategy not only finely tuned the size of CoNi alloys but also securely anchored them to the MWCNTs substrate. The resulting synergistic "carbon transportation network" accelerated electron transfer during the reaction, markedly enhancing efficiency. Furthermore, the exceptional synergy of Co and Ni elements establishes Co0.84Ni1.69/MWCNTs as highly efficient electrocatalysts. Experimental findings unequivocally demonstrate that TA-Co0.84Ni1.69/MWCNTs require minimal overpotentials of 171 and 294 mV to achieve a current density of ± 10 mA cm-2. Serving as both anode and cathode for overall water splitting, TA-Co0.84Ni1.69/MWCNTs demand a low voltage of 1.66 V at 10 mA cm-2, maintaining structural integrity throughout extensive cyclic stability testing. These results propel TA-Co0.84Ni1.69/MWCNTs as promising candidates for future electrocatalytic advancements.
Collapse
Affiliation(s)
- Ran Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ling Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Nana Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiao Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lijun Huang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qiang Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jianrong Chen
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yang Jiao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| | - Yanchao Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
11
|
Salah B, Abdelgawad A, El-Demellawi JK, Lu Q, Xia Z, Abdullah AM, Eid K. Scalable One-Pot Fabrication of Carbon-Nanofiber-Supported Noble-Metal-Free Nanocrystals for Synergetic-Dependent Green Hydrogen Production: Unraveling Electrolyte and Support Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18768-18781. [PMID: 38588442 DOI: 10.1021/acsami.3c18191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Electrocatalytic hydrogen evolution reactions (HER) are envisaged as the most promising sustainable approach for green hydrogen production. However, the considerably high cost often associated with such reactions, particularly upon scale-up, poses a daunting challenge. Herein, a facile, effective, and environmentally benign one-pot scalable approach is developed to fabricate MnM (M═Co, Cu, Ni, and Fe) nanocrystals supported over in situ formed carbon nanofibers (MnM/C) as efficient noble-metal-free electrocatalysts for HER. The formation of carbon nanofibers entails impregnating cellulose in an aqueous solution of metal precursors, followed by annealing the mixture at 550 °C. During the impregnation process, cellulose acts as a reactor for inducing the in situ reductions of MnM salts with the assistance of ether and hydroxyl groups to drive the mass production (several grams) of ultralong (5 ± 1 μM) carbon nanofibers ornamented with MnM nanoparticles (10-14 nm in size) at an average loading of 2.87 wt %. For better electrocatalytic HER benchmarking, the fabricated catalysts were tested over different working electrodes, i.e., carbon paper, carbon foam, and glassy carbon, in the presence of different electrolytes. All the fabricated MnM/C catalysts have demonstrated an appealing synergetic-effect-dependent HER activity, with MnCo/C exhibiting the best performance over carbon foam, close to that of the state-of-the-art commercial Pt/C (10 wt % Pt), with an overpotential of 11 mV at 10 mA cm-2, a hydrogen production rate of 2448 mol g-1 h-1, and a prolonged stability of 2 weeks. The HER performance attained by MnCo/C nanofibers is among the highest reported for Pt-free electrocatalysts, thanks to the mutual alloying effect, higher synergism, large surface area, and active interfacial interactions over the nanofibers. The presented findings underline the potential of our approach for the large-scale production of cost-effective electrocatalysts for practical HER.
Collapse
Affiliation(s)
- Belal Salah
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Jehad K El-Demellawi
- KAUST Upstream Research Center (KURC), EXPEC-ARC, Saudi Aramco, Thuwal 23955-6900, Saudi Arabia
| | - Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhonghong Xia
- College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | | | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
12
|
Sun Y, Tang T, Xiao L, Han J, Bai X, Shi M, Chen S, Sun J, Ma Y, Guan J. Nanoflower-Like High-Entropy Co-Fe-Cr-Mo-Mn Spinel for Oxygen Evolution. Chemistry 2024; 30:e202303779. [PMID: 38095235 DOI: 10.1002/chem.202303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 02/01/2024]
Abstract
Oxygen evolution reaction (OER) is the key anode reaction of electrolytic water. To improve the slow OER kinetics, we synthesize nanoflower-like Co-Fe-Cr-Mo-Mn high-entropy spinel (HES) nanosheets on nickel foam (NF) by one-step solvothermal method, which exhibit an overpotential (η10) of only 188 mV at 10 mA cm-2, much lower than bimetallic CoFeOx/NF (233 mV), trimetallic CoFeCrOx/NF (211 mV), and tetrametallic CoFeCrMoOx/NF (200 mV). The OER overpotential decreases with the increase of the number of metals, indicating that the formation of HES has a positive effect on the improvement of electrocatalytic performance, since the synergistic effect between different metals enhances the charge transfer rate and decreases reaction barrier. In-situ Raman spectra demonstrate that the formation of γ-NiOOH on the HES surface is a crucial active species for the OER. This work demonstrates a simple and efficient synthesis method to prepare nanoflower-like high-entropy electrocatalysts for efficient OER electrocatalysis.
Collapse
Affiliation(s)
- Yuhang Sun
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, College of Chemistry and Chemical Engineering, Qiqihar University, Heilongjiang Province, 161006, China
| | - Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Liyuan Xiao
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Mingyuan Shi
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, College of Chemistry and Chemical Engineering, Qiqihar University, Heilongjiang Province, 161006, China
| | - Siyu Chen
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Jingru Sun
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| | - Yuanyuan Ma
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, College of Chemistry and Chemical Engineering, Qiqihar University, Heilongjiang Province, 161006, China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130021, China
| |
Collapse
|
13
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Si W, Liao Q, Chu Y, Zhang Z, Chu X, Qin L. A multi-layer core-shell structure CoFe 2O 4@Fe 3C@NiO composite with high broadband electromagnetic wave-absorption performance. NANOSCALE 2023; 15:16381-16389. [PMID: 37789822 DOI: 10.1039/d3nr03837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enhancing the absorption strength of electromagnetic waves and broadening the absorption band are constant goals in designing and preparing absorbing materials. The use of composites has shown to be a very efficient method for acquiring broadband-absorbing materials, while the construction of a core-shell structure has demonstrated a significant enhancement in absorption capability. In this paper, the nanocomposite metal-organic framework (MOF) derivative CoFe2O3@C with a double core-shell structure and the nanocomposite MOF derivative CoFe2O4@Fe3C@NiO with a three-layered core-shell structure have been prepared using a chemical compound. The multi-layer structure provides more active sites for the multiple reflection and scattering of electromagnetic waves, effectively improving the attenuation capability. The effective absorption band (EAB) (reflection loss (RL) ≤ -5 dB) of both CoFe2O3@C and CoFe2O4@Fe3C@NiO are broadened compared to that of the ZIF-67 derivative. In particular, the minimum reflection loss (RLmin) of CoFe2O3@C was -52.7 dB at 13.3 GHz and 2.04 mm, and the EAB (RL ≤ -5 dB) is as wide as 9.35 GHz. Compared with the ZIF-67 derivative, the EAB exhibits a twofold rise, accompanied by a corresponding thickness increase of just 0.24 mm. At a matched thickness of 2.2 mm, the EAB of CoFe2O4@Fe3C@NiO can even reach 11.9 GHz.
Collapse
Affiliation(s)
- Wei Si
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Qingwei Liao
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| | - Yu Chu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Zhang
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Xiangcheng Chu
- State Key Laboratory of New Ceramics and Fine Processing, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lei Qin
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| |
Collapse
|
15
|
Zhou Q, Miao S, Xue T, Liu Y, Li H, Yan XH, Zou ZL, Wang BP, Lu YJ, Han FL. Nitrogen-doped porous carbon encapsulates multivalent cobalt-nickel as oxygen reduction reaction catalyst for zinc-air battery. J Colloid Interface Sci 2023; 648:511-519. [PMID: 37307607 DOI: 10.1016/j.jcis.2023.05.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
In this study, we present a bimetallic ion coexistence encapsulation strategy employing hexadecyl trimethyl ammonium bromide (CTAB) as a mediator to anchor cobalt-nickel (CoNi) bimetals in nitrogen-doped porous carbon cubic nanoboxes (CoNi@NC). The fully encapsulated and uniformly dispersed CoNi nanoparticles with the improved density of active sites help to accelerate the oxygen reduction reaction (ORR) kinetics and provide an efficient charge/mass transport environment. Zinc-air battery (ZAB) equipped CoNi@NC as cathode exhibits an open-circuit voltage of 1.45 V, a specific capacity of 870.0 mAh g-1, and a power density of 168.8 mW cm-2. Moreover, the two CoNi@NC-based ZABs in series display a stable discharge specific capacity of 783.0 mAh g-1, as well as a large peak power density of 387.9 mW cm-2. This work provides an effective way to tune the dispersion of nanoparticles to boost active sites in nitrogen-doped carbon structure, and enhance the ORR activity of bimetallic catalysts.
Collapse
Affiliation(s)
- Quan Zhou
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Song Miao
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Tong Xue
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Hua Li
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiang-Hui Yan
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Zhong-Li Zou
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Bei-Ping Wang
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - You-Jun Lu
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Feng-Lan Han
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
16
|
Chen F, Guo S, Yu S, Zhang C, Guo M, Li C. Hierarchical N-doped carbon nanofiber-loaded NiCo alloy nanocrystals with enhanced methanol electrooxidation for alkaline direct methanol fuel cells. J Colloid Interface Sci 2023; 646:43-53. [PMID: 37182258 DOI: 10.1016/j.jcis.2023.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The high catalytic activity of non-precious metals in alkaline media opens a new direction for the development of alkaline direct methanol fuel cell (ADMFC) electrocatalysts. Herein, a highly dispersed N-doped carbon nanofibers (CNFs) -loaded NiCo non-precious metal alloy electrocatalyst based on metal-organic frameworks (MOFs) was prepared, which conferred excellent methanol oxidation activity and resistance to carbon monoxide (CO) poisoning through a surface electronic structure modulation strategy. The porous electrospun polyacrylonitrile (PAN) nanofibers and the P-electron conjugated structure of polyaniline chains provide fast charge transfer channels, enabling electrocatalysts with abundant active sites and efficient electron transfer. The optimized NiCo/N-CNFs@800 was tested as an anode catalyst for ADMFC single cell and exhibited a power density of 29.15 mW cm-2. Due to the fast charge transfer and mass transfer brought by its one-dimensional porous structure and the synergistic effect between NiCo alloy, NiCo/N-CNFs@800 is expected to be an economical, efficient and CO-resistant methanol oxidation reaction (MOR) electrocatalyst.
Collapse
Affiliation(s)
- Fei Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shiquan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| | - Chong Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Man Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing 100083, China.
| |
Collapse
|
17
|
Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Dhilllon SK, Kundu PP, Jain R. Catalytic advancements in carbonaceous materials for bio-energy generation in microbial fuel cells: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24815-24841. [PMID: 34993799 DOI: 10.1007/s11356-021-17529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) are a sustainable alternative for wastewater treatment and clean energy generation. The efficiency of the technology is dependent on the cathodic oxygen reduction reaction, where the sluggish reaction kinetics hampers its propensity. Carbonaceous materials with high electrical conductivity have been widely explored for oxygen reduction reaction (ORR) catalysts. Here, incorporating transition metal (TM) and heteroatom into carbon could further enhance the ORR activity and power generation in MFCs. Nitrogen (N)-doped carbons have also been a popular research hotspot due to abundant active sites formed, resulting in superior conductivity, stability, and catalytic activity over carbons. This review summarizes the progress in the carbon-based materials (primary focus on the cathode) for ORR and their utilization in MFCs. Furthermore, we discussed the conceptualization of MFCs and carbonaceous materials to instigate the ORR kinetics and power generation in MFC. Furthermore, prospects of carbon-based materials for actual application in bio-energy generation have been discussed. Carbonaceous catalysts and biomass-derived carbons exhibit good potential to replace precious Pt catalysts for ORR. M-N-C catalysts were found to be the most suitable catalysts. Electrocatalysts with MNx sites are able to achieve excellent activity and high-power output by taking advantage of the active site exposure and rapid mass transfer rate. Moreover, the use of biomass-derived carbons/self-doped carbons could further reduce the overall cost of catalysts. It is anticipated that the research gaps and future perspectives discussed will show new avenues to develop excellent electrocatalysts for better performance and transformation of technology to industrial applications.
Collapse
Affiliation(s)
- Simran Kaur Dhilllon
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| | - Patit Paban Kundu
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India.
| | - Rahul Jain
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
19
|
Zhang J, Wei J, Xiong Z, Guo Z, Xu D, Lai B. Coupled adsorption and non-radical dominated mechanisms in Co, N-doped graphite via peroxymonosulfate activation for efficiently degradation of carbamazepine. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Liu J, Luo Z, Qian D, Peng L, Sun-Waterhouse D, Waterhouse GIN. Electronic Tuning of Core-Shell CoNi Nanoalloy/N-Doped Few-Layer Graphene for Efficient Oxygen Electrocatalysis in Rechargeable Zinc-Air Batteries. J Phys Chem Lett 2022; 13:6743-6748. [PMID: 35852110 DOI: 10.1021/acs.jpclett.2c01687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of highly efficient, durable, and affordable bifunctional ORR/OER electrocatalysts is of great significance for the commercialization of rechargeable metal-air batteries. Herein, we synthesized uniformly sized CoNi alloy nanoparticles encapsulated with N-doped few-layer graphene (N-FLG) sheets via pyrolysis of a CoNi dual metal-organic framework precursor. The developed CoNi/N-FLG catalyst exhibited excellent oxygen reduction activity (comparable to a commercial 20 wt % Pt/C catalyst) and outstanding oxygen evolution activity (superior to a commercial 20 wt % IrO2/C catalyst), thus enabling efficient bifunctional oxygen electrocatalysis and stability when applied in prototype rechargeable zinc-air batteries. The remarkable electrochemical properties of CoNi/N-FLG originate from its unique core-shell structure and favorable electron penetration effects, thereby optimizing the adsorption/desorption strengths of intermediates formed during the oxygen reduction and oxygen evolution reactions.
Collapse
Affiliation(s)
- Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Lishan Peng
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Dongxiao Sun-Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
21
|
Long-range interconnected nanoporous Co/Ni/C composites as bifunctional electrocatalysts for long-life rechargeable zinc-air batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
22
|
Yao Y, Ma Z, Dou Y, Lim SY, Zou J, Stamate E, Jensen JO, Zhang W. Random Occupation of Multimetal Sites in Transition Metal-Organic Frameworks for Boosting the Oxygen Evolution Reaction. Chemistry 2022; 28:e202104288. [PMID: 35041236 DOI: 10.1002/chem.202104288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/11/2022]
Abstract
Developing robust oxygen evolution reaction (OER) electrocatalysts with excellent performance is essential for the conversion of renewable electricity to clean fuel. Herein, we present a facile concept for the synthesis of efficient high-entropy metal-organic frameworks (HEMOFs) as electrocatalysts in a one-step solvothermal synthesis. This strategy allows control of the microstructure and corresponding lattice distortion by tuning the metal ion composition. As a result, the OER activity was improved by optimizing the coordination environment of the metal catalytic center. The optimized Co-rich HEMOFs exhibited a low overpotential of 310 mV at a current density of 10 mA cm-2 , better than a RuO2 catalyst tested under the same conditions. The finding of lattice distortion of the HEMOFs provides a new strategy for developing high-performance electrocatalysts for energy conversion.
Collapse
Affiliation(s)
- Yuechao Yao
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800, Kgs. Lyngby, Denmark
| | - Zhongtao Ma
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800, Kgs. Lyngby, Denmark
| | - Yibo Dou
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800, Kgs. Lyngby, Denmark
| | - Sung Yul Lim
- Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jizhao Zou
- Shenzhen Key Laboratory of Special Functional Materials & Shenzhen Engineering Laboratory for Advance Technology of Ceramics College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Eugen Stamate
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Jens Oluf Jensen
- Department of Energy Conversion and Storage, Technical University of Denmark, Fysikvej 310, 2800, Kgs. Lyngby, Denmark
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
23
|
Wang W, Wang X, Wang Y, Jiang B, Song H. Size-controlled, hollow and hierarchically porous Co 2Ni 2 alloy nanocubes for efficient oxygen reduction in microbial fuel cells. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00480h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the fabrication of CoxNiy alloy nanocubes (ANCs) and hollow CoxNiy alloy nanocubes (HANCs).
Collapse
Affiliation(s)
- Wenyi Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Xueqin Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yuanyuan Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Bolong Jiang
- Binhai Residential Environment Academic Innovation Center, Qingdao University of Technology, Qingdao 266000, Shandong, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
24
|
Yao F, Wang W, Shi H, Xu Z, Zeng M, Hu Y, Liu L, Ji X. Graphynes: Electronic Properties, Synthesis, and Applications in Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Fengting Yao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ming Zeng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanli Hu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liyan Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinyi Ji
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
25
|
Singh B, Singh A, Yadav A, Indra A. Modulating electronic structure of metal-organic framework derived catalysts for electrochemical water oxidation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Jang JH, Jeffery AA, Min J, Jung N, Yoo SJ. Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. NANOSCALE 2021; 13:15116-15141. [PMID: 34554169 DOI: 10.1039/d1nr01328a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of low-cost, high-efficiency electrocatalysts is of primary importance for hydrogen energy technology. Noble metal-based catalysts have been extensively studied for decades; however, activity and durability issues still remain a challenge. In recent years, carbon shell-encapsulated metal (M@C) catalysts have drawn great attention as novel materials for water electrolysis and fuel cell applications. These electrochemical reactions are governed mainly by interfacial charge transfer between the core metal and the outer carbon shell, which alters the electronic structure of the catalyst surface. Furthermore, the rationally designed and fine-tuned carbon shell plays a very interesting role as a protective layer or molecular sieve layer to improve the performance and durability of energy conversion systems. Herein, we review recent advances in the use of M@C type nanocatalysts for extensive applications in fuel cells and water electrolysis with a focus on the structural design and electronic structure modulation of carbon shell-encapsulated metal/alloys. Finally, we highlight the current challenges and future perspectives of these catalytic materials and related technologies in this field.
Collapse
Affiliation(s)
- Jue-Hyuk Jang
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - A Anto Jeffery
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Kundu A, Mallick S, Ghora S, Raj CR. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40172-40199. [PMID: 34424683 DOI: 10.1021/acsami.1c08462] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The electrochemical reduction of oxygen to water and the evolution of oxygen from water are two important electrode reactions extensively studied for the development of electrochemical energy conversion and storage technologies based on oxygen electrocatalysis. The development of an inexpensive, highly active, and durable nonprecious-metal-based oxygen electrocatalyst is indispensable for emerging energy technologies, including anion exchange membrane fuel cells, metal-air batteries (MABs), water electrolyzers, etc. The activity of an oxygen electrocatalyst largely decides the overall energy storage performance of these devices. Although the catalytic activities of Pt and Ru/Ir-based catalysts toward an oxygen reduction reaction (ORR) and an oxygen evolution reaction (OER) are known, the high cost and lack of durability limit their extensive use for practical applications. This review article highlights the oxygen electrocatalytic activity of the emerging non-Pt and non-Ru/Ir oxygen electrocatalysts including transition-metal-based random alloys, intermetallics, metal-coordinated nitrogen-doped carbon (M-N-C), and transition metal phosphides, nitrides, etc., for the development of an air-breathing electrode for aqueous primary and secondary zinc-air batteries (ZABs). Rational surface and chemical engineering of these electrocatalysts is required to achieve the desired oxygen electrocatalytic activity. The surface engineering increases the number of active sites, whereas the chemical engineering enhances the intrinsic activity of the catalyst. The encapsulation or integration of the active catalyst with undoped or heteroatom-doped carbon nanostructures affords an enhanced durability to the active catalyst. In many cases, the synergistic effect between the heteroatom-doped carbon matrix and the active catalyst plays an important role in controlling the catalytic activity. The ORR activity of these catalysts is evaluated in terms of onset potential, number of electrons transferred, limiting current density, and durability. The bifunctional oxygen electrocatalytic activity and ZAB performance, on the other hand, are measured in terms of potential gap between the ORR and OER, ΔE = Ej10OER - E1/2ORR, specific capacity, peak power density, open circuit voltage, voltaic efficiency, and charge-discharge cycling stability. The nonprecious metal electrocatalyst-based ZABs are very promising and they deliver high power density, specific capacity, and round-trip efficiency. The active site for oxygen electrocatalysis and challenges associated with carbon support is briefly addressed. Despite the considerable progress made with the emerging electrocatalysts in recent years, several issues are yet to be addressed to achieve the commercial potential of rechargeable ZAB for practical applications.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Sourav Mallick
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Santanu Ghora
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
28
|
Wang X, Liu H, Li M, Li J, Lu Y, Wang L, Wang Z, Zhang X, Ding X. Modulation of electronic structure and oxygen vacancies of perovskites SrCoO3-δ by sulfur doping enables highly active and stable oxygen evolution reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Wang X, Zhang J, Ma D, Feng X, Wang L, Wang B. Metal-Organic Framework-Derived Trimetallic Nanocomposites as Efficient Bifunctional Oxygen Catalysts for Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33209-33217. [PMID: 34229429 DOI: 10.1021/acsami.1c02570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal-based multifunctional catalysts have attracted increasing attention owing to high possibilities of substituting the expensive noble-metal-based catalysts in various scenarios. Multivariate metal-organic frameworks (MTV-MOFs) are ideal precursors to prepare multimetallic nanocomposites with high catalytic activity since the uniform distribution and precise regulation of mixed metal centers, as well as the consequent strong synergistic effect, could be readily achieved. Herein, a Mn/Co/Ni trimetallic catalyst (MnCoNi-C-D) with a hollow rhombic dodecahedron shape was synthesized via pyrolysis of the corresponding trimetallic-based MTV-MOF. The catalyst shows outstanding electrochemical activity toward the oxygen reduction reaction including a half-wave potential of 0.82 V and superior tolerance against methanol as well as high stability in an alkaline medium, and its oxygen evolution reaction activity also surpasses a RuO2 catalyst. Moreover, primary and rechargeable zinc-air batteries based on MnCoNi-C-D delivered preferable performances compared with commercial Pt/C-RuO2, including higher peak power density (116.4 mW cm-2), higher specific capacity (841.3 mAh g-1), higher open-circuit potential (OCV) (1.46 V), and better stability for more than 180 h. A comprehensive comparison was also conducted to prove the necessity of employing the MTV-MOF as the precursor and investigate the intrinsic superiority of the catalyst.
Collapse
Affiliation(s)
- Xiaorui Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinwei Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dou Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Xiao Feng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Lu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, P. R. China
| |
Collapse
|
30
|
Ni/Cu Regulating Nitrogen‐Doped Porous Carbon as Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Kundu A, Samanta A, Raj CR. Hierarchical Hollow MOF-Derived Bamboo-like N-doped Carbon Nanotube-Encapsulated Co 0.25Ni 0.75 Alloy: An Efficient Bifunctional Oxygen Electrocatalyst for Zinc-Air Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30486-30496. [PMID: 34157833 DOI: 10.1021/acsami.1c01875] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synthesis of nonprecious electrocatalysts for oxygen electrocatalysis is of considerable interest for the development of electrochemical energy devices. Herein, we demonstrate a facile approach for the synthesis of bamboo-like nitrogen-doped carbon nanotube-encapsulated Co0.25Ni0.75 alloy electrocatalyst (Co0.25Ni0.75@NCNT) and its bifunctional oxygen electrocatalytic performance toward oxygen reduction and oxygen evolution reactions. The Co0.25Ni0.75 alloy wrapped with NCNT is obtained by a one-step carbothermal reduction approach using dicyandiamide and NiCo-MOF precursors. Dicyandiamide acts as a nitrogen source, and the in situ generated Co0.25Ni0.75 alloy nanoparticles catalyze the growth of bamboo-like NCNTs. The hollow NiCo-MOF plays a sacrificial role in providing a suitable environment for the controlled growth of Co0.25Ni0.75 alloy and NCNT. Co0.25Ni0.75@NCNT efficiently catalyzes both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at a favorable overpotential. It shows a low potential gap (ΔE) of ∼0.8 V between the two reactions, and it qualifies for the development of air cathode in metal-air batteries. The enhanced bifunctional activity and excellent durability stem from the chemical composition and the synergistic effect between Co0.25Ni0.75 alloy and encapsulating NCNT. The original phase and morphology of the catalyst is preserved after an extensive durability test. Aqueous rechargeable Zn-air battery (ZAB) is fabricated using a Co0.25Ni0.75@NCNT-based air cathode. The battery has high open-circuit voltage (1.53 V) and a maximum peak power density of 167 mW cm-2 with only 1.6% loss in the voltaic efficiency after 36 h charge-discharge cycles. As a proof-of-concept demonstration, the as-fabricated ZAB is successfully used for the electrochemical water splitting in alkaline solution.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Functional Materials and Electrochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - Arpan Samanta
- Functional Materials and Electrochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| | - C Retna Raj
- Functional Materials and Electrochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, West Bengal, India
| |
Collapse
|
32
|
Niu Y, Teng X, Gong S, Xu M, Sun SG, Chen Z. Engineering Two-Phase Bifunctional Oxygen Electrocatalysts with Tunable and Synergetic Components for Flexible Zn-Air Batteries. NANO-MICRO LETTERS 2021; 13:126. [PMID: 34138326 PMCID: PMC8124028 DOI: 10.1007/s40820-021-00650-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 05/25/2023]
Abstract
Metal-air batteries, like Zn-air batteries (ZABs) are usually suffered from low energy conversion efficiency and poor cyclability caused by the sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe nanomaterial supported on nanoflower-like N-doped graphitic carbon (NC) was prepared through a strategy of coordination construction-cation exchange-pyrolysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experimental characterizations and density functional theory calculations reveal the formation of Co/CoFe heterostructure and synergistic effect between metal layer and NC support, leading to improved electric conductivity, accelerated reaction kinetics, and optimized adsorption energy for intermediates of ORR and OER. The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half-wave potential (E1/2) of ORR and the potential at 10 mA cm‒2 (Ej=10) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight voltage loss of only 60 mV after 550-cycle test (360 h, 15 days). A sodium polyacrylate (PANa)-based hydrogel electrolyte was synthesized with strong water-retention capability and high ionic conductivity. The quasi-solid-state ZAB by integrating the Co/CoFe@NC air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.
Collapse
Affiliation(s)
- Yanli Niu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Xue Teng
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shuaiqi Gong
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Mingze Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Zuofeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
33
|
Ali U, Sohail K, Liu Y, Yu X, Xing S. Molybdenum and Phosphorous Dual‐Doped, Transition‐Metal‐Based, Free‐Standing Electrode for Overall Water Splitting. ChemElectroChem 2021. [DOI: 10.1002/celc.202100217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Usman Ali
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin P. R. China
| | - Kamran Sohail
- Department of Chemistry Government College Gujranwala Satellite town Gujranwala Pakistan
| | - Yuqi Liu
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin P. R. China
| | - Xiaodan Yu
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin P. R. China
| | - Shuangxi Xing
- Faculty of Chemistry Northeast Normal University 5268 Renmin Street Changchun Jilin P. R. China
| |
Collapse
|
34
|
Controllable synthesis of nitrogen-doped carbon containing Co and Co3Fe7 nanoparticles as effective catalysts for electrochemical oxygen conversion. J Colloid Interface Sci 2021; 590:622-631. [DOI: 10.1016/j.jcis.2021.01.097] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023]
|
35
|
Zhang B, Zheng Y, Ma T, Yang C, Peng Y, Zhou Z, Zhou M, Li S, Wang Y, Cheng C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006042. [PMID: 33749910 PMCID: PMC11468660 DOI: 10.1002/adma.202006042] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Indexed: 02/05/2023]
Abstract
Electrochemical water splitting has attracted significant attention as a key pathway for the development of renewable energy systems. Fabricating efficient electrocatalysts for these processes is intensely desired to reduce their overpotentials and facilitate practical applications. Recently, metal-organic framework (MOF) nanoarchitectures featuring ultrahigh surface areas, tunable nanostructures, and excellent porosities have emerged as promising materials for the development of highly active catalysts for electrochemical water splitting. Herein, the most pivotal advances in recent research on engineering MOF nanoarchitectures for efficient electrochemical water splitting are presented. First, the design of catalytic centers for MOF-based/derived electrocatalysts is summarized and compared from the aspects of chemical composition optimization and structural functionalization at the atomic and molecular levels. Subsequently, the fast-growing breakthroughs in catalytic activities, identification of highly active sites, and fundamental mechanisms are thoroughly discussed. Finally, a comprehensive commentary on the current primary challenges and future perspectives in water splitting and its commercialization for hydrogen production is provided. Hereby, new insights into the synthetic principles and electrocatalysis for designing MOF nanoarchitectures for the practical utilization of water splitting are offered, thus further promoting their future prosperity for a wide range of applications.
Collapse
Affiliation(s)
- Ben Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yijuan Zheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- West China School of Medicine/West China HospitalSichuan UniversityChengdu610041China
| | - Chengdong Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yifei Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhihao Zhou
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mi Zhou
- College of Biomass Science and EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- Functional MaterialsDepartment of ChemistryTechnische Universität BerlinHardenbergstraße 4010623BerlinGermany
| | - Yinghan Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustraße 314195BerlinGermany
| |
Collapse
|
36
|
Wang Y, Yu H, Zhu L, Shi Z, Wang R, Zhang Z, Qiu S. Cytosine-Co assemblies derived CoNx rich Co-NCNT as efficient tri-functional electrocatalyst. J Colloid Interface Sci 2021; 585:276-286. [DOI: 10.1016/j.jcis.2020.11.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
|
37
|
Niu X, Bo X, Guo L. Ultrasensitive simultaneous voltammetric determination of 4-aminophenol and acetaminophen based on bimetallic MOF-derived nitrogen-doped carbon coated CoNi alloy. Anal Chim Acta 2021; 1145:37-45. [PMID: 33453879 DOI: 10.1016/j.aca.2020.12.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/01/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Simultaneous electrochemical determination of 4-aminophenol (4-AP) and acetaminophen (ACOP) is crucial due to their high toxicity when are overused. Herein, a novel electrocatalyst of nitrogen-doped carbon coated CoNi alloy (CoNi@CN) is derived from bimetallic CoNi(BDC)2(DABCO) for the first time. A series of characterizations demonstrate that composite has been successfully synthesized, and all elements are evenly distributed in the catalyst. The optimal sensor based on Co1Ni1@CN-700 exhibits two wide linear responses for 4-AP (0.05-60 μM and 60-250 μM) and ACOP (0.05-40 μM and 40-150 μM) with the lowest detection limit of 5.2 nM and 3.8 nM compared with current known reports. Moreover, the sensor has superior reproducibility, selectivity and stability. In addition, the wonderful recoveries also are obtained when sensor is used to detect 4-AP and ACOP in real samples, illustrating that electrochemical sensor has great prospect in the clinical application.
Collapse
Affiliation(s)
- Xia Niu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Liping Guo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
38
|
Co/N-doped carbon nanotube arrays grown on 2D MOFs-derived matrix for boosting the oxygen reduction reaction in alkaline and acidic media. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Liang Q, Chen J, Wang F, Li Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Zhang YL, Goh K, Zhao L, Sui XL, Gong XF, Cai JJ, Zhou QY, Zhang HD, Li L, Kong FR, Gu DM, Wang ZB. Advanced non-noble materials in bifunctional catalysts for ORR and OER toward aqueous metal-air batteries. NANOSCALE 2020; 12:21534-21559. [PMID: 33112936 DOI: 10.1039/d0nr05511e] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The catalyst in the oxygen electrode is the core component of the aqueous metal-air battery, which plays a vital role in the determination of the open circuit potential, energy density, and cycle life of the battery. For rechargeable aqueous metal-air batteries, the catalyst should have both good oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance. Compared with precious metal catalysts, non-precious metal materials have more advantages in terms of abundant resource reserves and low prices. Over the past few years, great efforts have been made in the development of non-precious metal bifunctional catalysts. This review selectively evaluates the advantages, disadvantages and development status of recent advanced materials including pure carbon materials, carbon-based metal materials and carbon-free materials as bifunctional oxygen catalysts. Preliminary improvement strategies are formulated to make up for the deficiency of each material. The development prospects and challenges facing bifunctional catalysts in the future are also discussed.
Collapse
Affiliation(s)
- Yun-Long Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zeolitic imidazolate framework derived cobalt oxide anchored bacterial cellulose: A good template with improved H2O adsorption ability and its enhanced hydrogen evolution performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Nandan R, Devi HR, Kumar R, Singh AK, Srivastava C, Nanda KK. Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N x Centers for Energy-Efficient Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36026-36039. [PMID: 32677817 DOI: 10.1021/acsami.0c08086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study reports the optimized incorporation of pyridinic nitrogen in nitrogen-doped carbon nanotubes (CNTs) to realize effective Fe-Nx centers throughout the framework. The study unveils nitrogen as a valuable asset to promote the homogeneous dispersion of Fe moieties throughout the CNT framework, which is a necessary component to institute uniform Fe-Nx centers. In addition, pyridinic nitrogen causes disruption in strongly delocalized π-electrons, which impart electron-withdrawing nature in the carbon matrix, resulting in an anodic shift in oxygen reduction reaction (ORR) onset potential (Eonset). The direct interaction of Fe-Nx with O2, as evidenced by poisoning and computational studies, ensures the preferential inner sphere electron transfer mechanism. Despite the alkaline medium, the outer sphere electron transfer mechanism was muted, with suppressed HO2- generation, preferential 4e- reduction pathways, and excellent cyclic stability. The study indicates the dependency of ORR half-wave potential on the electron transfer mechanism. The poisoning study unveils the direct involvement of Fe-Nx electroactive centers in facilitating ORR in alkaline medium. It further indicates a noticable increase (up to ∼25%) in peroxide generation-an unwanted ORR intermediate-and concomitant reduction in average electron transfer no. per oxygen molecule.
Collapse
Affiliation(s)
- Ravi Nandan
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Hemam Rachna Devi
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ritesh Kumar
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | | | - Chandan Srivastava
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
43
|
Zhang X, Ding K, Weng B, Liu S, Jin W, Ji X, Hu J. Coral-like carbon-wrapped NiCo alloys derived by emulsion aggregation strategy for efficient oxygen evolution reaction. J Colloid Interface Sci 2020; 573:96-104. [DOI: 10.1016/j.jcis.2020.03.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
|
44
|
Li G, Li J, Cui Q, Mai W, Zhang Z, Zhang K, Nie R, Hu W. Using a Fe-doping MOFs strategy to effectively improve the electrochemical activity of N-doped C materials for oxygen reduction reaction in alkaline medium. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04653-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Samanta A, Ghatak A, Bhattacharyya S, Raj CR. Transition metal alloy integrated tubular carbon hybrid nanostructure for bifunctional oxygen electrocatalysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Porous carbon supported PtPd alloy nanoparticles derived from N-heterocyclic carbene bimetal complex as efficient bifunctional electrocatalysts. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Qian M, Xu M, Zhou S, Tian J, Taylor Isimjan T, Shi Z, Yang X. Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: Promoting the conductivity and more active sites for oxygen reduction. J Colloid Interface Sci 2020; 564:276-285. [DOI: 10.1016/j.jcis.2019.12.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
48
|
Wu X, Tang C, Cheng Y, Min X, Jiang SP, Wang S. Bifunctional Catalysts for Reversible Oxygen Evolution Reaction and Oxygen Reduction Reaction. Chemistry 2020; 26:3906-3929. [PMID: 32057147 DOI: 10.1002/chem.201905346] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/01/2020] [Indexed: 11/09/2022]
Abstract
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials.
Collapse
Affiliation(s)
- Xing Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Yi Cheng
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - Xiaobo Min
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China.,National Engineering Technology Research Center for Control and Treatment of Heavy-metal Pollution, Changsha, 410083, P. R. China
| | - San Ping Jiang
- Fuels and Energy Technology Institute & Western Australia School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6102, Australia
| | - Shuangyin Wang
- Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
49
|
Xu S, Yang F, Han S, Zhang S, Wang Q, Jiang C. MOF-derived PdNiCo alloys encapsulated in nitrogen-doped graphene for robust hydrogen evolution reactions. CrystEngComm 2020. [DOI: 10.1039/d0ce01030h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synergistic effect of PdNiCo nanoalloys and nitrogen-doped graphene for robust hydrogen evolution reactions.
Collapse
Affiliation(s)
- Shihao Xu
- Institute of Solid State Physics
- Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Fan Yang
- Institute of Solid State Physics
- Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Shuai Han
- Institute of Solid State Physics
- Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Department of Chemistry
| | - Shudong Zhang
- Institute of Solid State Physics
- Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
| | - Qiang Wang
- Jiangsu Collaborative Innovation Centre of Photovoltaic Science and Engineering
- Changzhou University
- Changzhou
- China
- School of Materials Science and Engineering
| | - Changlong Jiang
- Institute of Solid State Physics
- Hefei Institutes of Physical Science, Chinese Academy of Sciences
- Hefei
- China
- Key Laboratory of Photovoltaic and Energy Conservation Materials
| |
Collapse
|
50
|
Chen MJ, Zhang DX, Li D, Ke SC, Ma XC, Chang GG, Chen J, Yang XY. All-around coating of CoNi nanoalloy using a hierarchically porous carbon derived from bimetallic MOFs for highly efficient hydrolytic dehydrogenation of ammonia-borane. NEW J CHEM 2020. [DOI: 10.1039/c9nj05484g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In situ synthesis of core–shell carbon enclosed CoNi alloys achieves efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Min-Jie Chen
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Dai-Xue Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| | - Dan Li
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Shan-Chao Ke
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiao-Chen Ma
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
| | - Gang-Gang Chang
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Jian Chen
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan
- China
| |
Collapse
|