1
|
Li W, Li L, Hu J, Zhou D, Su H. Design and Applications of Supramolecular Peptide Hydrogel as Artificial Extracellular Matrix. Biomacromolecules 2024; 25:6967-6986. [PMID: 39418328 DOI: 10.1021/acs.biomac.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
Collapse
Affiliation(s)
- Wenting Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Longjie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiale Hu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dongdong Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hao Su
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Meng J, Cheung LH, Ren Y, Stuart MCA, Wang Q, Chen S, Chen J, Leung FKC. Aqueous Supramolecular Transformations of Motor Bola-Amphiphiles at Multiple Length-Scale. Macromol Rapid Commun 2024; 45:e2400261. [PMID: 38805189 DOI: 10.1002/marc.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
Collapse
Affiliation(s)
- Jiahui Meng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747, Netherlands
| | - Qian Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaoyu Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
3
|
Ghafoor MH, Song BL, Zhou L, Qiao ZY, Wang H. Self-Assembly of Peptides as an Alluring Approach toward Cancer Treatment and Imaging. ACS Biomater Sci Eng 2024; 10:2841-2862. [PMID: 38644736 DOI: 10.1021/acsbiomaterials.4c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cancer is a severe threat to humans, as it is the second leading cause of death after cardiovascular diseases and still poses the biggest challenge in the world of medicine. Due to its higher mortality rates and resistance, it requires a more focused and productive approach to provide the solution for it. Many therapies promising to deliver favorable results, such as chemotherapy and radiotherapy, have come up with more negatives than positives. Therefore, a new class of medicinal solutions and a more targeted approach is of the essence. This review highlights the alluring properties, configurations, and self-assembly of peptide molecules which benefit the traditional approach toward cancer therapy while sparing the healthy cells in the process. As targeted drug delivery systems, self-assembled peptides offer a wide spectrum of conjugation, biocompatibility, degradability-controlled responsiveness, and biomedical applications, including cancer treatment and cancer imaging.
Collapse
Affiliation(s)
- Muhammad Hamza Ghafoor
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ben-Li Song
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Smith CS, Álvarez Z, Qiu R, Sasselli IR, Clemons T, Ortega JA, Vilela-Picos M, Wellman H, Kiskinis E, Stupp SI. Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber. ACS NANO 2023; 17:19887-19902. [PMID: 37793046 DOI: 10.1021/acsnano.3c04572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.
Collapse
Affiliation(s)
- Cara S Smith
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Neural Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Ruomeng Qiu
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Ivan R Sasselli
- Centro de Fisica de Materiales (CFM), CSIC-UPV/EHU, San Sebastián 20018, Spain
| | - Tristan Clemons
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - J Alberto Ortega
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Marcos Vilela-Picos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Haley Wellman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Kiskinis
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- The Ken & Ruth Davee Department of Neurology, Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Falcone N, Ermis M, Tamay DG, Mecwan M, Monirizad M, Mathes TG, Jucaud V, Choroomi A, de Barros NR, Zhu Y, Vrana NE, Kraatz HB, Kim HJ, Khademhosseini A. Peptide Hydrogels as Immunomaterials and Their Use in Cancer Immunotherapy Delivery. Adv Healthc Mater 2023; 12:e2301096. [PMID: 37256647 PMCID: PMC10615713 DOI: 10.1002/adhm.202301096] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Peptide-based hydrogel biomaterials have emerged as an excellent strategy for immune system modulation. Peptide-based hydrogels are supramolecular materials that self-assemble into various nanostructures through various interactive forces (i.e., hydrogen bonding and hydrophobic interactions) and respond to microenvironmental stimuli (i.e., pH, temperature). While they have been reported in numerous biomedical applications, they have recently been deemed promising candidates to improve the efficacy of cancer immunotherapies and treatments. Immunotherapies seek to harness the body's immune system to preemptively protect against and treat various diseases, such as cancer. However, their low efficacy rates result in limited patient responses to treatment. Here, the immunomaterial's potential to improve these efficacy rates by either functioning as immune stimulators through direct immune system interactions and/or delivering a range of immune agents is highlighted. The chemical and physical properties of these peptide-based materials that lead to immuno modulation and how one may design a system to achieve desired immune responses in a controllable manner are discussed. Works in the literature that reports peptide hydrogels as adjuvant systems and for the delivery of immunotherapies are highlighted. Finally, the future trends and possible developments based on peptide hydrogels for cancer immunotherapy applications are discussed.
Collapse
Affiliation(s)
- Natashya Falcone
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Dilara Goksu Tamay
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, 06800, Turkey
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Mahsa Monirizad
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Tess Grett Mathes
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| | - Nihal Engin Vrana
- SPARTHA Medical, CRBS 1 Rue Eugene Boeckel, Strasbourg, 67000, France
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4, Canada
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
- College of Pharmacy, Korea University, Sejong, 30019, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA, 90034, USA
| |
Collapse
|
6
|
Chen X, Ren L, Zhang H, Hu Y, Liao M, Shen Y, Wang K, Cai J, Cheng H, Guo J, Qi Y, Wei H, Li X, Shang L, Xiao J, Sun J, Chai R. Basic fibroblast growth factor-loaded methacrylate gelatin hydrogel microspheres for spinal nerve regeneration. SMART MEDICINE 2023; 2:e20220038. [PMID: 39188281 PMCID: PMC11235853 DOI: 10.1002/smmd.20220038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 08/28/2024]
Abstract
Spinal cord injury is a severe central nervous system injury, and developing appropriate drug delivery platforms for spinal nerve regeneration is highly anticipated. Here, we propose a basic fibroblast growth factor (bFGF)-loaded methacrylate gelatin (GelMA) hydrogel microsphere with ideal performances for spinal cord injury repair. Benefitting from the precise droplet manipulation capability of the microfluidic technology, the GelMA microspheres possess uniform and satisfactory size and good stability. More importantly, by taking advantage of the porous structures and facile chemical modification of the GelMA microspheres, bFGF could be easily loaded and gradually released. By co-culturing with neural stem cells, it is validated that the bFGF-loaded GelMA microspheres could effectively promote the proliferation and differentiation of neural stem cells. We also confirm the effective role of the bFGF-loaded GelMA microspheres in nerve repair of spinal cord injury in rats. Our results demonstrate the potential value of the microspheres for applications in repairing central nervous system injuries.
Collapse
Affiliation(s)
- Xiaoyan Chen
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Lei Ren
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hui Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yangnan Hu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Menghui Liao
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yingbo Shen
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
| | - Kaichen Wang
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
| | - Jiaying Cai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hong Cheng
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Jiamin Guo
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Yanru Qi
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
| | - Hao Wei
- Department of Otolaryngology Head and Neck SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Xiaokun Li
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui HospitalThe Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian Xiao
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouZhejiangChina
| | - Jingwu Sun
- Department of Otolaryngology‐Head and Neck SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjingChina
- Chien‐Shiung Wu CollegeSoutheast UniversityNanjingChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Binaymotlagh R, Chronopoulou L, Palocci C. Peptide-Based Hydrogels: Template Materials for Tissue Engineering. J Funct Biomater 2023; 14:jfb14040233. [PMID: 37103323 PMCID: PMC10145623 DOI: 10.3390/jfb14040233] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Tissue and organ regeneration are challenging issues, yet they represent the frontier of current research in the biomedical field. Currently, a major problem is the lack of ideal scaffold materials' definition. As well known, peptide hydrogels have attracted increasing attention in recent years thanks to significant properties such as biocompatibility, biodegradability, good mechanical stability, and tissue-like elasticity. Such properties make them excellent candidates for 3D scaffold materials. In this review, the first aim is to describe the main features of a peptide hydrogel in order to be considered as a 3D scaffold, focusing in particular on mechanical properties, as well as on biodegradability and bioactivity. Then, some recent applications of peptide hydrogels in tissue engineering, including soft and hard tissues, will be discussed to analyze the most relevant research trends in this field.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Kolberg-Edelbrock J, Cotey TJ, Ma SY, Kapsalis LM, Bondoc DM, Lee SR, Sai H, Smith CS, Chen F, Kolberg-Edelbrock AN, Strong ME, Stupp SI. Biomimetic Extracellular Scaffolds by Microfluidic Superstructuring of Nanofibers. ACS Biomater Sci Eng 2023; 9:1251-1260. [PMID: 36808976 DOI: 10.1021/acsbiomaterials.2c01098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The extracellular matrix is a dynamic framework bearing chemical and morphological cues that support many cellular functions, and artificial analogs with well-defined chemistry are of great interest for biomedical applications. Herein, we describe hierarchical, extracellular-matrix-mimetic microgels, termed "superbundles" (SBs) composed of peptide amphiphile (PA) supramolecular nanofiber networks created using flow-focusing microfluidic devices. We explore the effects of altered flow rate ratio and PA concentration on the ability to create SBs and develop design rules for producing SBs with both cationic and anionic PA nanofibers and gelators. We demonstrate the morphological similarities of SBs to decellularized extracellular matrices and showcase their ability to encapsulate and retain proteinaceous cargos with a wide variety of isoelectric points. Finally, we demonstrate that the novel SB morphology does not affect the well-established biocompatibility of PA gels.
Collapse
Affiliation(s)
- Jack Kolberg-Edelbrock
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Medical Scientist Training Program, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Morton 1-670, Chicago, Illinois 60611-3008, United States
| | - Thomas J Cotey
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Steven Y Ma
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Litsa M Kapsalis
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Delaney M Bondoc
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
| | - Hiroaki Sai
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Cara S Smith
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Feng Chen
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
| | - Alexandra N Kolberg-Edelbrock
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Madison E Strong
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, 2220 Campus Drive, Room 2036, Evanston, Illinois 60208-0893, United States
- Department of Chemistry, Weinberg College of Arts and Sciences, Northwestern University, 2145 Sheridan Road, Tech K148, Evanston, Illinois 60208-0834, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Lurie 11, Chicago, Illinois 60611-3015, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, Illinois 60208-0893, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Arkes Suite 2330, Chicago, Illinois 60611-2915, United States
| |
Collapse
|
9
|
Advances in Peptide-Based Hydrogel for Tissue Engineering. Polymers (Basel) 2023; 15:polym15051068. [PMID: 36904309 PMCID: PMC10005633 DOI: 10.3390/polym15051068] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The development of peptide-based materials has emerged as one of the most challenging aspects of biomaterials in recent years. It has been widely acknowledged that peptide-based materials can be used in a broad range of biomedical applications, particularly in tissue engineering. Among them, hydrogels have been attracting considerable interest in tissue engineering because they mimic tissue formation conditions by providing a three-dimensional environment and a high water content. It has been found that peptide-based hydrogels have received more attention due to mimicking proteins, particularly extracellular matrix proteins, as well as the wide variety of applications they are capable of serving. It is without a doubt that peptide-based hydrogels have become the leading biomaterials of today owing to their tunable mechanical stability, high water content, and high biocompatibility. Here, we discuss in detail various types of peptide-based materials, emphasizing peptide-based hydrogels, and then we examine in detail how hydrogels are formed, paying particular attention to the peptide structures that are incorporated into the final structure. Following that, we discuss the self-assembly and formation of hydrogels under various conditions, as well as the parameters to be considered as critical factors, which include pH, amino acid composi- tion within the sequence, and cross-linking techniques. Further, recent studies on the development of peptide-based hydrogels and their applications in tissue engineering are reviewed.
Collapse
|
10
|
Yamaura K, Sather NA, Metlushko A, Nishimura H, Pavlović RZ, Hambright S, Ravuri SK, Philippon MJ, Stupp SI, Bahney CS, Huard J. Sustained-release losartan from peptide nanofibers promotes chondrogenesis. Front Bioeng Biotechnol 2023; 11:1122456. [PMID: 36814717 PMCID: PMC9939695 DOI: 10.3389/fbioe.2023.1122456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: The central pathologic feature of osteoarthritis (OA) is the progressive loss of articular cartilage, which has a limited regenerative capacity. The TGF-β1 inhibitor, losartan, can improve cartilage repair by promoting hyaline rather that fibrous cartilage tissue regeneration. However, there are concerns about side effects associated with oral administration and short retention within the joint following intra-articular injections. To facilitate local and sustained intra-articular losartan delivery we have designed an injectable peptide amphiphile (PA) nanofiber that binds losartan. The aims of this study are to characterize the release kinetics of losartan from two different PA nanofiber compositions followed by testing pro-regenerative bioactivity on chondrocytes. Methods: We tested the impact of electrostatic interactions on nanostructure morphology and release kinetics of the negatively charged losartan molecule from either a positively or negatively charged PA nanofiber. Subsequently, cytotoxicity and bioactivity were evaluated in vitro in both normal and an IL-1β-induced OA chondrocyte model using ATDC5. Results: Both nanofiber systems promoted cell proliferation but that the positively-charged nanofibers also significantly increased glycosaminoglycans production. Furthermore, gene expression analysis suggested that losartan-encapsulated nanofibers had significant anti-inflammatory, anti-degenerative, and cartilage regenerative effects by significantly blocking TGF-β1 in this in vitro system. Discussion: The results of this study demonstrated that positively charged losartan sustained-release nanofibers may be a novel and useful treatment for cartilage regeneration and OA by blocking TGF-β1.
Collapse
Affiliation(s)
- Kohei Yamaura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Nicholas A. Sather
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Anna Metlushko
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Haruki Nishimura
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Radoslav Z. Pavlović
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Sealy Hambright
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Sudheer K. Ravuri
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States
| | - Marc J. Philippon
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,The Steadman Clinic, Vail, CO, United States
| | - Samuel I. Stupp
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, United States
| | - Chelsea S. Bahney
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,The Orthopaedic Trauma Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States,*Correspondence: Chelsea S. Bahney, ; Johnny Huard,
| | - Johnny Huard
- Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO, United States,*Correspondence: Chelsea S. Bahney, ; Johnny Huard,
| |
Collapse
|
11
|
Ran L, Peng SY, Wang W, Wu Q, Li YC, Wang RP. In vitro and in vivo Evaluation of the Bioactive Nanofibers-Encapsulated Benzalkonium Bromide for Accelerating Wound Repair with MRSA Skin Infection. Int J Nanomedicine 2022; 17:4419-4432. [PMID: 36172005 PMCID: PMC9510697 DOI: 10.2147/ijn.s380786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Developing the ideal drug or dressing is a serious challenge to controlling the occurrence of antibacterial infection during wound healing. Thus, it is important to prepare novel nanofibers for a wound dressing that can control bacterial infections. In our study, the novel self-assembled nanofibers of benzalkonium bromide with bioactive peptide materials of IKVAV and RGD were designed and fabricated. Methods Different drug concentration effects of encapsulation efficacy, swelling ratio and strength were determined. Its release profile in simulated wound fluid and its cytotoxicity were studied in vitro. Importantly, the antibacterial efficacy, inhibition of biofilm formation effect and wound healing against MRSA infections in vitro and in vivo were performed after observing the tissue toxicity in vivo. Results It was found that the optimized drug load (0.8%) was affected by the encapsulation efficacy, swelling ratio, and strength. In addition, the novel nanofibers with average diameter (222.0 nm) and stabile zeta potential (−11.2 mV) have good morphology and characteristics. It has a delayed released profile in the simulated wound fluid and good biocompatibility with L929 cells and most tissues. Importantly, the nanofibers were shown to improve antibacterial efficacy, inhibit biofilm formation, and lead to accelerated wound healing following infection with methicillin-resistant Staphylococcus aureus. Conclusion These data suggest that novel nanofibers could effectively shorten the wound-healing time by inhibiting biofilm formation, which make it promising candidates for treatment of MRSA-induced wound infections. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/wBXjQQOPzyc
Collapse
Affiliation(s)
- Lei Ran
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Shi-Ya Peng
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Wei Wang
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Qian Wu
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Yuan-Chao Li
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| | - Ru-Peng Wang
- Department of Rheumatology and Dermatology, Xinqiao Hospital, Third Military Medical University of Chinese PLA, Chongqing, 430037, People's Republic of China
| |
Collapse
|
12
|
Binaymotlagh R, Chronopoulou L, Haghighi FH, Fratoddi I, Palocci C. Peptide-Based Hydrogels: New Materials for Biosensing and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5871. [PMID: 36079250 PMCID: PMC9456777 DOI: 10.3390/ma15175871] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 05/09/2023]
Abstract
Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.
Collapse
Affiliation(s)
- Roya Binaymotlagh
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Chronopoulou
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Farid Hajareh Haghighi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cleofe Palocci
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
13
|
Gray VP, Amelung CD, Duti IJ, Laudermilch EG, Letteri RA, Lampe KJ. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater 2022; 140:43-75. [PMID: 34710626 PMCID: PMC8829437 DOI: 10.1016/j.actbio.2021.10.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
A core challenge in biomaterials, with both fundamental significance and technological relevance, concerns the rational design of bioactive microenvironments. Designed properly, peptides can undergo supramolecular assembly into dynamic, physical hydrogels that mimic the mechanical, topological, and biochemical features of native tissue microenvironments. The relatively facile, inexpensive, and automatable preparation of peptides, coupled with low batch-to-batch variability, motivates the expanded use of assembling peptide hydrogels for biomedical applications. Integral to realizing dynamic peptide assemblies as functional biomaterials for tissue engineering is an understanding of the molecular and macroscopic features that govern assembly, morphology, and biological interactions. In this review, we first discuss the design of assembling peptides, including primary structure (sequence), secondary structure (e.g., α-helix and β-sheets), and molecular interactions that facilitate assembly into multiscale materials with desired properties. Next, we describe characterization tools for elucidating molecular structure and interactions, morphology, bulk properties, and biological functionality. Understanding of these characterization methods enables researchers to access a variety of approaches in this ever-expanding field. Finally, we discuss the biological properties and applications of peptide-based biomaterials for engineering several important tissues. By connecting molecular features and mechanisms of assembling peptides to the material and biological properties, we aim to guide the design and characterization of peptide-based biomaterials for tissue engineering and regenerative medicine. STATEMENT OF SIGNIFICANCE: Engineering peptide-based biomaterials that mimic the topological and mechanical properties of natural extracellular matrices provide excellent opportunities to direct cell behavior for regenerative medicine and tissue engineering. Here we review the molecular-scale features of assembling peptides that result in biomaterials that exhibit a variety of relevant extracellular matrix-mimetic properties and promote beneficial cell-biomaterial interactions. Aiming to inspire and guide researchers approaching this challenge from both the peptide biomaterial design and tissue engineering perspectives, we also present characterization tools for understanding the connection between peptide structure and properties and highlight the use of peptide-based biomaterials in neural, orthopedic, cardiac, muscular, and immune engineering applications.
Collapse
Affiliation(s)
- Vincent P Gray
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Connor D Amelung
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Israt Jahan Duti
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Emma G Laudermilch
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Rachel A Letteri
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| | - Kyle J Lampe
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22903, United States.
| |
Collapse
|
14
|
Chen S, Yang L, Leung FKC, Kajitani T, Stuart MCA, Fukushima T, van Rijn P, Feringa BL. Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. J Am Chem Soc 2022; 144:3543-3553. [PMID: 35171583 PMCID: PMC8895399 DOI: 10.1021/jacs.1c12318] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Mimicking the native
extracellular matrix (ECM) as a cell culture
scaffold has long attracted scientists from the perspective of supramolecular
chemistry for potential application in regenerative medicine. However,
the development of the next-generation synthetic materials that mimic
key aspects of ECM, with hierarchically oriented supramolecular structures,
which are simultaneously highly dynamic and responsive to external
stimuli, remains a major challenge. Herein, we present supramolecular
assemblies formed by motor amphiphiles (MAs), which mimic
the structural features of the hydrogel nature of the ECM and additionally
show intrinsic dynamic behavior that allow amplifying molecular motions
to macroscopic muscle-like actuating functions induced by light. The
supramolecular assembly (named artificial muscle) provides an attractive
approach for developing responsive ECM mimetic scaffolds for human
bone marrow-derived mesenchymal stem cells (hBM-MSCs).
Detailed investigations on the photoisomerization by nuclear magnetic
resonance and UV–vis absorption spectroscopy, assembled structures
by electron microscopy, the photoactuation process, structural order
by X-ray diffraction, and cytotoxicity are presented. Artificial muscles
of MAs provide fast photoactuation in water based on
the hierarchically anisotropic supramolecular structures and show
no cytotoxicity. Particularly important, artificial muscles of MAs with adhered hBM-MSCs still can be actuated
by external light stimulation, showing their ability to convert light
energy into mechanical signals in biocompatible systems. As a proof-of-concept
demonstration, these results provide the potential for building photoactuating
ECM mimetic scaffolds by artificial muscle-like supramolecular assemblies
based on MAs and offer opportunities for signal transduction
in future biohybrid systems of cells and MAs.
Collapse
Affiliation(s)
- Shaoyu Chen
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands.,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangliang Yang
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, AV Groningen 9713, The Netherlands
| | - Franco King-Chi Leung
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands
| | - Takashi Kajitani
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Marc C A Stuart
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, AV Groningen 9713, The Netherlands
| | - Ben L Feringa
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands.,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Kofman S, Mohan N, Sun X, Ibric L, Piermarini E, Qiang L. Human mini brains and spinal cords in a dish: Modeling strategies, current challenges, and prospective advances. J Tissue Eng 2022; 13:20417314221113391. [PMID: 35898331 PMCID: PMC9310295 DOI: 10.1177/20417314221113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Engineered three-dimensional (3D) in vitro and ex vivo neural tissues, also known as "mini brains and spinal cords in a dish," can be derived from different types of human stem cells via several differentiation protocols. In general, human mini brains are micro-scale physiological systems consisting of mixed populations of neural progenitor cells, glial cells, and neurons that may represent key features of human brain anatomy and function. To date, these specialized 3D tissue structures can be characterized into spheroids, organoids, assembloids, organ-on-a-chip and their various combinations based on generation procedures and cellular components. These 3D CNS models incorporate complex cell-cell interactions and play an essential role in bridging the gap between two-dimensional human neuroglial cultures and animal models. Indeed, they provide an innovative platform for disease modeling and therapeutic cell replacement, especially shedding light on the potential to realize personalized medicine for neurological disorders when combined with the revolutionary human induced pluripotent stem cell technology. In this review, we highlight human 3D CNS models developed from a variety of experimental strategies, emphasize their advances and remaining challenges, evaluate their state-of-the-art applications in recapitulating crucial phenotypic aspects of many CNS diseases, and discuss the role of contemporary technologies in the prospective improvement of their composition, consistency, complexity, and maturation.
Collapse
Affiliation(s)
- Simeon Kofman
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Neha Mohan
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Xiaohuan Sun
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Larisa Ibric
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Emanuela Piermarini
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| | - Liang Qiang
- Department of Neurobiology and Anatomy, Drexel
University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Peressotti S, Koehl GE, Goding JA, Green RA. Self-Assembling Hydrogel Structures for Neural Tissue Repair. ACS Biomater Sci Eng 2021; 7:4136-4163. [PMID: 33780230 PMCID: PMC8441975 DOI: 10.1021/acsbiomaterials.1c00030] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Hydrogel materials have been employed as biological scaffolds for tissue regeneration across a wide range of applications. Their versatility and biomimetic properties make them an optimal choice for treating the complex and delicate milieu of neural tissue damage. Aside from finely tailored hydrogel properties, which aim to mimic healthy physiological tissue, a minimally invasive delivery method is essential to prevent off-target and surgery-related complications. The specific class of injectable hydrogels termed self-assembling peptides (SAPs), provide an ideal combination of in situ polymerization combined with versatility for biofunctionlization, tunable physicochemical properties, and high cytocompatibility. This review identifies design criteria for neural scaffolds based upon key cellular interactions with the neural extracellular matrix (ECM), with emphasis on aspects that are reproducible in a biomaterial environment. Examples of the most recent SAPs and modification methods are presented, with a focus on biological, mechanical, and topographical cues. Furthermore, SAP electrical properties and methods to provide appropriate electrical and electrochemical cues are widely discussed, in light of the endogenous electrical activity of neural tissue as well as the clinical effectiveness of stimulation treatments. Recent applications of SAP materials in neural repair and electrical stimulation therapies are highlighted, identifying research gaps in the field of hydrogels for neural regeneration.
Collapse
Affiliation(s)
- Sofia Peressotti
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Gillian E. Koehl
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Josef A. Goding
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| | - Rylie A. Green
- Department
of Bioengineering and Centre for Neurotechnology, Imperial College London, London SW72AS, United Kingdom
| |
Collapse
|
17
|
Firipis K, Nisbet DR, Franks SJ, Kapsa RMI, Pirogova E, Williams RJ, Quigley A. Enhancing Peptide Biomaterials for Biofabrication. Polymers (Basel) 2021; 13:polym13162590. [PMID: 34451130 PMCID: PMC8400132 DOI: 10.3390/polym13162590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/20/2022] Open
Abstract
Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body’s native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials’ reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.
Collapse
Affiliation(s)
- Kate Firipis
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
- The Graeme Clark Institute, Faculty of Engineering and Information Technology, Melbourne, VIC 3000, Australia
- Faculty of Medicine, Dentistry and Health Services, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Stephanie J. Franks
- Laboratory of Advanced Biomaterials, The Australian National University, Acton, Canberra, ACT 2601, Australia; (D.R.N.); (S.J.F.)
| | - Robert M. I. Kapsa
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
| | - Elena Pirogova
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Richard J. Williams
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
- Correspondence: (R.J.W.); (A.Q.)
| | - Anita Quigley
- Biofab3D, Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (K.F.); (R.M.I.K.); (E.P.)
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
- Department of Medicine, Melbourne University, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3064, Australia
- Correspondence: (R.J.W.); (A.Q.)
| |
Collapse
|
18
|
Revkova VA, Sidoruk KV, Kalsin VA, Melnikov PA, Konoplyannikov MA, Kotova S, Frolova AA, Rodionov SA, Smorchkov MM, Kovalev AV, Troitskiy AV, Timashev PS, Chekhonin VP, Bogush VG, Baklaushev V. Spidroin Silk Fibers with Bioactive Motifs of Extracellular Proteins for Neural Tissue Engineering. ACS OMEGA 2021; 6:15264-15273. [PMID: 34151105 PMCID: PMC8210451 DOI: 10.1021/acsomega.1c01576] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/12/2021] [Indexed: 05/16/2023]
Abstract
The interaction of neural progenitor cells (NPCs) with the extracellular matrix (ECM) plays an important role in neural tissue regeneration. Understanding which motifs of the ECM proteins are crucial for normal NPC adhesion, proliferation, and differentiation is important in order to create more adequate tissue engineered models of neural tissue and to efficiently study the central nervous system regeneration mechanisms. We have shown earlier that anisotropic matrices prepared from a mixture of recombinant dragline silk proteins, such as spidroin 1 and spidroin 2, by electrospinning are biocompatible with NPCs and provide good proliferation and oriented growth of neurites. This study objective was to find the effects of spidroin-based electrospun materials, modified with peptide motifs of the extracellular matrix proteins (RGD, IKVAV, and VAEIDGIEL) on adhesion, proliferation, and differentiation of directly reprogrammed neural precursor cells (drNPCs). The structural and biomechanical studies have shown that spidroin-based electrospun mats (SBEM), modified with ECM peptides, are characterized by a uniaxial orientation and elastic moduli in the swollen state, comparable to those of the dura mater. It has been found for the first time that drNPCs on SBEM mostly preserve their stemness in the growth medium and even in the differentiation medium with brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, while addition of the mentioned ECM-peptide motifs may shift the balance toward neuroglial differentiation. We have demonstrated that the RGD motif promotes formation of a lower number of neurons with longer neurites, while the IKVAV motif is characterized by formation of a greater number of NF200-positive neurons with shorter neurites. At the same time, all the studied matrices preserve up to 30% of neuroglial progenitor cells, phenotypically similar to radial glia derived from the subventricular zone. We believe that, by using this approach and modifying spidroin by various ECM-motifs or other substances, one may create an in vitro model for the neuroglial stem cell niche with the potential control of their differentiation.
Collapse
Affiliation(s)
- Veronica A. Revkova
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | | | - Vladimir A. Kalsin
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Pavel A. Melnikov
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Mikhail A. Konoplyannikov
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Svetlana Kotova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia A. Frolova
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
| | - Sergey A. Rodionov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Mikhail M. Smorchkov
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexey V. Kovalev
- N. N. Priorov
National Medical Research Center of Traumatology and Orthopedics, Moscow 127299, Russia
| | - Alexander V. Troitskiy
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| | - Peter S. Timashev
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Moscow 119048, Russia
- N.
N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Chemistry
Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P. Chekhonin
- Serbsky
National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | | | - Vladimir
P. Baklaushev
- Federal
Research and Clinical Center of Specialized Medical Care and Medical
Technologies FMBA of Russia, Moscow 115682, Russia
| |
Collapse
|
19
|
Sharma P, Pal VK, Roy S. An overview of latest advances in exploring bioactive peptide hydrogels for neural tissue engineering. Biomater Sci 2021; 9:3911-3938. [PMID: 33973582 DOI: 10.1039/d0bm02049d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural tissue engineering holds great potential in addressing current challenges faced by medical therapies employed for the functional recovery of the brain. In this context, self-assembling peptides have gained considerable interest owing to their diverse physicochemical properties, which enable them to closely mimic the biophysical characteristics of the native ECM. Additionally, in contrast to synthetic polymers, which lack inherent biological signaling, peptide-based nanomaterials could be easily designed to present essential biological cues to the cells to promote cellular adhesion. Moreover, injectability of these biomaterials further widens their scope in biomedicine. In this context, hydrogels obtained from short bioactive peptide sequences are of particular interest owing to their facile synthesis and highly tunable properties. In spite of their well-known advantages, the exploration of short peptides for neural tissue engineering is still in its infancy and thus detailed discussion is required to evoke interest in this direction. This review provides a general overview of various bioactive hydrogels derived from short peptide sequences explored for neural tissue engineering. The review also discusses the current challenges in translating the benefits of these hydrogels to clinical practices and presents future perspectives regarding the utilization of these hydrogels for advanced biomedical applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Vijay Kumar Pal
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| | - Sangita Roy
- Institute of Nano Science and Technology, Sector 81, Knowledge city, Mohali, 140306, Punjab, India.
| |
Collapse
|
20
|
Yin Y, Wang W, Shao Q, Li B, Yu D, Zhou X, Parajuli J, Xu H, Qiu T, Yetisen AK, Jiang N. Pentapeptide IKVAV-engineered hydrogels for neural stem cell attachment. Biomater Sci 2021; 9:2887-2892. [PMID: 33514963 DOI: 10.1039/d0bm01454k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spinal cord injury remains irreversible with current treatment paradigms, due to the inability to rebuild the regenerative environment for neurons after injury. Neural tissue engineering that encapsulates the neural stem/progenitor cells within an artificial scaffold provides a possibility to regenerate neurons for spinal cord injury repair. The attachment and survival of these neural cells usually require similar microenvironments to the extracellular matrix for support. Here, a three-dimensional pentapeptide IKVAV-functionalized poly(lactide ethylene oxide fumarate) (PLEOF) hydrogel is developed. In vitro tests demonstrate that the IKVAV-PLEOF hydrogels are biodegradable and hemo-biocompatible. This IKVAV-PLEOF hydrogel is shown to support neural stem cell attachment, growth, proliferation, and differentiation. Additionally, the neural stem cells could be readily formed as spheroids that subsequently encapsulated, attached, and proliferated within the three-dimensional hydrogel constructs. Additionally, an in vivo test confirms the biodegradability and biocompatibility of the IKVAV-PLEOF hydrogels revealing that the hydrogels biodegrade, new blood vessels form, and few inflammatory responses are observed after 4-week implantation. The neural stem cell spheroid-laden hydrogels may have further implications in spinal cord injury regenerative and brain repair in neural tissue engineering.
Collapse
Affiliation(s)
- Yixia Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Wenwu Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Qi Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Binbin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Dan Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Xin Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Jayanti Parajuli
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Haixing Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China. and School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, USA
| |
Collapse
|
21
|
Gene Expression of Mouse Hippocampal Stem Cells Grown in a Galactose-Derived Molecular Gel Compared to In Vivo and Neurospheres. Processes (Basel) 2021. [DOI: 10.3390/pr9040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: N-heptyl-D-galactonamide (GalC7) is a small synthetic carbohydrate derivative that forms a biocompatible supramolecular hydrogel. In this study, the objective was to analyze more in-depth how neural cells differentiate in contact with GalC7. Method: Direct (ex vivo) cells of the fresh hippocampus and culture (In vitro) of the primary cells were investigated. In vitro, investigation performed under three conditions: on culture in neurospheres for 19 days, on culture in GalC7 gel for 7 days, and on culture in both neurospheres and GalC7 gel. Total RNA was isolated with TRIzol from each group, Sox8, Sox9, Sox10, Dcx, and Neurod1 expression levels were measured by qPCR. Result: Sox8 and Sox10, oligodendrocyte markers, and Sox9, an astrocyte marker, were expressed at a much higher level after 7 days of culture in GalC7 hydrogel compared to all other conditions. Dcx, a marker of neurogenesis, and Neurod1, a marker of neuronal differentiation, were expressed at better levels in the GalC7 gel culture compared to the neurosphere. Conclusions: These results show that the GalC7 hydrogel brings different and interesting conditions for inducing the differentiation and maturation of neural progenitor cells compared with polymer-based scaffolds or cell-only conditions. The differences observed open new perspectives in tissue engineering, induction, and transcript analysis.
Collapse
|
22
|
Wang J, Li H, Xu B. Biological functions of supramolecular assemblies of small molecules in cellular environment. RSC Chem Biol 2021; 2:289-305. [PMID: 34423303 PMCID: PMC8341129 DOI: 10.1039/d0cb00219d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022] Open
Abstract
Like biomacromolecules, certain small molecules (e.g., aggregators) are able to self-assemble in aqueous phase to form nanoscale aggregates. Though it is well-established that the aggregates may interact with enzymes in vitro, the study of the biological activities of the assemblies of small molecules in cellular environment is only at its beginning. This review summarizes the recent progresses in exploring the biological functions of supramolecular assemblies of small molecules (SASMs). We first discuss the use of SASMs to inhibit pathogenic cells, such as cancer cells and bacteria. The use of SASMs to target different parts of cancer cells, such as pericellular space, cytosol, and subcellular organelles, and to combine with other bioactive entities (e.g., proteins and clinically used drugs), is particularly promising for addressing the challenge of acquired multidrug resistance in cancer therapy. Then, we describe the use of SASMs to sustain physiological functions of normal cells, that is, promoting cells proliferation and differentiation for tissue regeneration. After that, we show the use of SASMs as a basic tool to research cell behaviors, for instance, identifying the specific cells, improving enzyme probes, revealing membrane dynamics, enhancing molecular imaging, and mimicking context-dependent signaling. Finally, we give the outlook of the research of SASMs. We expect that this review, by highlighting the biological functions of SASMs, provides a starting point to explore the chemical biology of SASMs.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjin 300070P. R. China
| | - Hui Li
- School of Biomedical Engineering and Technology, Tianjin Medical UniversityTianjin 300070P. R. China
| | - Bing Xu
- Department of Chemistry, Brandeis UniversityWalthamMassachusetts 02454USA
| |
Collapse
|
23
|
Sharma A, Sharma P, Roy S. Elastin-inspired supramolecular hydrogels: a multifaceted extracellular matrix protein in biomedical engineering. SOFT MATTER 2021; 17:3266-3290. [PMID: 33730140 DOI: 10.1039/d0sm02202k] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phenomenal advancement in regenerative medicines has led to the development of bioinspired materials to fabricate a biomimetic artificial extracellular matrix (ECM) to support cellular survival, proliferation, and differentiation. Researchers have diligently developed protein polymers consisting of functional sequences of amino acids evolved in nature. Nowadays, certain repetitive bioinspired polymers are treated as an alternative to synthetic polymers due to their unique properties like biodegradability, easy scale-up, biocompatibility, and non-covalent molecular associations which imparts tunable supramolecular architecture to these materials. In this direction, elastin has been identified as a potential scaffold that renders extensibility and elasticity to the tissues. Elastin-like polypeptides (ELPs) are artificial repetitive polymers that exhibit lower critical solution temperature (LCST) behavior in a particular environment than synthetic polymers and hence have gained extensive interest in the fabrication of stimuli-responsive biomaterials. This review discusses in detail the unique structural aspects of the elastin and its soluble precursor, tropoelastin. Furthermore, the versatility of elastin-like peptides is discussed through numerous examples that bolster the significance of elastin in the field of regenerative medicines such as wound care, cardiac tissue engineering, ocular disorders, bone tissue regeneration, etc. Finally, the review highlights the importance of exploring short elastin-mimetic peptides to recapitulate the structural and functional aspects of elastin for advanced healthcare applications.
Collapse
Affiliation(s)
- Archita Sharma
- Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306, Punjab, India.
| | | | | |
Collapse
|
24
|
Jorgensen MD, Chmielewski J. Reversible crosslinked assembly of a trimeric coiled-coil peptide into a three-dimensional matrix for cell encapsulation and release. J Pept Sci 2021; 28:e3302. [PMID: 33506586 DOI: 10.1002/psc.3302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Mimicking the extracellular matrix (ECM) continues to be a goal in the field of regenerative medicine. Herein, we report a modified trimeric GCN4 coiled-coil sequence containing three ligands for metal ions specifically positioned for crosslinked assembly (TriCross). In the presence of metal ions, TriCross assembles into a three-dimensional (3D) matrix with significant cavities to accommodate cells. The matrix was found to be stable in media with serum, and mild removal of the metal leads to disassembly. By assembling TriCross with a suspension of cells in media, the matrix encapsulates cells during the assembly process leading to high cell viability. Further disassembly under mild conditions allows for the release of cells from the scaffold. As such, this peptide-based material displays many of the characteristics necessary for successful 3D cell culture.
Collapse
Affiliation(s)
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
25
|
Cai Y, Zheng C, Xiong F, Ran W, Zhai Y, Zhu HH, Wang H, Li Y, Zhang P. Recent Progress in the Design and Application of Supramolecular Peptide Hydrogels in Cancer Therapy. Adv Healthc Mater 2021; 10:e2001239. [PMID: 32935937 DOI: 10.1002/adhm.202001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Supramolecular peptide hydrogel (SPH) is a class of biomaterials self-assembled from peptide-based gelators through non-covalent interactions. Among many of its biomedical applications, the potential of SPH in cancer therapy has been vastly explored in the past decade, taking advantage of its good biocompatibility, multifunctionality, and injectability. SPHs can exert localized cancer therapy and induce systemic anticancer immunity to prevent tumor recurrence, depending on the design of SPH. This review first gives a brief introduction to SPH and then outlines the major types of peptide-based gelators that have been developed so far. The methodologies to tune the physicochemical properties and biological activities are summarized. The recent advances of SPH in cancer therapy as carriers, prodrugs, or drugs are highlighted. Finally, the clinical translation potential and main challenges in this field are also discussed.
Collapse
Affiliation(s)
- Ying Cai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao Zheng
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Fengqin Xiong
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Wei Ran
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yihui Zhai
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Helen H. Zhu
- State Key Laboratory of Oncogenes and Related Genes Renji‐Med‐X Stem Cell Research Center Department of Urology Ren Ji Hospital School of Medicine and School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Hao Wang
- China State Institute of Pharmaceutical Industry Shanghai 200040 China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Pengcheng Zhang
- State Key Laboratory of Drug Research and Center of Pharmaceutics Shanghai Institute of Materia Medica Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations Yantai Institute of Materia Medica Shandong 264000 China
| |
Collapse
|
26
|
Qiu B, Bessler N, Figler K, Buchholz M, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910250. [PMID: 34566552 PMCID: PMC8444304 DOI: 10.1002/adfm.201910250] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/09/2023]
Abstract
To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.
Collapse
Affiliation(s)
- Boning Qiu
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Nils Bessler
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Kianti Figler
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Maj‐Britt Buchholz
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Anne C. Rios
- Princess Máxima Center for Pediatric OncologyHeidelberglaan 25Utrecht3584 CSThe Netherlands
| | - Jos Malda
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Riccardo Levato
- Department of Orthopaedics and Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584CXThe Netherlands
- Department of Equine SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 112Utrecht3584CXThe Netherlands
| | - Massimiliano Caiazzo
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Utrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples “Federico II”Via Pansini 5Naples80131Italy
| |
Collapse
|
27
|
Clemons TD, Stupp SI. Design of materials with supramolecular polymers. Prog Polym Sci 2020; 111:101310. [PMID: 33082608 PMCID: PMC7560124 DOI: 10.1016/j.progpolymsci.2020.101310] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 01/03/2023]
Abstract
One hundred years ago Hermann Staudinger was strongly criticized by his scientific peers for his macromolecular hypothesis, but today it is hard to imagine a world without polymers. His hypothesis described polymers as macromolecules composed of large numbers of structural units connected by covalent bonds. In the 1990s the concept of supramolecular polymers emerged in the scientific literature as discrete entities of large molar mass comparable to that of classical polymers but built through non-covalent bonds among monomers. Supramolecular polymers exist in biological systems, and potentially blend the physical properties of covalent polymers with unique features such as high degrees of internal order within the polymeric structure, defined shapes, and novel dynamics. This trend article provides a summary of seminal contributions in supramolecular polymerization and provides recent examples from the Stupp laboratory to demonstrate the potential applications of an exciting class of materials composed fully or partially of supramolecular polymers. In closing, we provide our perspective on future opportunities provided by this field at the onset of a second century of polymers. It is our objective here to demonstrate that this second century could be as prosperous, if not more so, than the preceding one.
Collapse
Affiliation(s)
- Tristan D Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL. 60611 USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Samuel I Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL. 60611 USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
28
|
Mesenchymal stem cell therapy for ischemic stroke: A look into treatment mechanism and therapeutic potential. J Neurol 2020; 268:4095-4107. [DOI: 10.1007/s00415-020-10138-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
|
29
|
Cross-Linked Self-Assembling Peptides and Their Post-Assembly Functionalization via One-Pot and In Situ Gelation System. Int J Mol Sci 2020; 21:ijms21124261. [PMID: 32549405 PMCID: PMC7353005 DOI: 10.3390/ijms21124261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Supramolecular nanostructures formed through peptide self-assembly can have a wide range of applications in the biomedical landscape. However, they often lose biomechanical properties at low mechanical stress due to the non-covalent interactions working in the self-assembling process. Herein, we report the design of cross-linked self-assembling peptide hydrogels using a one-pot in situ gelation system, based on 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide/N-hydroxysulfosuccinimide (EDC/sulfo–NHS) coupling, to tune its biomechanics. EDC/sulfo–NHS coupling led to limited changes in storage modulus (from 0.9 to 2 kPa), but it significantly increased both the strain (from 6% to 60%) and failure stress (from 19 to 35 Pa) of peptide hydrogel without impairing the spontaneous formation of β-sheet-containing nano-filaments. Furthermore, EDC/sulfo–NHS cross-linking bestowed self-healing and thixotropic properties to the peptide hydrogel. Lastly, we demonstrated that this strategy can be used to incorporate bioactive functional motifs after self-assembly on pre-formed nanostructures by functionalizing an Ac-LDLKLDLKLDLK-CONH2 (LDLK12) self-assembling peptide with the phage display-derived KLPGWSG peptide involved in the modulation of neural stem cell proliferation and differentiation. The incorporation of a functional motif did not alter the peptide’s secondary structure and its mechanical properties. The work reported here offers new tools to both fine tune the mechanical properties of and tailor the biomimetic properties of self-assembling peptide hydrogels while retaining their nanostructures, which is useful for tissue engineering and regenerative medicine applications.
Collapse
|
30
|
Chakroun RW, Sneider A, Anderson CF, Wang F, Wu P, Wirtz D, Cui H. Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cell‐Sensitive Hydrogel Degradation and Drug Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Alexandra Sneider
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Caleb F. Anderson
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pei‐Hsun Wu
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
- Center for Nanomedicine The Wilmer Eye Institute Johns Hopkins University School of Medicine USA
| |
Collapse
|
31
|
Chakroun RW, Sneider A, Anderson CF, Wang F, Wu P, Wirtz D, Cui H. Supramolecular Design of Unsymmetric Reverse Bolaamphiphiles for Cell‐Sensitive Hydrogel Degradation and Drug Release. Angew Chem Int Ed Engl 2020; 59:4434-4442. [DOI: 10.1002/anie.201913087] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/02/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Rami W. Chakroun
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Alexandra Sneider
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Caleb F. Anderson
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
| | - Pei‐Hsun Wu
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering Institute for NanoBiotechnology The Johns Hopkins University 3400 North Charles Street Baltimore MD 21218 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center Johns Hopkins University School of Medicine 400 North Broadway Baltimore MD 21231 USA
- Center for Nanomedicine The Wilmer Eye Institute Johns Hopkins University School of Medicine USA
| |
Collapse
|
32
|
Guo JL, Kim YS, Mikos AG. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies. Biomacromolecules 2019; 20:2904-2912. [PMID: 31282658 DOI: 10.1021/acs.biomac.9b00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biomacromolecules used for tissue engineering must possess either inherent biochemical cues for tissue regeneration or be chemically modified to incorporate bioactive, tissue-specific moieties. To this end, many strategies have emerged recently in the field to both utilize novel bioinspired macromolecules for tissue engineering and apply bioconjugation strategies for the functionalization of biomacromolecules with tissue-specific cues and other biological properties of interest. Furthermore, biomacromolecules have been processed into more highly biomimetic and clinically deliverable scaffold and hydrogel systems using 3D printing and the fabrication of in situ forming hydrogels, respectively. To support these advances, tissue engineers have also pursued greater spatiotemporal control over macromolecular bioactivity and the modulation of scaffold and hydrogel properties in response to both physiological and external stimuli. This Perspective thus highlights a few notable advances and techniques in the usage of biomacromolecules for tissue engineering applications, including new bioinspired macromolecules, advanced hydrogel and scaffold fabrication techniques, and spatiotemporal control over biomacromolecule constructs.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Yu Seon Kim
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Antonios G Mikos
- Department of Bioengineering , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| |
Collapse
|
33
|
Recent trends in peripheral nervous regeneration using 3D biomaterials. Tissue Cell 2019; 59:70-81. [PMID: 31383291 DOI: 10.1016/j.tice.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) owing their multipotency are known as progenitors for the regeneration of adult tissues including that of neuronal tissue. The repair and/or regeneration of traumatic nerves is still a challenging task for neurosurgeons. It is also a well-established fact that the microenvironment plays a primary role in determining the fate of stem cells to a specific lineage. In recent years, with the advent of nanotechnology and its positive influence on designing and fabrication of various 3D biomaterials have progressed to a greater extent. The production of 3D biomaterials such as nanofibers, conduits and hydrogels are providing a suitable environment for mimicking physiological niche of stem cells. These 3D biomaterials in combination with MSCs have been successfully analyzed for their potential in the regeneration of degenerative neurological disorders. This review primarily highlights the combinatorial effect of multipotent MSCs seeded on various 3D polymeric scaffolds in repair and regeneration of nervous tissue. The elaboration of MSCs from distinct sources reported so far in literature are summarized to understand their role in regeneration processes. Furthermore, we accentuate the application of 3D biomaterials especially the nanofibers, polymeric conduits, hydrogels infiltrated with MSCs harvested from distinct sources in the field of peripheral nerve regeneration studies.
Collapse
|
34
|
Li J, Xing R, Bai S, Yan X. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. SOFT MATTER 2019; 15:1704-1715. [PMID: 30724947 DOI: 10.1039/c8sm02573h] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Peptide-based hydrogels have been proven to be preeminent biomedical materials due to their high water content, tunable mechanical stability, great biocompatibility and excellent injectability. The ability of peptide-based hydrogels to provide extracellular matrix-mimicking environments opens up opportunities for their biomedical applications in fields such as drug delivery, tissue engineering, and wound healing. In this review, we first describe several methods commonly used for the fabrication of robust peptide-based hydrogels, including spontaneous hydrogelation, enzyme-controlled hydrogelation and cross-linking-enhanced hydrogelation. We then introduce some representative studies on their applications in drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering. We hope that this review facilitates the advances of hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No. 1 North 2nd Street, Zhongguancun, 100190 Beijing, China.
| | | | | | | |
Collapse
|
35
|
Jing W, Zuo D, Cai Q, Chen G, Wang L, Yang X, Zhong W. Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration. Exp Cell Res 2019; 375:80-91. [DOI: 10.1016/j.yexcr.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 12/20/2022]
|