1
|
Cui P, Huang Y, Liu R, Hu D, Wu H, Liu Z. Three-Tier Hierarchical Porous Structure with Ultrafast Capillary Transport for Flexible Electronics Cooling. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11199-11212. [PMID: 39927793 DOI: 10.1021/acsami.4c16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The development of flexible electronics needs efficient cooling devices. The porous wick, the key component in a heat pipe (HP) and vapor chamber (VC), is generally fabricated by sintering copper particles at high temperatures (>1000 °C), which makes it only formed on an inflexible substrate. In this work, one three-tier hierarchical porous structure (mesocrack, micropore, and nanopapillae) was fabricated via a low-temperature sintering method based on the utilization of self-reducing metal precursors (∼300 °C), which can be used as a flexible porous wick. The mesocrack, acting as the main water flow channel, efficiently decreases the flow resistance. The micropore, covered with densely distributed spore-like nanopapillae, creates a heterogeneous wetting surface. By harnessing the synergistic effect of hydrophobic drag reduction and hydrophilic driving force enhancement, the capillary performance is significantly improved. The obtained wick on the flexible substrate can overcome the dilemma between diminishing viscous resistance and strengthening capillary force at different length scales. It can achieve an ultimate wicking coefficient of 7.132 mm/s0.5, representing an enhancement of 9.1% compared to the best micro/nano wick structure in the previous works. Moreover, for the flexible light-emitting diode, the passive cooling approach utilizing the fluid transport and evaporation within the porous structure fabricated in this study, in comparison to the natural cooling, achieved a temperature decrease of 35.9 °C, resulting in a cooling effect of up to 35.1%. The proposed method resolves the challenge of fabricating a porous wick for flexible HP and VC, and it will open up a way for the cooling technique of flexible electronics.
Collapse
Affiliation(s)
- Peilin Cui
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yunxie Huang
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Runkeng Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dinghua Hu
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huiying Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenyu Liu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Tegg L, McCarroll IE, Kim SH, Dubosq R, Woods EV, El-Zoka AA, Gault B, Cairney JM. Analysis of Water Ice in Nanoporous Copper Needles Using Cryo Atom Probe Tomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 30:1195-1204. [PMID: 39027931 DOI: 10.1093/mam/ozae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
The application of atom probe tomography (APT) to frozen liquids is limited by difficulties in specimen preparation. Here, we report on the use of nanoporous Cu needles as a physical framework to hold water ice for investigation using APT. Nanoporous Cu needles are prepared by electropolishing and dealloying Cu-Mn matchstick precursors. Cryogenic scanning electron microscopy and focused ion beam milling reveal a hierarchical, dendritic, highly wettable microstructure. The atom probe mass spectrum is dominated by peaks of Cu+ and H(H2O)n+ up to n ≤ 3, and the reconstructed volume shows the protrusion of a Cu ligament into an ice-filled pore. The continuous Cu ligament network electrically connects the apex to the cryostage, leading to an enhanced electric field at the apex and increased cooling, both of which simplify the mass spectrum compared to previous reports.
Collapse
Affiliation(s)
- Levi Tegg
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Ingrid E McCarroll
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Se-Ho Kim
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Renelle Dubosq
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Eric V Woods
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
| | - Ayman A El-Zoka
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Baptiste Gault
- Department of Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung, Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Department of Materials, Royal School of Mines, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Julie M Cairney
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
3
|
Nam HT, Cho HH, Lee S, Lee D. Two-Phase Particle Image Velocimetry Visualization of Rewetting Flow on the Micropillar Interfacial Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34313-34325. [PMID: 38907697 DOI: 10.1021/acsami.4c04114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Boiling heat transfer has a high thermal efficiency by latent heat absorption, which makes it an attractive process for cooling electronic device chips. Critical heat flux (CHF), the maximum heat flux, is a crucial factor determining the operating range of the boiling applications. The CHF can be enhanced by improving the fluid supply to the boiling surface. Herein, micropillar interfacial surfaces have been proposed to increase the CHF by increasing the rewetting flow, which determines the fluid-supply capacity near the bubble contact line. A state-of-art two-phase particle image velocimetry (two-phase PIV) technique is introduced for rewetting flow measurement on micropillar structures (MPSs) to analyze the CHF-enhancement mechanism. The two-phase PIV visualization setup offers high spatial (∼120 μm) and temporal (∼2000 Hz) resolutions for measuring rewetting flow during bubble growth. The MPS samples exhibit enhanced CHF and rewetting flows compared to those on a plain surface. The roughest case, D04G10 sample, had a CHF of 164 W/cm2, 1.84 times higher than that of the plain surface. The D04G10 sample also recorded the highest rewetting velocity of 0.311 m/s, 4.7 times higher than that of the plain surface. The comparison between the rewetting flow and wicking performance shows that wicking-induced flow accounted for a substantial part (∼17%) of the rewetting flow and contributed significantly to the CHF enhancement owing to large rewetting flow by delaying vapor-film formation. Based on these findings, a new CHF model suggested by introducing the rewetting parameter shows a high CHF prediction accuracy of 94%.
Collapse
Affiliation(s)
- Hyeon Taek Nam
- Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Hyung Hee Cho
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Seungro Lee
- Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Laboratory for Renewable Energy and Sector Coupling, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Donghwi Lee
- Department of Mechanical System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Advanced Transportation Machinery Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| |
Collapse
|
4
|
Yuan X, Yan C, Huang Y, Tang Y, Chen G, Zhang S. High-Performance Bioinspired Hierarchical Microgroove Wick for Ceramic Vapor Chambers Achieved by Nanosecond Pulsed Lasers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11914-11926. [PMID: 38804978 DOI: 10.1021/acs.langmuir.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Directly integrating ceramic vapor chambers into the insulating substrate of semiconductor power devices is an effective approach to solve the problem of heat dissipation. Microgrooves that could be machined directly on the shell plate without contact thermal resistance and mechanical dislocation offer exciting opportunities to achieve high-performance ceramic vapor chambers. In this study, a bioinspired hierarchical microgroove wick (BHMW) containing low ribs via one-step nanosecond pulsed laser processing was developed, as inspired by the Sarracenia trichome. The superwicking behavior of microgrooves with different structural parameters was investigated using capillary rise tests and droplet-spreading experiments. The BHMW exhibited excellent capillary performance and anisotropic hemiwicking performance. At a laser scanning spacing of 30 μm, the BHMW achieved a capillary wicking height of 114 mm within 20 s. The optimized BHMW demonstrated a capillary parameter (ΔPc·K) and an anisotropic hemiwicking ratio of 4.46 × 10-7 N and 11.93, respectively, which were 1182 and 946% higher than references, as achieved through nanosecond pulsed laser texturing under identical parameters. This work not only develops a high-performance hierarchical alumina microgroove wick structure but also outlines design guidelines for high-performance ceramic vapor chambers for thermal management in semiconductor power devices.
Collapse
Affiliation(s)
- Xuepeng Yuan
- Intelligent Manufacturing Engineering Laboratory of Functional Structure and Device in Guangdong, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Caiman Yan
- Intelligent Manufacturing Engineering Laboratory of Functional Structure and Device in Guangdong, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yunxian Huang
- Intelligent Manufacturing Engineering Laboratory of Functional Structure and Device in Guangdong, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Yong Tang
- Intelligent Manufacturing Engineering Laboratory of Functional Structure and Device in Guangdong, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Gong Chen
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shiwei Zhang
- Intelligent Manufacturing Engineering Laboratory of Functional Structure and Device in Guangdong, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, PR China
- SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai, Guangdong 519175, China
| |
Collapse
|
5
|
Rozati SA, Khriwish MB, Gupta A. Speleothem-Inspired Copper/Nickel Interfaces for Enhanced Liquid-Vapor Transport by Marangoni and Soret Effects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10745-10758. [PMID: 38717287 DOI: 10.1021/acs.langmuir.4c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Geological formations have superior wickability and support the absorption of water and oils into narrow spaces of Earth's crust without external assistance. In this study, we present speleothem inspired heterogeneous porous and wicked copper (Cu)/nickel (Ni) interfaces for enhanced nucleate boiling of water/ethanol mixtures for energy-efficient separation processes. The incorporation of Ni strands within the copper particle matrix significantly enhanced heat transfer. Compared to plain copper, the Cu/Ni speleothem surfaces exhibited a 61% increase in the heat transfer coefficient for water/ethanol mixtures and a 332% increase for water, with a 58% faster onset of nucleate boiling. This enhancement was attributed to Marangoni and Soret effects at the Cu/Ni interfaces, driven by surface tension and concentration gradients. Furthermore, the synergistic wicking action of the Ni strands facilitated rewetting of the surface, replenishing liquid to the porous nucleation sites and preventing surface dry-out, thereby improving the overall heat transfer performance.
Collapse
|
6
|
Chen F, Cheng Z, Jiang L, Dong Z. Capillary Wicking on Heliamphora minor-Mimicking Mesoscopic Trichomes Array. Biomimetics (Basel) 2024; 9:102. [PMID: 38392148 PMCID: PMC10887133 DOI: 10.3390/biomimetics9020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Liquid spontaneously spreads on rough lyophilic surfaces, and this is driven by capillarity and defined as capillary wicking. Extensive studies on microtextured surfaces have been applied to microfluidics and their corresponding manufacturing. However, the imbibition at mesoscale roughness has seldom been studied due to lacking fabrication techniques. Inspired by the South American pitcher plant Heliamphora minor, which wicks water on its pubescent inside wall for lubrication and drainage, we implemented 3D printing to fabricate a mimetic mesoscopic trichomes array and investigated the high-flux capillary wicking process. Unlike a uniformly thick climbing film on a microtextured surface, the interval filling of millimeter-long and submillimeter-pitched trichomes creates a film of non-uniform thickness. Different from the viscous dissipation that dominated the spreading on microtextured surfaces, we unveiled an inertia-dominated transition regime with mesoscopic wicking dynamics and constructed a scaling law such that the height grows to 2/3 the power of time for various conditions. Finally, we examined the mass transportation inside the non-uniformly thick film, mimicking a plant nutrition supply method, and realized an open system siphon in the film, with the flux saturation condition experimentally determined. This work explores capillary wicking in mesoscopic structures and has potential applications in the design of low-cost high-flux open fluidics.
Collapse
Affiliation(s)
- Fenglin Chen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyang Cheng
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Effects of surface nanotexturing on the wickability of microtextured metal surfaces. J Colloid Interface Sci 2023; 638:788-800. [PMID: 36791477 DOI: 10.1016/j.jcis.2023.01.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
HYPOTHESIS Achieving spontaneous, rapid, and long-distance liquid transport is crucial for many practical applications such as phase change heat transfer and reactions at solid-liquid interfaces. Surface nanotexturing has been widely reported to improve the wickability of microtextured metal surfaces. Although surface nanotextures show high capillary pressure, the high fluid flow resistance through nanotextures prevents fluid transport. The underlying mechanisms responsible for the enhanced wickability of nanotextured surfaces are still unclear. EXPERIMENTS Herein, we prepared a variety of microtextures and nanotextures on copper surfaces by femtosecond laser micromachining and chemical oxidation, respectively. The wickability of these textured surfaces was quantitively compared by measuring wicking coefficient and capillary rise speed. We designed experiments to eliminate any possible effects of surface oxidation and metal composition on wickability. A theoretical model describing the vertical and horizontal capillary flow in V-shaped microgrooves was proposed and utilized to analyze the experimental results. The effects of time-dependent wettability on wickability were also examined. FINDINGS Surface nanotexturing can enhance surface wettability while altering the micrometer-scale structural characteristics. The greatly enhanced wickability of nanotextured surfaces can only be observed when the surface microtextures have a very small aspect ratio. Otherwise, for metal surfaces with fine microgrooves, the latter effect is more pronounced, and thus the surface wickability may deteriorate after preparing surface nanotextures; for surfaces with wide microgrooves, both effects are minimal, and the surface wickability enhances only marginally after surface nanotexturing. Furthermore, the wickability of microtextured surfaces will decay rapidly due to the adsorption of airborne organics, whereas adding surface nanotextures can significantly inhibit this degradation. The anti-contamination capability of surface nanotextures is considered likely to be a potential mechanism responsible for the greatly enhanced wickability of nanotextured surfaces noted in some studies.
Collapse
|
8
|
Zhang RP, Mei M, Qiu H. Effect of Micropillar Array Morphology on Liquid Propagation Coefficient Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3083-3093. [PMID: 36802613 DOI: 10.1021/acs.langmuir.2c03175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Roughness on hydrophilic surfaces allows for fast propagation of liquids. In this paper, the hypothesis is tested which theorizes that pillar array structures with nonuniform pillar height levels can enhance wicking rates. In this work, within a unit cell, nonuniform micropillars were arranged with one pillar at constant height, while other shorter pillars were varied in height to study these nonuniform effects. Subsequently, a new microfabrication technique was developed to fabricate a nonuniform pillar array surface. Capillary rising-rate experiments were conducted with water, decane, and ethylene glycol as working liquids to determine the behavior of propagation coefficients that were dependent on pillar morphology. It is found that a nonuniform pillar height structure leads to a separation of layers in the liquid spreading process and the propagation coefficient increases with declining micropillar height for all liquids tested. This indicated a significant enhancement of wicking rates compared to uniform pillar arrays. A theoretical model was subsequently developed to explain and predict the enhancement effect by considering capillary force and viscous resistance of nonuniform pillar structures. The insights and implications from this model thus advance our understanding of the physics of the wicking process and can inform the design of pillar structures with an enhanced wicking propagation coefficient.
Collapse
Affiliation(s)
- Ruo Peng Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Mei Mei
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Huihe Qiu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
- Thrust of Sustainable Energy and Environment, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511453, China
| |
Collapse
|
9
|
Upot NV, Fazle Rabbi K, Khodakarami S, Ho JY, Kohler Mendizabal J, Miljkovic N. Advances in micro and nanoengineered surfaces for enhancing boiling and condensation heat transfer: a review. NANOSCALE ADVANCES 2023; 5:1232-1270. [PMID: 36866258 PMCID: PMC9972872 DOI: 10.1039/d2na00669c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/04/2022] [Indexed: 06/18/2023]
Abstract
Liquid-vapor phase change phenomena such as boiling and condensation are processes widely implemented in industrial systems such as power plants, refrigeration and air conditioning systems, desalination plants, water processing installations and thermal management devices due to their enhanced heat transfer capability when compared to single-phase processes. The last decade has seen significant advances in the development and application of micro and nanostructured surfaces to enhance phase change heat transfer. Phase change heat transfer enhancement mechanisms on micro and nanostructures are significantly different from those on conventional surfaces. In this review, we provide a comprehensive summary of the effects of micro and nanostructure morphology and surface chemistry on phase change phenomena. Our review elucidates how various rational designs of micro and nanostructures can be utilized to increase heat flux and heat transfer coefficient in the case of both boiling and condensation at different environmental conditions by manipulating surface wetting and nucleation rate. We also discuss phase change heat transfer performance of liquids having higher surface tension such as water and lower surface tension liquids such as dielectric fluids, hydrocarbons and refrigerants. We discuss the effects of micro/nanostructures on boiling and condensation in both external quiescent and internal flow conditions. The review also outlines limitations of micro/nanostructures and discusses the rational development of structures to mitigate these limitations. We end the review by summarizing recent machine learning approaches for predicting heat transfer performance of micro and nanostructured surfaces in boiling and condensation applications.
Collapse
Affiliation(s)
- Nithin Vinod Upot
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Siavash Khodakarami
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jin Yao Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Republic of Singapore
| | - Johannes Kohler Mendizabal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
10
|
Winhard BF, Maragno LG, Gomez-Gomez A, Katz J, Furlan KP. Printing Crack-Free Microporous Structures by Combining Additive Manufacturing with Colloidal Assembly. SMALL METHODS 2023; 7:e2201183. [PMID: 36571286 DOI: 10.1002/smtd.202201183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
To date high printing resolution and scalability, i.e., macroscale component dimensions and fast printing, are incompatible characteristics for additive manufacturing (AM) processes. It is hereby demonstrated that the combination of direct writing as an AM process with colloidal assembly enables the breaching of this processing barrier. By tailoring printing parameters for polystyrene (PS) microparticle-templates, how to avoid coffee ring formation is demonstrated, thus printing uniform single lines and macroscale areas. Moreover, a novel "comb"-strategy is introduced to print macroscale, crack-free colloidal coatings with low viscous colloidal suspensions. The printed templates are transformed into ceramic microporous channels as well as photonic coatings via atomic layer deposition (ALD) and calcination. The obtained structures reveal promising wicking capabilities and broadband reflection in the near-infrared, respectively. This work provides guidelines for printing low viscous colloidal suspensions and highlights the advancements that this printing process offers toward novel applications of colloidal-based printed structures.
Collapse
Affiliation(s)
- Benedikt F Winhard
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Laura G Maragno
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Alberto Gomez-Gomez
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Julian Katz
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| | - Kaline P Furlan
- Hamburg University of Technology, Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073, Hamburg, Germany
| |
Collapse
|
11
|
Capillary spreading of ethanol-water on hierarchical nanowire surfaces with interconnected V-groove. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Lee J, Mohraz A, Won Y. Enhanced Capillary Wicking through Hierarchically Porous Constructs Derived from Bijel Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14063-14072. [PMID: 36342818 DOI: 10.1021/acs.langmuir.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid capillarity through porous media can be enhanced by a rational design of hierarchically porous constructs that suggest sufficiently large liquid pathways from an upper-level hierarchy as well as capillary pressure enabled by a lower hierarchy. Here, we demonstrate a material design strategy utilizing a new class of self-assembled soft materials, called bicontinuous interfacially jammed emulsion gels (bijels), to produce hierarchically porous copper, which enables the unique combination of unprecedented control over both macropores and mesopores in a regular, uniform, and continuous arrangement. The dynamic droplet topologies on the hierarchically copper pores prove the significant enhancement in liquid capillarity compared to homogeneous porous structures. The role of nanoscale morphology in liquid infiltration is further investigated through environmental scanning electron microscopy, in which wetting through the mesopores occurs at the beginning, followed by liquid transport through macropores. This understanding on capillary wicking will allow us to design better hierarchically porous media that can address performance breakthroughs in interfacial applications, ranging from battery electrodes, cell delivery in biomedical devices, to capillary-fed thermal management systems.
Collapse
Affiliation(s)
- Jonggyu Lee
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California92697, United States
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California92697, United States
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California92697, United States
| |
Collapse
|
13
|
Lee J, Suh Y, Kuciej M, Simadiris P, Barako MT, Won Y. Computer vision-assisted investigation of boiling heat transfer on segmented nanowires with vertical wettability. NANOSCALE 2022; 14:13078-13089. [PMID: 36043910 DOI: 10.1039/d2nr02447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The boiling efficacy is intrinsically tethered to trade-offs between the desire for bubble nucleation and necessity of vapor removal. The solution to these competing demands requires the separation of bubble activity and liquid delivery, often achieved through surface engineering. In this study, we independently engineer bubble nucleation and departure mechanisms through the design of heterogeneous and segmented nanowires with dual wettability with the aim of pushing the limit of structure-enhanced boiling heat transfer performances. The demonstration of separating liquid and vapor pathways outperforms state-of-the-art hierarchical nanowires, in particular, at low heat flux regimes while maintaining equal performances at high heat fluxes. A deep-learning based computer vision framework realized the autonomous curation and extraction of hidden big data along with digitalized bubbles. The combined efforts of materials design, deep learning techniques, and data-driven approach shed light on the mechanistic relationship between vapor/liquid pathways, bubble statistics, and phase change performance.
Collapse
Affiliation(s)
- Jonggyu Lee
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Youngjoon Suh
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Max Kuciej
- Department of Material Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA, 90278, USA
| | - Peter Simadiris
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Michael T Barako
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA, 90278, USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
14
|
Jiang G, Tian Z, Wang L, Luo X, Chen C, Hu X, Peng R, Zhang H, Zhong M. Anisotropic Hemiwicking Behavior on Laser Structured Prismatic Microgrooves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6665-6675. [PMID: 35578803 DOI: 10.1021/acs.langmuir.2c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wicking phenomenon, including wicking and hemiwicking, has attracted increasing attention for its critical importance to a wide range of engineering applications, such as thermal management, water harvesting, fuel cells, microfluidics, and biosciences. There exists a more urgent demand for anisotropic wicking behaviors since an increasing number of advanced applications are significantly complex. For example, special-shaped vapor chambers and heating atomizers in some electronic cigarettes need liquid replenishing with various velocities in different directions. Here, we report two-dimensional anisotropic hemiwicking behaviors with elliptical shapes on laser structured prismatic microgrooves. The prismatic microgrooves were fabricated via one-step femtosecond laser direct writing, and the anisotropic hemiwicking behaviors were observed when utilizing glycerol, glycol, and water as the test liquid. Specifically, the ratios of horizontal wicking distance in directions along short and long axes were tan 0°, tan 15°, tan 30°, and tan 45° for samples with cross-angles of 0°, 30°, 60°, and 90°, respectively. The vertical water wicking front displayed corresponding angles under the guidance of laser structured prismatic microgrooves. Theoretical analysis shows that the wicking distance is mainly dependent on the cross-angle θ and surface roughness, in which the wicking distance is proportional to cos(θ/2). Driven by the capillary pressure forming in the narrow microgrooves, the liquid initially filled the valleys of microgrooves and then surrounded and covered the prismatic ridges with laser-induced nanoparticles. The abundant nanoparticles increased the surface roughness, leading to the enhancement of wicking performance, which was further evidenced by the larger wicking speed of the sample with more nanoparticles. The mechanism of anisotropic hemiwicking behaviors revealed in this work paves the way for wicking control, and the proposed prismatic microgrooved surfaces with two-dimensional anisotropic hemiwicking performance and superhydrophilicity could serve in a broad range of applications, especially for the advanced thermal management with specific heat load configurations.
Collapse
Affiliation(s)
- Guochen Jiang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xiao Luo
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Changhao Chen
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xinyu Hu
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Hongjun Zhang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Location optimization of silicon carbide foam packings in the unstirred packing trays reactor for the enhancement of solidified natural gas storage. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Heat Transfer Enhancement Using Micro Porous Structured Surfaces. ENERGIES 2022. [DOI: 10.3390/en15093108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The parabolic trough solar collector as a popular technique is widely used in solar concentrating technologies (SCTs). The solar absorber tube is the key position of the trough solar thermal power system. The internal modification of the absorber tube is one of the most interesting techniques for increasing the collector’s performance. At present, most of the methods to enhance heat transfer efficiency focus on designing alternative parabolic trough collectors (PTC) absorbers and improving the internal structure of absorption tubes. Due to the limitation of temperature range, most absorption tubes use oil as heat absorbing liquid, and very few heat absorbing tubes directly use water as working fluid. This is because water is limited by critical heat flux in high temperature environment, resulting in low heat transfer performance. In this work, we designed a new porous absorber tube with the function of allowing liquid resupply and vapor overflow from different paths, which can effectively improve the critical heat flux of the absorber tube when using distilled water as working fluid. In order to obtain better heat transfer performance of the absorber and verify the feasibility of vapor–liquid separation mechanism, a simplified model of the absorber was carried out in pool boiling. In this work, we fabricated an arterial porous structure with the function of regulating vapor–liquid flow path based on vacuum sintering technique, and the effect of different heating methods on boiling heat transfer performance are analyzed. The maximum heat flux of 450 W/cm2 was achieved without any dry-out at the superheat of 42 °C, and the unique evaporation/boiling curve was obtained.
Collapse
|
17
|
Chun J, Xu C, Li Q, Chen Y, Zhao Q, Yang W, Wen R, Ma X. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:352-362. [PMID: 34812042 DOI: 10.1021/acs.langmuir.1c02647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains elusive. Here, we report the preferential capillary pumping on hollow hierarchical surfaces with internal nanostructures, which are different from the conventional solid hierarchical surfaces with external nanostructures. Specifically, capillary pumping preferentially occurs in the nanowire bundles instead of the interconnected V-groove on hollow hierarchical surfaces, observed by confocal laser scanning fluorescence microscopy. Theoretical analysis shows that capillary pumping capability is mainly dependent on the nanowire diameter and results in 15.5 times higher capillary climbing velocity in the nanowire bundles than that in the microscale V-groove. Driven by the Laplace pressure difference between nanowire bundles and V-grooves, the preferential capillary pumping is increased with the reduction of the nanowire diameter. Capillary pumping of the nanowire bundles provides a preferential path for rapid liquid flow, leading to 2 times higher wicking capability of the hollow hierarchical surface comparing with the conventional hierarchical surface. The unique mechanism of preferential capillary pumping revealed in this work paves the way for wicking enhancement and provides an insight into the design of wicking surfaces for high-performance capillary evaporation in a broad range of applications.
Collapse
Affiliation(s)
- Jiang Chun
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qifan Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yansong Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qishan Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
18
|
Samanta A, Huang W, Parveg ASMS, Kotak P, Auyeung RCY, Charipar NA, Shaw SK, Ratner A, Lamuta C, Ding H. Enabling Superhydrophobicity-Guided Superwicking in Metal Alloys via a Nanosecond Laser-Based Surface Treatment Method. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41209-41219. [PMID: 34415724 PMCID: PMC8414485 DOI: 10.1021/acsami.1c09144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Enabling capillary wicking on bulk metal alloys is challenging due to processing complexity at different size scales. This work presents a laser-chemical surface treatment to fabricate superwicking patterns guided by a superhydrophobic region over a large-area metal alloy surface. The laser-chemical surface treatment generates surface micro/nanostructures and desirable surface chemistry simultaneously. The superhydrophobic surface was first fabricated over the whole surface by laser treatment under water confinement and fluorosilane treatment; subsequently, superwicking stripes were processed by a second laser treatment in air and cyanosilane treatment. The resultant surface shows superwicking regions surrounded by superhydrophobic regions. During the process, superwicking regions possess dual-scale structures and polar nitrile surface chemistry. In contrast, random nanoscale structures and fluorocarbon chemistry are generated on the superhydrophobic region of the aluminum alloy 6061 substrates. The resultant superwicking region demonstrates self-propelling anti-gravity liquid transport for methanol and water. The combination of the capillary effect of the dual-scale surface microgrooves and the water affinitive nitrile group contributes toward the self-propelling movement of water and methanol at the superwicking region. The initial phase of wicking followed Washburn dynamics, whereas it entered a non-linear regime in the later phase. The wicking height and rate are regulated by microgroove geometry and spacing.
Collapse
Affiliation(s)
- Avik Samanta
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Wuji Huang
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - A. S. M. Sazzad Parveg
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Parth Kotak
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Raymond C. Y. Auyeung
- U.S.
Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, D.C. 20375, United States
| | - Nicholas A. Charipar
- U.S.
Naval Research Laboratory, 4555 Overlook Ave., SW, Washington, D.C. 20375, United States
| | - Scott K. Shaw
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Albert Ratner
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Caterina Lamuta
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| | - Hongtao Ding
- Department
of Mechanical Engineering, University of
Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
19
|
Li N, Xu Z, Zheng S, Dai H, Wang L, Tian Y, Dong Z, Jiang L. Superamphiphilic TiO 2 Composite Surface for Protein Antifouling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003559. [PMID: 33984172 DOI: 10.1002/adma.202003559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Unwanted protein adsorption deteriorates fouling processes and reduces analytical device performance. Wettability plays an important role in protein adsorption by affecting interactions between proteins and surfaces. However, the principles of protein adsorption are not completely understood, and surface coatings that exhibit resistance to protein adsorption and long-term stability still need to be developed. Here, a nanostructured superamphiphilic TiO2 composite (TiO2 /SiO2 ) coating that can effectively prevent nonspecific protein adsorption on water/solid interfaces is reported. The confined water on the superamphiphilic surface enables a low adhesion force and the formation of an energy barrier that plays a key role in preventing protein adsorption. This adaptive design protects the capillary wall from fouling in a harsh environment during the bioanalysis of capillary electrophoresis and is further extended to applications in multifunctional microfluidics for liquid transportation. This facile approach is not only perfectly applied in channels with complicated configurations but may also offer significant insights into the design of advanced superwetting materials to control biomolecule adhesion in biomedical devices, microfluidics, and biological assays.
Collapse
Affiliation(s)
- Ning Li
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhe Xu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Shuang Zheng
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haoyu Dai
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
20
|
Kim J, Choi H, Cho SH, Hwang J, Kim HY, Lee YS. Scalable High-Efficiency Bi-Facial Solar Evaporator with a Dendritic Copper Oxide Wick. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11869-11878. [PMID: 33660500 DOI: 10.1021/acsami.0c21570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar thermal distillation is a promising way to harvest clean water due to its sustainability. However, the energy density of solar irradiation inevitably demands scalability of the systems. To realize practical applications, it is highly desirable to fabricate meter-scale solar evaporator panels with high capillary performance as well as optical absorptance using scalable and high-throughput fabrication methods. Here, we demonstrate a truly scalable fabrication process for a bi-facial solar evaporator with copper oxide dendrites via the hydrogen bubble templated electrochemical deposition technique. Furthermore, we construct a theoretical model combining capillarity and evaporative mass transfer, which leads to optimal operation conditions and wick characteristics, including superhydrophilicity, extreme capillary performance, and omni-angular high optical absorptance. The fabricated porous surfaces with excellent capillary performance and productivity provide a pathway toward a highly efficient bi-facial solar evaporator panel with meter-level scalability.
Collapse
Affiliation(s)
- Jungtaek Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanseul Choi
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong Ho Cho
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewoo Hwang
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Kim
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
21
|
Suh Y, Bostanabad R, Won Y. Deep learning predicts boiling heat transfer. Sci Rep 2021; 11:5622. [PMID: 33692489 PMCID: PMC7970936 DOI: 10.1038/s41598-021-85150-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/15/2021] [Indexed: 01/17/2023] Open
Abstract
Boiling is arguably Nature's most effective thermal management mechanism that cools submersed matter through bubble-induced advective transport. Central to the boiling process is the development of bubbles. Connecting boiling physics with bubble dynamics is an important, yet daunting challenge because of the intrinsically complex and high dimensional of bubble dynamics. Here, we introduce a data-driven learning framework that correlates high-quality imaging on dynamic bubbles with associated boiling curves. The framework leverages cutting-edge deep learning models including convolutional neural networks and object detection algorithms to automatically extract both hierarchical and physics-based features. By training on these features, our model learns physical boiling laws that statistically describe the manner in which bubbles nucleate, coalesce, and depart under boiling conditions, enabling in situ boiling curve prediction with a mean error of 6%. Our framework offers an automated, learning-based, alternative to conventional boiling heat transfer metrology.
Collapse
Affiliation(s)
- Youngjoon Suh
- Department of Mechanical and Aerospace Engineering, University of California, 5200 Engineering Hall, Irvine, CA, 92617-2700, USA
| | - Ramin Bostanabad
- Department of Mechanical and Aerospace Engineering, University of California, 5200 Engineering Hall, Irvine, CA, 92617-2700, USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California, 5200 Engineering Hall, Irvine, CA, 92617-2700, USA.
- , 4200 Engineering Gateway, Irvine, USA.
| |
Collapse
|
22
|
Ma B. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13485-13497. [PMID: 33151083 DOI: 10.1021/acs.langmuir.0c02226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Capillary flow in porous media is of great significance to many different applications including microfluidics, chromatography, and passive thermal management. For example, heat pipe has been widely used in the thermal management of electronic system due to its high flexibility and low thermal resistance. However, the critical heat flux of heat pipe is often limited by the maximum capillary-driven liquid transport rate through the wicking material. A significant number of novel porous material with complex structures have been proposed in past studies to provide enhanced capillary-driven flow without substantial reduction in pore size and porosity. However, the increasing level of structural complexity often leads to a more tortuous flow path, which deprives the merits of enhanced capillarity. In this study, we examined the capillary performance of a porous material with simple geometric structures both analytically and numerically. Specifically, the capillary rate of rise of water in parallel hollow microchannels with different cross-sectional shapes is derived by solving the momentum transport equation. The relationships between the capillary flow rate and wicking height are further validated by two-phase flow simulation based on the conservative level-set method. The results demonstrate that parallel microchannel configuration, despite its geometric simplicity, provides superior capillary performance than most existing porous media in terms of both capillary flow rate and ultimate wicking height. In addition, design of noncircular cross section reduces the viscous drag and increases the packing density of the microchannels in the bulk solid without affecting the capillary pumping pressure. These features contribute to a further enhancement in the capillary performance by up to 32%. These results provide important guidance to the rational design of porous material with enhanced fluid transport property in a variety of microfluidic systems.
Collapse
Affiliation(s)
- Binjian Ma
- Department of Mechanical Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Fleming E, Tsuchiya K, Banerjee D, Zhu G. Local Meniscus Curvature During Steady-State Evaporation from Micropillar Arrays. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43266-43272. [PMID: 32866369 DOI: 10.1021/acsami.0c11965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Micropillar arrays are an ideal model system for capillary-aided thin film evaporation that can be fabricated with precise geometric control using microfabrication methods. The capillary limit leading to dryout is a critical performance metric for capillary-aided thin film evaporation and is proportional to the product of the permeability and capillary pressure. Capillary flow models for steady-state thin-film evaporation typically employ capillary pressure and permeability as separate parameters; however, it is difficult to separate the two from experimental hemiwicking characterizations or dryout observations. Furthermore, for micropillar arrays, local permeability depends on meniscus curvature varying spatially and with the evaporation rate. In this work, we use thin-film interference microscopy to profile local meniscus curvature during steady-state evaporation of water in a pure vapor environment. Local capillary pressure is calculated from curvature without requiring knowledge of contact angle or permeability. Results are compared against a Darcian semianalytical model for flow through micropillar wicks incorporating local permeability due to meniscus curvature. Although traditionally a slip boundary condition has been assumed at the liquid-vapor interface, we find much better agreement using a no-slip condition. The consequence of no-slip behavior is larger pressure gradients for a given evaporation flux and a lower dryout heat flux relative to a full slip condition. Heat transfer coefficient data are also presented and discussed in terms of curvature and sample geometry.
Collapse
Affiliation(s)
- Evan Fleming
- Materials Research Division, Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, Michigan 48105, United States
| | - Kimihiro Tsuchiya
- Materials Research Division, Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, Michigan 48105, United States
- Higashi-Fuji Technical Center, Toyota Motor Corporation 1200 Mishuku, Susono City, Shizuoka Prefecture 410-1193, Japan
| | - Debasish Banerjee
- Materials Research Division, Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, Michigan 48105, United States
| | - Gaohua Zhu
- Materials Research Division, Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
24
|
Zheng D, Choi CH, Sun G, Zhao X. Superwicking on Nanoporous Micropillared Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30925-30931. [PMID: 32525647 DOI: 10.1021/acsami.0c04366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Engineering surfaces with excellent wicking properties is of critical importance to a wide range of applications. Here, we report a facile method to create superhydrophilic nanoporous micropillared surfaces of silicon and their applicability to superwicking. Nanopores with a good control of the pore depth are realized over the entire surface of three-dimensional micropillar structures by electrochemical etching in hydrofluoric acid. After rinsing in hydrogen peroxide, the nanoporous micropillared surface shows superhydrophilicity with the superwicking effect. The entire spreading process of a water droplet on the superhydrophilic nanoporous micropillared surface is completed in less than 50 ms, with an average velocity of 91.2 mm/s, which is significantly faster than the other wicking surfaces reported. Owing to the presence of nanopores on the micropillar array, the wicking dynamics is distinct from the surfaces decorated only by micropillar arrays. The spreading dynamics of a water droplet shows two distinct processes simultaneously, including the capillary penetration between micropillars and the capillary imbibition into the nanopore's interior. The wicking dynamics can be described by the two stages separated by the time when the contact line starts to recede. The transition between the two wicking regimes is due to the increasing effect of the imbibition of the bulk droplet by the nanopores. While a similar transition of the wicking dynamics is shown on the surfaces with different pore depths, the nanopore structure with a greater depth causes a greater amount of imbibition to slow down the spreading and promote superwicking.
Collapse
Affiliation(s)
- Deyin Zheng
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, P. R. China
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Guangyi Sun
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, P. R. China
| | - Xin Zhao
- Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|