1
|
Li C, Pan R, Gu C, Guo H, Li J. Reconfigurable Micro/Nano-Optical Devices Based on Phase Transitions: From Materials, Mechanisms to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306344. [PMID: 38489745 PMCID: PMC11132080 DOI: 10.1002/advs.202306344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/10/2024] [Indexed: 03/17/2024]
Abstract
In recent years, numerous efforts have been devoted to exploring innovative micro/nano-optical devices (MNODs) with reconfigurable functionality, which is highly significant because of the progressively increasing requirements for next-generation photonic systems. Fortunately, phase change materials (PCMs) provide an extremely competitive pathway to achieve this goal. The phase transitions induce significant changes to materials in optical, electrical properties or shapes, triggering great research interests in applying PCMs to reconfigurable micro/nano-optical devices (RMNODs). More specifically, the PCMs-based RMNODs can interact with incident light in on-demand or adaptive manners and thus realize unique functions. In this review, RMNODs based on phase transitions are systematically summarized and comprehensively overviewed from materials, phase change mechanisms to applications. The reconfigurable optical devices consisting of three kinds of typical PCMs are emphatically introduced, including chalcogenides, transition metal oxides, and shape memory alloys, highlighting the reversible state switch and dramatic contrast of optical responses along with designated utilities generated by phase transition. Finally, a comprehensive summary of the whole content is given, discussing the challenge and outlooking the potential development of the PCMs-based RMNODs in the future.
Collapse
Affiliation(s)
- Chensheng Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruhao Pan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haiming Guo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
2
|
Kim S, Lee S, Zhang Y, Park S, Gu J. Carbon-Based Radar Absorbing Materials toward Stealth Technologies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303104. [PMID: 37735148 PMCID: PMC10646258 DOI: 10.1002/advs.202303104] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Indexed: 09/23/2023]
Abstract
Stealth technology is used to enhance the survival of military equipment in the field of military surveillance, as it utilizes a combination of techniques to render itself undetectable by enemy radar systems. Radar absorbing materials (RAMs) are specialized materials used to reduce the reflection (or absorption) of radar signals to provide stealth capability, which is a core component of passive countermeasures in military applications. The properties of RAMs can be optimized by adjusting their composition, microstructure, and surface geometry. Carbon-based materials present a promising approach for the fabrication of ultrathin, versatile, and high-performance RAMs due to their large specific surface area, lightweight, excellent dielectric properties, high electrical conductivity, and stability under harsh conditions. This review begins with a brief history of stealth technology and an introduction to electromagnetic waves, radar systems, and radar absorbing materials. This is followed by a discussion of recent research progress in carbon-based RAMs, including carbon blacks, carbon fibers, carbon nanotubes, graphite, graphene, and MXene, along with an in-depth examination of the principles and strategies on electromagnetic attenuation characteristics. Hope this review will offer fresh perspectives on the design and fabrication of carbon-based RAMs, thereby fostering a deeper fundamental understanding and promoting practical applications.
Collapse
Affiliation(s)
- Seong‐Hwang Kim
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Seul‐Yi Lee
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Yali Zhang
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Soo‐Jin Park
- Department of ChemistryInha University100 InharoIncheon22212South Korea
| | - Junwei Gu
- Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
3
|
Zhu SQ, Shu JC, Cao MS. Novel MOF-derived 3D hierarchical needlelike array architecture with excellent EMI shielding, thermal insulation and supercapacitor performance. NANOSCALE 2022; 14:7322-7331. [PMID: 35535465 DOI: 10.1039/d2nr01024k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The upcoming 5G era will powerfully promote the development of intelligent society in the future, but it will also bring serious electromagnetic pollution. Thus, the development of efficient, lightweight and multifunctional electromagnetic shielding materials and devices is an important research hotspot around the world. Herein, a novel needlelike Co3O4/C array architecture is constructed from MOF precursor via a simple pyrolysis process, and its microstructure is controllably tailored by changing the pyrolysis temperature. The unique 3D hierarchical structure and multiphase components enable the architecture to provide high-efficiency electromagnetic interference (EMI) shielding, along with good thermal insulation. More importantly, the architecture possesses fast ion transport channels, which can be used to construct supercapacitors with high specific capacitance and excellent cycle stability. Obviously, this work offers a new inspiration for the design and construction of multifunctional electromagnetic materials and devices.
Collapse
Affiliation(s)
- Si-Qi Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jin-Cheng Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
4
|
Ren S, Yu H, Wang L, Huang Z, Lin T, Huang Y, Yang J, Hong Y, Liu J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. NANO-MICRO LETTERS 2022; 14:68. [PMID: 35217977 PMCID: PMC8881588 DOI: 10.1007/s40820-022-00808-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/12/2023]
Abstract
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
Collapse
Affiliation(s)
- Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhikun Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tengfei Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
5
|
Zhu H, Jiao Q, Fu R, Su P, Yang C, Feng C, Li H, Shi D, Zhao Y. Cu/NC@Co/NC composites derived from core-shell Cu-MOF@Co-MOF and their electromagnetic wave absorption properties. J Colloid Interface Sci 2021; 613:182-193. [PMID: 35033764 DOI: 10.1016/j.jcis.2021.11.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Metal-organic-frameworks (MOFs) derived carbon or nitrogen-doped carbon (NC) materials are usually used as electromagnetic wave (EMW) absorbers. However, the effective control of the composition and structure of composites is still a major challenge for the development of high-performance EMW absorbing materials. In this work, core-shell structure and bimetallic composition Cu/nitrogen doped carbon @Co/ nitrogen doped carbon (Cu/NC@Co/NC) composites were designed and synthesized through the thermal decomposition of Cu-MOF@Co-MOF precursor. Cu/NC@Co/NC composites with different compositions were obtained by changing the ratio of Co-MOF and Cu-MOF. The composite (Cu/NC@Co/NC-3.75) prepared using 3.75 mmol of Co(NO3)2·6H2O exhibits outstanding EMW absorption properties due to the optimized impedance matching and strong attenuation ability, which is caused by enhanced interfacial and dipolar polarization as well as multiple reflection and scattering. With the filler loading in paraffin of 35 wt%, the minimum reflection loss (RLmin) is up to -54.13 dB at 9.84 GHz with a thin thickness of 3 mm, and the effective absorption bandwidth (EAB, RL≤ - 10 dB) reaches 5.19 GHz (10.18-15.37 GHz) with the corresponding thickness of 2.5 mm. Compared with the Cu/NC and Co/NC, the Cu/NC@Co/NC-3.75 composite exhibits much better EMW absorbing performances caused by the bimetallic composition and the unique core-shell structure. This work provides a rational design for MOF-derived lightweight and broadband EMW absorbing materials.
Collapse
Affiliation(s)
- Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, Zhuhai 519085, PR China
| | - RuRu Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Pengju Su
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
6
|
Guo L, Wan K, Liu B, Wang Y, Wei G. Recent advance in the fabrication of carbon nanofiber-based composite materials for wearable devices. NANOTECHNOLOGY 2021; 32:442001. [PMID: 34325413 DOI: 10.1088/1361-6528/ac18d5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Carbon nanofibers (CNFs) exhibit the advantages of high mechanical strength, good conductivity, easy production, and low cost, which have shown wide applications in the fields of materials science, nanotechnology, biomedicine, tissue engineering, sensors, wearable electronics, and other aspects. To promote the applications of CNF-based nanomaterials in wearable devices, the flexibility, electronic conductivity, thickness, weight, and bio-safety of CNF-based films/membranes are crucial. In this review, we present recent advances in the fabrication of CNF-based composite nanomaterials for flexible wearable devices. For this aim, firstly we introduce the synthesis and functionalization of CNFs, which promote the optimization of physical, chemical, and biological properties of CNFs. Then, the fabrication of two-dimensional and three-dimensional CNF-based materials are demonstrated. In addition, enhanced electric, mechanical, optical, magnetic, and biological properties of CNFs through the hybridization with other functional nanomaterials by synergistic effects are presented and discussed. Finally, wearable applications of CNF-based materials for flexible batteries, supercapacitors, strain/piezoresistive sensors, bio-signal detectors, and electromagnetic interference shielding devices are introduced and discussed in detail. We believe that this work will be beneficial for readers and researchers to understand both structural and functional tailoring of CNFs, and to design and fabricate novel CNF-based flexible and wearable devices for advanced applications.
Collapse
Affiliation(s)
- Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, People's Republic of China
| |
Collapse
|
7
|
Qian X, Zhang Y, Wu Z, Zhang R, Li X, Wang M, Che R. Multi-Path Electron Transfer in 1D Double-Shelled Sn@Mo 2 C/C Tubes with Enhanced Dielectric Loss for Boosting Microwave Absorption Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100283. [PMID: 34145737 DOI: 10.1002/smll.202100283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/17/2021] [Indexed: 06/12/2023]
Abstract
1D tubular micro-nano structural materials have been attracting extensive attention in the microwave absorption (MA) field for their anisotropy feature, outstanding impedance matching, and electromagnetic energy loss capability. Herein, unique double-shelled Sn@Mo2 C/C tubes with porous Sn inner layer and 2D Mo2 C/C outer layer are successfully designed and synthesized via a dual-template method. The composites possess favorable MA performance with an effective absorption bandwidth of 6.76 GHz and a maximum reflection loss value of -52.1 dB. Specifically, the rational and appropriate construction of Sn@Mo2 C/C tubes promotes the multi-path electron transfer in the composites to optimize the dielectric constant and consequently to enhance the capacity of electromagnetic wave energy dissipation. Three mechanisms dominate the MA process: i) the conductive loss resulted from the rapid electron transmission due to the novel 1D hollow coaxial multi-shelled structure, especially the metallic Sn inner layer; ii) the polarization loss caused by abundant heterogeneous interfaces of Sn-Mo2 C/C and Mo2 CC from the precise double-shelled structure; iii) the capacitor-like loss by the potential difference between Mo2 C/C nanosheets. This work hereby sheds light on the design of the 1D hierarchical structure and lays out a profound insight into the MA mechanism.
Collapse
Affiliation(s)
- Xiang Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yahui Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ruixian Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaohui Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
8
|
Wang K, Zhang S, Chu W, Li H, Chen Y, Chen B, Chen B, Liu H. Tailoring conductive network nanostructures of ZIF-derived cobalt-decorated N-doped graphene/carbon nanotubes for microwave absorption applications. J Colloid Interface Sci 2021; 591:463-473. [PMID: 33636669 DOI: 10.1016/j.jcis.2021.02.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
Confronted with microwave pollution issues, there is an urgent need for microwave absorption materials that possess optimal combinations of dielectric loss and magnetic loss properties. While a variety of studies focus on the components, the construction of nanostructure is rarely studied, which is of equivalent significance to microwave absorber design. In this work, Co-ZIF-67 was adopted as self-template to grow N-doped graphene/carbon nanotube interlinked conductive networks in-situ under a one-step carbonization process with tailored microwave absorption properties. Diverse microwave absorption performance could be achieved by directly adjusting the proportions among ingredients and the calcination temperature, obtaining a maximum value of reflection loss of -65.45 dB at 17.5 GHz with a sample thickness of just 1.5 mm. The effective absorption bandwidth could be tailored from 3.75 to 18 GHz among different thickness as required. The nanostructures had an apparent impact on the corresponding microwave absorption performance, in which the N-doped carbon-based conductive networks, ferromagnetic cobalt atoms, and interfaces among heterostructure strengthened the dipolar polarization and conductivity loss, magnetic loss, and interfacial polarization, respectively. This synthesis strategy offers a promising pathway for integrating nanostructures and functions, catering to requirements for designing and optimizing prospective microwave absorbers.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shunzhe Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenshuang Chu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast BT9 5AH, United Kingdom
| | - Bingbing Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Krishnapandi A, Muthukutty B, Chen SM, Arul KT, Shiuan HJ, Selvaganapathy M. Bismuth molybdate incorporated functionalized carbon nanofiber as an electrocatalytic tool for the pinpoint detection of organic pollutant in life samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111828. [PMID: 33385681 DOI: 10.1016/j.ecoenv.2020.111828] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Herein, we fabricated a feasible and accurate sensing platform for the quantification of toxic organic pollutant 2-nitroaniline (2-NA) in water samples through electrocatalyst made up of bismuth molybdate (Bi2MoO6, BMO) functionalized carbon nanofiber (f-CNF) modified electrode. The preparation of BMO/f-CNF composite is of two methods, such as co-precipitation (C-BMO/f-CNF) and ultrasonication method (U-BMO/f-CNF). The physicochemical properties of the composites were characterized by XRD, FTIR, Raman, BET, FE-SEM, and HR-TEM techniques. At U-BMO/f-CNF, the charge transfer resistance was low (Rct = 12.47 Ω) compared to C-BMO/f-CNF because nanosized U-BMO particles correctly aim at the defective sites of the f-CNF surface wall. Further, the electrocatalytic activity of C&U-BMO/f-CNF composites was examined by cyclic voltammetry (CV) and differential pulse voltammetry techniques (DPV) for the electrochemical detection of 2-nitroaniline (2-NA). The U-BMO/f-CNF/GCE shows a higher cathodic current, wide dynamic linear range of 0.01-168.01 µM, and superior electrocatalytic activity with a low detection limit (0.0437 µM) and good sensitivity (0.6857 μA μM-1 cm-2). The excellent selectivity nature of U-BMO/f-CNF/GCE was observed in the presence of various organic pollutants and a few toxic metal cations. The practical applicability such as stability, repeatability towards 2-NA outcomes with accepted results. Besides, the practical viability of as proposed U-BMO/f-CNF sensor was investigated in soil and lake water samples delivers good recovery results. Hence from these analyses, we conclude that U-BMO/f-CNF/GCE potential for the determination of hazardous environmental pollutant 2-NA.
Collapse
Affiliation(s)
- Alagumalai Krishnapandi
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Kumaravelu Thanigai Arul
- Energy and Biophotonic Laboratory, Department of Physics, AMET (Deemed to be University), Kanathur, Chennai, Tamil Nadu 603 112, India
| | - Huang Ji Shiuan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | |
Collapse
|
10
|
Wang S, Zhu H, Jiao Q, Jiao X, Feng C, Li H, Shi D, Wu Q, Zhao Y. Controllable synthesis of multi-shelled SiO 2@C@NiCo 2O 4 yolk–shell composites for enhancing microwave absorbing properties. NEW J CHEM 2021. [DOI: 10.1039/d1nj03897d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiCo2O4 grows uniformly on the surface of a yolk–shell SiO2@C sphere and exhibits strong microwave absorption.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, Zhuhai 519085, China
| | - Xiaoguang Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qin Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
11
|
Ma M, Bi Y, Tong Z, Liu Y, Lyu P, Wang R, Ma Y, Wu G, Liao Z, Chen Y. Recent progress of MOF-derived porous carbon materials for microwave absorption. RSC Adv 2021; 11:16572-16591. [PMID: 35479149 PMCID: PMC9032547 DOI: 10.1039/d1ra01880a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Microwave absorbing materials (MAM) have attracted considerable attention over the years in stealth and information technologies. Metal–organic framework (MOF) with a unique microstructure and electronic state has become an attractive focus as self-sacrificing precursors of microwave absorbers. The MOF-derived porous carbon (PC) materials exhibit a high absorbing performance due to the stable three-dimensional structure and homogeneous distribution of metal particles. MOF-derived PC materials are promising for ideal MAM via tuning of the structure and composition, resulting in appropriate impedance matching and the synergistic effect between magnetic and dielectric loss. In this review, the MOF-derived PC materials and their basic absorption mechanisms (dielectric loss, magnetic loss and impedance matching) are introduced, as well as the characters of various MOF-derived PC materials. In addition, this review provides a comprehensive introduction and tabulates the recent progress based on the classification of the MOF-derived metallic state, such as pure PC (without reduced metals), mono-metal/PC, multi-metal/PC, metal oxides/PC and other derived PC composites. Finally, the challenges faced by MOF-derived PC materials are overviewed, and their further development is mentioned. MOF-derived PC materials with unique characteristic have been widely concerned as microwave absorbers over the years.![]()
Collapse
Affiliation(s)
- Mingliang Ma
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yuxin Bi
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Zhouyu Tong
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yanyan Liu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Ping Lyu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Rongzhen Wang
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment
- State Key Laboratory of Bio-fibers and Eco-textiles
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
| | - Zijian Liao
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yan Chen
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| |
Collapse
|
12
|
Yang N, Luo ZX, Chen SC, Wu G, Wang YZ. Fe 3O 4 Nanoparticle/N-Doped Carbon Hierarchically Hollow Microspheres for Broadband and High-Performance Microwave Absorption at an Ultralow Filler Loading. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18952-18963. [PMID: 32216301 DOI: 10.1021/acsami.0c04185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the existing Fe3O4-based microwave absorbing materials (MAMs) have shown promising microwave absorbing (MA) capacity, it is highly desired but still remains a great challenge to achieve strong minimum reflection loss (RLmin) and broad effective frequency bandwidth (fe) at an ultralow filler loading. Herein, for the first time, by carbonizing hierarchical poly(urea-formaldehyde) microcapsules with Fe3O4 nanoparticle cores in a nitrogen atmosphere, Fe3O4 hybrid and N-doped hollow carbon microspheres (Fe3O4/CMs) with a hierarchical micro/nanostructure are prepared on a large scale and at a low cost to achieve extremely superior MA performances. Benefitting from their unique structure and diverse composition, which synergetically contribute to good impedance matching, strong dielectric/magnetic loss, and abundant multiscattering/reflection, Fe3O4/CM composites possessed a RLmin value reaching -60.3 dB and an fe of as broad as 6.4 GHz (7.2-13.6 GHz, covering the full X-band) at an ultralow filler loading of 10 wt % in paraffin wax, which are significantly superior to those of the previously reported state-of-the-art Fe3O4-based or hollow MAMs. Furthermore, the fe can be adjusted in the range of 4.5-18 GHz, covering 85% of the whole measured frequency range, via changing the thickness between 2.5 and 5.5 mm. This work offers new insights for developing advanced lightweight MAMs with strong absorption and a broad absorbing frequency range at a low filler loading.
Collapse
Affiliation(s)
- Na Yang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zi-Xuan Luo
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Si-Chong Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Gang Wu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Yuan X, Wang R, Huang W, Kong L, Guo S, Cheng L. Morphology Design of Co-electrospinning MnO-VN/C Nanofibers for Enhancing the Microwave Absorption Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13208-13216. [PMID: 32092255 DOI: 10.1021/acsami.9b23310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To enhance microwave loss abilities, constructing composites with one-dimensional (1D) structure is an excellent scheme. In this work, a high-efficiency microwave absorber of MnO nanograins decorated vanadium nitride/carbon nanofibers (MnO-VN/C NFs) was successfully prepared for the first time via co-electrospinning technology and subsequent nitriding treatment. Studying in detail the specific relationship between nitriding time and the morphology of the as-prepared NFs, the precipitations of MnO nanoparticles with tailored structures were attached on the surface of VN/C NFs to optimize their electromagnetic parameters. When the nitriding time was 2.0 h at 600 °C, the MnO-VN/C NFs displayed good microwave absorption performances: the minimum reflection loss (RL) value was -63.2 dB at 8.8 GHz, and the bandwidth of RL < -10 dB was up to 6.4 GHz from 11.6 to 18 GHz at the thickness of 2.8 mm. Meanwhile, the absorption bandwidth (RL< -10 dB) could cover the whole X and Ku band by adjusting the thickness, respectively. The outstanding performances could be attributed to the good impedance matching and various loss pathways including conductive loss and interfacial and dipole polarizations. In these regards, MnO-VN/C NFs are likely to be utilized as a high-efficiency microwave absorber. And the strategy in this work can provide great help to design other 1D structural microwave absorbers with a broader absorbing band.
Collapse
Affiliation(s)
- Xiaoyan Yuan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Ruiqin Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenrui Huang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Luo Kong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shouwu Guo
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Laifei Cheng
- Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
14
|
Li Y, Duan Y, Wang C. Enhanced Microwave Absorption and Electromagnetic Properties of Si-Modified rGO@Fe 3O 4/PVDF- co-HFP Composites. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E933. [PMID: 32093139 PMCID: PMC7079640 DOI: 10.3390/ma13040933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 01/19/2023]
Abstract
Graphene has been regarded as one of the most promising two-dimensional nanomaterials. Even so, graphene was still faced with several key issues such as impedance mismatching and narrow bandwidth, which have hindered the practical applications of graphene-based nanocomposites in the field of microwave absorption materials. Herein, a series of Si-modified rGO@Fe3O4 composites were investigated and fabricated by a simple method. On one hand, the degree of defects in graphene carbon could be tuned by different silane coupling reagents, which were beneficial to enhancing the dielectric loss. On the other hand, the spherical Fe3O4 nanoparticles provided the magnetic loss resonance, which contributed to controlling the impedance matching. Subsequently, the electromagnetic absorption (EMA) properties of Si-modified rGO@Fe3O4 composites with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) were investigated in this work. As a result, the Si(2)-rGO@Fe3O4/PVDF-co-HFP composite exhibited the excellent EMA performance in the range of 2-18 GHz. The maximum reflection loss (RLmax) reached -32.1 dB at 3.68 GHz at the thickness of 7 mm and the effective absorption frequency bandwidth for reflection loss (RL) below -10 dB was 4.8 GHz at the thickness of 2 mm. Furthermore, the enhanced absorption mechanism revealed that the high-efficiency absorption performance of Si(2)-rGO@Fe3O4/PVDF-co-HFP composite was attributed to the interference absorption (quarter-wave matching model) and the synergistic effects between Si(2)-rGO@Fe3O4 and PVDF-co-HFP. This work provides a potential strategy for the fabrication of the high-performance EMA materials.
Collapse
Affiliation(s)
| | - Yugang Duan
- State Key Lab for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710054, China; (Y.L.); (C.W.)
| | | |
Collapse
|
15
|
Zhang X, Xu J, Yuan H, Zhang S, Ouyang Q, Zhu C, Zhang X, Chen Y. Large-Scale Synthesis of Three-Dimensional Reduced Graphene Oxide/Nitrogen-Doped Carbon Nanotube Heteronanostructures as Highly Efficient Electromagnetic Wave Absorbing Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39100-39108. [PMID: 31571475 DOI: 10.1021/acsami.9b13751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Herein, we use reduced graphene oxide as a substrate and NiFe as a catalyst to fabricate three-dimensional (3D) nitrogen-doped carbon nanotube (NCNT)/reduced graphene oxide heteronanostructures (3D NiFe/N-GCTs). The 3D NiFe/N-GCTs are composed of two-dimensional (2D) reduced graphene oxide-supported one-dimensional (1D) NiFe nanoparticle-encapsulated NCNT arrays. The NCNTs exhibit bamboo-like shapes with the length and diameter of 3-10 μm and 15-45 nm, respectively. Besides integration of advantages of 1D and 2D nanomaterials, the 3D NiFe/N-GCT heteronanostructure possesses interconnected network structures, sufficient interfaces, numerous defects, hundreds of void spaces enclosed by bamboo joints and the walls of the NCNT in an individual carbon nanotube, and large surface areas, which can improve their dielectric losses toward electromagnetic wave. Thus, the 3D NiFe/N-GCTs show satisfied property toward electromagnetic wave absorption. Typically, the optimized 3D NiFe/N-GCT displays excellent minimal reflection loss (-40.3 dB) and outstanding efficient absorption bandwidth (4.5 GHz), outperforming most of the reported absorbers. Remarkably, the synthesis of 3D NiFe/N-GCTs only involves vacuum freeze-drying and subsequent thermal treatment process at a high temperature, and thus, the large-scale production of 3D NiFe/N-GCTs can be achieved in each batch, affording the possibility of the practical applications of the 3D NiFe/N-GCTs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering , Harbin Normal University , Harbin 150025 , China
| | | |
Collapse
|
16
|
Wang S, Xu Y, Fu R, Zhu H, Jiao Q, Feng T, Feng C, Shi D, Li H, Zhao Y. Rational Construction of Hierarchically Porous Fe-Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption. NANO-MICRO LETTERS 2019; 11:76. [PMID: 34138043 PMCID: PMC7770714 DOI: 10.1007/s40820-019-0307-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 05/17/2023]
Abstract
Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge. Here, a novel Fe-Co/N-doped carbon/reduced graphene oxide (Fe-Co/NC/rGO) composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Co-based metal organic frameworks (Co-MOF) on the sheets of porous cocoon-like rGO followed by calcination. The Fe-Co/NC composites are homogeneously distributed on the sheets of porous rGO. The Fe-Co/NC/rGO composite with multiple components (Fe/Co/NC/rGO) causes magnetic loss, dielectric loss, resistance loss, interfacial polarization, and good impedance matching. The hierarchically porous structure of the Fe-Co/NC/rGO enhances the multiple reflections and scattering of microwaves. Compared with the Co/NC and Fe-Co/NC, the hierarchically porous Fe-Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design. Its minimum reflection loss (RLmin) reaches - 43.26 dB at 11.28 GHz with a thickness of 2.5 mm, and the effective absorption frequency (RL ≤ - 10 dB) is up to 9.12 GHz (8.88-18 GHz) with the same thickness of 2.5 mm. Moreover, the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm. This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Yingchun Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Ruru Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085, People's Republic of China
| | - Tongying Feng
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085, People's Republic of China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China.
| |
Collapse
|
17
|
Liang X, Quan B, Man Z, Cao B, Li N, Wang C, Ji G, Yu T. Self-Assembly Three-Dimensional Porous Carbon Networks for Efficient Dielectric Attenuation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30228-30233. [PMID: 31357861 DOI: 10.1021/acsami.9b08365] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Zeolitic imidazolate framework (ZIF-8)-derived ZnO/nanoporous carbon (NPC) aligned in a three-dimensional porous carbon network (3DPCN) is designed to form a multiporous network nanostructure to absorb electromagnetic waves. The porous 3DPCN structure acts as the electronic pathway and the nucleation locus for ZIF-8 particles. Meanwhile, the conductive networks could also provide more routes for electron transfer. With good impedance matching and attenuation characteristics, ZnO@NPC/3DPCN shows enhanced microwave response where the minimum reflection loss of -35.7 dB can be achieved with a 10 wt % filler. Our study not only exploits the new system of lightweight absorbers but also further reveals the changing of electromagnetic parameters and absorbing properties by heat treatment, which may lead to a new way to design novel lighter multiporous network nanostructures.
Collapse
Affiliation(s)
- Xiaohui Liang
- College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , No. 29 Yudao Street , Nanjing 210016 , P. R. China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
| | - Bin Quan
- College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , No. 29 Yudao Street , Nanjing 210016 , P. R. China
| | - Zengming Man
- College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , No. 29 Yudao Street , Nanjing 210016 , P. R. China
| | - Bingchen Cao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , Xi'an 710129 , China
| | - Nan Li
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) , Xi'an 710072 , China
| | - Chenhao Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering , Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) , Xi'an 710072 , China
| | - Guangbin Ji
- College of Materials Science and Technology , Nanjing University of Aeronautics and Astronautics , No. 29 Yudao Street , Nanjing 210016 , P. R. China
| | - Ting Yu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences , Nanyang Technological University , 637371 , Singapore
| |
Collapse
|
18
|
Quan B, Gu W, Chen J, Xu G, Ji G. Integrating carbonyl iron with sponge to enable lightweight and dual-frequency absorption. NANOTECHNOLOGY 2019; 30:195703. [PMID: 30673642 DOI: 10.1088/1361-6528/ab0126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, sponge impregnated with iron pentacarbonyl was utilized to obtain a novel composite in which the carbonyl iron (CI) was embedded in a graphitized carbon matrix (CI-C). The CI that results from the thermal pyrolysis of iron pentacarbonyl can homogeneously disperse into the pore structures of the sponge skeleton, which not only improves the stability of the CI, but also modifies the impedance matching character. Moreover, the sponge bulk turns into graphitized carbon during the heat treatment (graphitized catalysis of magnetic metal on carbon at high temperature). Due to the respective strong dissipation ability of CI and the graphitized carbon matrix, the as-prepared CI-C sample exhibits a good microwave absorption performance, including expanding the effective absorption bandwidth and reduced weight, compared to pure CI. Moreover, the sample with 30 wt% paraffin loading not only shows strong reflection loss absorbing ability, but also possesses continuous dual-absorption peaks (9.96 GHz, -38.7 dB, and 13.8 GHz is -37.6 dB). This work not only extends the application of carbonyl iron as a lightweight microwave absorber with dual-absorption peaks but also initiates a new approach for artificially designed carbon-based composites via a simple sponge-impregnation method.
Collapse
Affiliation(s)
- Bin Quan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, People's Republic of China
| | | | | | | | | |
Collapse
|
19
|
Nano sulfur particles decorated bi-lamella composites for superior electromagnetic wave absorption. J Colloid Interface Sci 2019; 543:138-146. [DOI: 10.1016/j.jcis.2019.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 11/24/2022]
|
20
|
Wang L, Li X, Li Q, Yu X, Zhao Y, Zhang J, Wang M, Che R. Oriented Polarization Tuning Broadband Absorption from Flexible Hierarchical ZnO Arrays Vertically Supported on Carbon Cloth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900900. [PMID: 30957426 DOI: 10.1002/smll.201900900] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Indexed: 05/21/2023]
Abstract
A novel strategy is used to design large-scale polarized carbon-based dielectric composites with sufficient interaction to electromagnetic waves. Highly uniform polar zinc oxide arrays are vertically grown on a flexible conductive carbon cloth substrate (CC@ZnO) via an in situ orientation growth process. Anion regulation is found to be a key factor to the morphology of hierarchical ZnO arrays including single-rod, cluster and tetrapod-shaped. As a typical dielectric loss hybrid composite, the electromagnetic parameters of the CC@ZnO system and charge density distribution in polarized ZnO rods confirm that the 3D intertwined carbon cloth is used as a conductive network to provide ballistic electron transportation. Moreover, the defect-rich ZnO arrays are well in contact with the CC substrate, favoring interface polarization, multiscattering, as well as impedance matching. Surprisingly, the efficient absorption bandwidth of the CC@ZnO-1 composite can reach 10.6 GHz, covering all X and Ku bands. The oriented ZnO possesses oxygen vacancies and exposure to a large amount of intrinsic polar surfaces, encouraging the polarization behavior under microwave frequency. Optimized CC@ZnO materials exhibit fast electron transportation, strong microwave energy dissipation, and superior wide absorption. The results suggest that the CC@ZnO composites have promising potential as flexible, tuning, and broadband microwave absorbers.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Xiao Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Qingqing Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Xuefeng Yu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Yunhao Zhao
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
21
|
Lou Z, Wang W, Yuan C, Zhang Y, Li Y, Yang L. Fabrication of Fe/C Composites as Effective Electromagnetic Wave Absorber by Carbonization of Pre-magnetized Natural Wood Fibers. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2019. [DOI: 10.21967/jbb.v4i1.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Liang X, Xu X, Man Z, Quan B, Sun B, Chen J, Gu W, Ji G. Zinc oxide/nanoporous carbon hybrid materials derived from metal–organic frameworks with different dielectric and absorption performances. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00648f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An outstanding microwave attenuation ability of ZnO/nanoporous carbon composite was obtained with conductivity and a nanoporous structure.
Collapse
Affiliation(s)
- Xiaohui Liang
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
- Division of Physics and Applied Physics
| | - Xin Xu
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Zengming Man
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
| | - Bin Quan
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
| | - Bowen Sun
- Division of Physics and Applied Physics
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore 637371
| | - Jiabin Chen
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
| | - Weihua Gu
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 211100
- P. R. China
| |
Collapse
|