1
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
2
|
Cheng B, Yan S, Li Y, Zheng L, Wen X, Tan Y, Yin X. In-situ growth of robust and superhydrophilic nano-skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
3
|
Mo Y, Zhang F, Dong H, Zhang X, Gao S, Zhang S, Jin J. Ultrasmall Cu 3(PO 4) 2 Nanoparticles Reinforced Hydrogel Membrane for Super-antifouling Oil/Water Emulsion Separation. ACS NANO 2022; 16:20786-20795. [PMID: 36475618 DOI: 10.1021/acsnano.2c07977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Membrane fouling is a persistent and crippling challenge for oily wastewater treatment due to the high susceptibility of membranes to contamination. A feasible strategy is to design a robust and stable hydration layer on the membrane surface to prevent contaminates. A hydrogel illustrates a distinct category of materials with outstanding antifouling performance but is limited by its weak mechanical property. In this research, we report a reinforced hydrogel on a membrane by in situ growing ultrasmall hydrophilic Cu3(PO4)2 nanoparticles in a copper alginate (CuAlg) layer via metal-ion-coordination-mediated mineralization. The embeddedness of hydrophilic Cu3(PO4)2 nanoparticle with a size of 3-5 nm endows the CuAlg/Cu3(PO4)2 composite hydrogel with enhanced mechanical property as well as reinforced hydrate ability. The as-prepared CuAlg/Cu3(PO4)2 modified membrane exhibits a superior oil-repulsive property and achieves a nearly zero flux decline for separating surfactant stabilized oil-in-water emulsions with a high permeate flux up to ∼1330 L m-2 h-1 bar-1. Notably, it is capable of keeping similar permeate flux for both pure water and oil-in-water emulsions during filtration, which is superior to the currently reported membranes, indicating its super-antifouling properties.
Collapse
Affiliation(s)
- Yuyue Mo
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Feng Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Hefeng Dong
- China State Shipbuilding Corporation System Engineering Research Institute, Beijing100036, China
| | - Xingzhen Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Shoujian Gao
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science; Collaborative Innovation Center of Suzhou Nano Science and Technology; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis; Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Yao Y, Dang X, Qiao X, Li R, Chen J, Huang Z, Gong YK. Crosslinked biomimetic coating modified stainless-steel-mesh enables completely self-cleaning separation of crude oil/water mixtures. WATER RESEARCH 2022; 224:119052. [PMID: 36099762 DOI: 10.1016/j.watres.2022.119052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/13/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The development of high-flux, durable and completely self-cleaning membranes is highly desired for separation of massive oil/water mixtures. Herein, differently crosslinked poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brush grafted stainless steel mesh (SSM) membranes (SSM/PMPCs) were fabricated by integrating of mussel inspired universal adhesion and crosslinking chemistry with surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP). The durability and self-cleaning performance of the prepared SSM membranes were evaluated by separating sticky crude oil/water mixtures in a continuous recycling dead-end filtration device. The water filtration flux driven by gravity reached 60,000 L⋅m-2⋅h-1 with a separation efficiency of over 99.98%. Furthermore, zero-flux-decline was observed during a 5 h continuous filtration when assisted by mechanical stirring. More significantly, such a completely self-cleaning separation of the well crosslinked SSM/PMPC2 membrane under optimized flux and stirring conditions had been operated cumulatively for 190 h in 30 days without any additional cleaning. These significant advances are more promising for practical applications in crude oil-contaminated water treatments and massive oil/water mixture separation.
Collapse
Affiliation(s)
- Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xingzhi Dang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Xinyu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Jiazhi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Zhihuan Huang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, PR China.
| |
Collapse
|
5
|
Novel organic solvent nanofiltration membrane based on inkjet printing-assisted layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Coppola S, Miccio L, Wang Z, Nasti G, Ferraro V, Maffettone PL, Vespini V, Castaldo R, Gentile G, Ferraro P. Instant in situ formation of a polymer film at the water–oil interface. RSC Adv 2022; 12:31215-31224. [PMID: 36349050 PMCID: PMC9623561 DOI: 10.1039/d2ra04300a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The water–oil interface is an environment that is often found in many contexts of the natural sciences and technological arenas. This interface has always been considered a special environment as it is rich in different phenomena, thus stimulating numerous studies aimed at understanding the abundance of physico-chemical problems that occur there. The intense research activity and the intriguing results that emerged from these investigations have inspired scientists to consider the water–oil interface even as a suitable setting for bottom-up nanofabrication processes, such as molecular self-assembly, or fabrication of nanofilms or nano-devices. On the other hand, biphasic liquid separation is a key enabling technology in many applications, including water treatment for environmental problems. Here we show for the first time an instant nanofabrication strategy of a thin film of biopolymer at the water–oil interface. The polymer film is fabricated in situ, simply by injecting a drop of polymer solution at the interface. Furthermore, we demonstrate that with an appropriate multiple drop delivery it is also possible to quickly produce a large area film (up to 150 cm2). The film inherently separates the two liquids, thus forming a separation layer between them and remains stable at the interface for a long time. Furthermore, we demonstrate the fabrication with different oils, thus suggesting potential exploitation in different fields (e.g. food, pollution, biotechnology). We believe that the new strategy fabrication could inspire different uses and promote applications among the many scenarios already explored or to be studied in the future at this special interface environment. A completely new method for easy and quick formation of a thin polymer film at the special setting of a stratified oil/water interface. Morphological SEM and quantitative full-field characterization have been reported using digital holography.![]()
Collapse
Affiliation(s)
- Sara Coppola
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Lisa Miccio
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Zhe Wang
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Giuseppe Nasti
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Vincenzo Ferraro
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, Università degli Studi di Napoli “Federico II”, Piazzale Tecchio 80, 80125 Napoli, Italy
| | - Veronica Vespini
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| | - Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials, CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- CNR-ISASI, Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy
| |
Collapse
|
7
|
Wang A, Li X, Hou T, Lu Y, Zhou J, Zhang X, Yang B. A tree-grapes-like PTFE fibrous membrane with super-hydrophobic and durable performance for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Zhang L, Gonzales RR, Istirokhatun T, Lin Y, Segawa J, Shon HK, Matsuyama H. In situ engineering of an ultrathin polyamphoteric layer on polyketone-based thin film composite forward osmosis membrane for comprehensive anti-fouling performance. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Wang L, Zhang J, Cao Z, Zheng Y, Wang Y, Zhang C, Zuo Y, Jiao F. Evaluation of Sulfonic Cellulose Membranes on Oil–Water Separation: Performance and Modeling of Flux. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lujun Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jieyu Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhanfang Cao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yijian Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yinke Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chongyang Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yi Zuo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Feipeng Jiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
10
|
Shaikh AR, Chawla M, Hassan AA, Abdulazeez I, Salawu OA, Siddiqui MN, Pervez S, Cavallo L. Adsorption of industrial dyes on functionalized and nonfunctionalized asphaltene: A combined molecular dynamics and quantum mechanics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Recent advances in nanomaterial-incorporated nanocomposite membranes for organic solvent nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118657] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Facile development of comprehensively fouling-resistant reduced polyketone-based thin film composite forward osmosis membrane for treatment of oily wastewater. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119185] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wang Y, Wang J, Ding Y, Zhou S, Liu F. In situ generated micro-bubbles enhanced membrane antifouling for separation of oil-in-water emulsion. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Kim S, Woo S, Park HR, Hwang W. One-Step Versatile Fabrication of Superhydrophilic Filters for the Efficient Purification of Oily Water. ACS OMEGA 2021; 6:3345-3353. [PMID: 33553952 PMCID: PMC7860237 DOI: 10.1021/acsomega.0c05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
As industrial oily wastewater can seriously damage ecosystems, the use of filtration technology with functional filters has emerged as an effective approach for purifying oily wastewater and protecting the environment. Although several methods for preparing functional filters with specific wettability have been reported, most methods are complicated, expensive, and time-consuming. Furthermore, these methods are only applicable to specific substrates, which hinder their practical applications. Here, a simple and versatile method for the fabrication of a superhydrophilic filter on any substrate using a one-step dipping process is reported. The method is easily scaled-up to fabricate large-area superhydrophilic filters; moreover, mass production is possible using a roll-to-roll process. The resulting filter is durable, stable, and, due to its stable hydrophilic layer, shows no deterioration in wetting behavior; it also exhibits self-cleaning properties. Based on its selective wetting characteristics, oil/water mixtures and oil-in-water emulsions stabilized by surfactants can be purified in a highly efficient manner. Importantly, owing to its self-cleaning properties, the filter can be reused after simply immersing and washing in water. This easy, cost-effective, fast, and versatile method for fabricating superhydrophilic filters can be practically applied in industries that need to purify oily water.
Collapse
|
15
|
In situ formation of ultrathin polyampholyte layer on porous polyketone membrane via a one-step dopamine co-deposition strategy for oil/water separation with ultralow fouling. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Hou J, Park C, Jang W, Byun H. Facile fabrication and characterization of aliphatic polyketone (PK) micro/nano fiber membranes via electrospinning and a post treatment process. RSC Adv 2020; 11:678-683. [PMID: 35423702 PMCID: PMC8693370 DOI: 10.1039/d0ra08119a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/09/2020] [Indexed: 11/22/2022] Open
Abstract
In this article, polyketone (PK) micro/nano fiber membranes were successfully fabricated by electrospinning and a post treatment process and the membrane characteristics were investigated. The morphology of the fiber membranes showed that ambient humidity during electrospinning changed the roughness of the fiber surface and the addition of NaCl decreased the fiber diameter. In particular, the changes in surface roughness was a very rare and novel discovery. The effect of this discovery on membrane properties was also analyzed. Additionally, the nanofiber membrane was modified by in situ surface reduction. FT-IR spectroscopy indicated the successful reduction modification and water contact angle results proved the improved wetting ability by this modification process. DSC and TGA analysis showed that the micro/nano fiber membranes possessed a high melting point and thermal decomposition temperature. Mechanical tests showed that as fiber membranes, PK micro/nano fiber membranes had relatively high mechanical strength, furthermore the mechanical strength can be easily enhanced by controlling the fiber morphology. From these results, it was concluded that the PK micro/nano fiber membranes could be a promising candidate for many applications such as organic solvent-resistant membranes, high-safety battery separators, oil-water separation, etc.
Collapse
Affiliation(s)
- Jian Hou
- Department of Chemical Engineering, Zibo Vocational Institute Zibo 255314 China
- Department of Chemical Engineering, Keimyung University Daegu 42601 South Korea
| | - Chanju Park
- Department of Chemical Engineering, Keimyung University Daegu 42601 South Korea
| | - Wongi Jang
- Department of Chemical Engineering, Keimyung University Daegu 42601 South Korea
| | - Hongsik Byun
- Department of Chemical Engineering, Keimyung University Daegu 42601 South Korea
| |
Collapse
|
17
|
Nakagawa K, Uchida K, Wu JLC, Shintani T, Yoshioka T, Sasaki Y, Fang LF, Kamio E, Shon HK, Matsuyama H. Fabrication of porous polyketone forward osmosis membranes modified with aromatic compounds: Improved pressure resistance and low structural parameter. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Impact of MWCO and Dopamine/Polyethyleneimine Concentrations on Surface Properties and Filtration Performance of Modified Membranes. MEMBRANES 2020; 10:membranes10090239. [PMID: 32961881 PMCID: PMC7559832 DOI: 10.3390/membranes10090239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/27/2023]
Abstract
The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL-1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.
Collapse
|
19
|
One-step electrospinning cellulose nanofibers with superhydrophilicity and superoleophobicity underwater for high-efficiency oil-water separation. Int J Biol Macromol 2020; 162:1536-1545. [PMID: 32781123 DOI: 10.1016/j.ijbiomac.2020.07.175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Cellulose nanofibers have been widely applied in many fields because of its unique advantages. However, it is a challenge to prepare cellulose nanofibers by electrospinning directly owing to the special molecular structure of cellulose. This limits the practical applications of cellulose nanofibers. In this work, cellulose nanofibers were successfully prepared directly by design of new electrospinning receiving device and optimization of process parameters. The as-prepared cellulose nanofibers exhibit good oil-water separation performances. Driven solely by gravity, the separation flux of the cellulose nanofibers for mixture of oil and water reaches 34,300.6 L m-2 h-1, and the separation flux and efficiency for surfactant-stabilized emulsion of oil and water reach 2503.7 L m-2 h-1 and over 98.3%, respectively. The as-prepared cellulose nanofibers also exhibit good mechanical properties and reusability. The breaking strength of the cellulose nanofibers can reach 148.2 cN. The separation fluxes of cellulose nanofibers for mixtures and emulsions of oil and water can be maintained 99.7% and 86.3% of the initial value after being used for 20 times. Furthermore, the as-prepared cellulose nanofibers have good degradability. These properties render as-prepared cellulose nanofibers as promising materials with potential applications in oil-water separation.
Collapse
|
20
|
Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, Abdullah MS, Ng BC, Sheikh Abdul Kadir SH, Kamal F, Mansur S. Co-Adsorptive Removal of Creatinine and Urea by a Three-Component Dual-Layer Hollow Fiber Membrane. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33276-33287. [PMID: 32589391 DOI: 10.1021/acsami.0c08947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
Collapse
Affiliation(s)
- Muhammad Nidzhom Zainol Abidin
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Noresah Said
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Hasrinah Hasbullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Mohd Sohaimi Abdullah
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Be Cheer Ng
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Fatmawati Kamal
- Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, Johor Darul Ta'zim, 81310 Skudai, Malaysia
| |
Collapse
|
21
|
Lin Y, Salem MS, Zhang L, Shen Q, El-shazly AH, Nady N, Matsuyama H. Development of Janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118141] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kim S, Lee JW, Hwang W. One-Step Eco-Friendly Superhydrophobic Coating Method Using Polydimethylsiloxane and Ammonium Bicarbonate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28869-28875. [PMID: 32463651 DOI: 10.1021/acsami.0c06697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Superhydrophobic surfaces offer numerous advantages and have become popular in a wide range of fields. Although many approaches for the modification of surface wettability have been developed, the practical application of superhydrophobic surfaces has been limited by the need for toxic materials and specialized equipment. Herein, a one-step coating method is developed for the fabrication of a superhydrophobic surface to eliminate these limitations. This environmentally friendly coating process uses only two reagents, namely, polydimethylsiloxane and ammonium bicarbonate, to minimize the inconvenience and costs associated with the disposal of used toxic materials. The superhydrophobic surface exhibits excellent durability, and the method is applicable to a variety of target surface shapes, including three-dimensional and complex structures. Besides, a wettability patterned surface and a functional filter for oil/water separation can be fabricated using this method. The numerous advantages of this approach demonstrate great practical application potential of these superhydrophobic surfaces.
Collapse
Affiliation(s)
- Seongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong-Won Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Mechanical Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Woonbong Hwang
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
23
|
Preparation of a polystyrene-based super-hydrophilic mesh and evaluation of its oil/water separation performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117747] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Wang F, He M, Su Y, Wang W, Liu Y, Xue J, Cao J, Shen J, Zhang R, Jiang Z. In situ construction of chemically heterogeneous hydrogel surfaces toward near-zero-flux-decline membranes for oil-water separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117455] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Han N, Yang C, Zhang Z, Wang W, Zhang W, Han C, Cui Z, Li W, Zhang X. Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil-Water Emulsions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35479-35487. [PMID: 31466446 DOI: 10.1021/acsami.9b12252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The efficient treatment of oil-water emulsions in extreme environments, such as strongly acidic and alkaline media, remains a widespread concern. Poly(phenylene sulfide) (PPS)-based porous membranes with excellent resistance to chemicals and solvents are promising for settling this challenge. However, the limited hydrophilicity and the poor hydrated ability of the hydrophilic PPS (h-PPS) membranes reported in the literature prevents them from separating oil-water emulsions with high efficiency, large fluxes, and good antifouling performances. In this study, a firm rough TiO2 layer is constructed on a h-PPS membrane via electrostatic assembly to improve the surface hydrophilization. The introduction of the TiO2 layer increases the wetting selectivity and decreases the oil adhesion, which makes it capable to efficiently treat oil-in-water emulsions (efficiency > 98%). Most importantly, the underwater critical oil intrusion pressure almost doubled after the incorporation of the TiO2 layer, which allows the membrane to withstand pressurized filtration, achieving a high flux of ∼4000 L m-2 h-1. This is more than 2 orders of magnitude larger than the flux of the reported h-PPS. Furthermore, the TiO2@h-PPS membrane displays long-term stability in separating oil-water emulsions in strong acid and strong alkali, showing a promising prospect for the treatment of strongly corrosive emulsions.
Collapse
Affiliation(s)
- Na Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Textile Engineering, Chemistry and Science Department , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Chao Yang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Zongxuan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Weijing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wenxin Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Changye Han
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Zhenyu Cui
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes , Tianjin 300387 , China
- School of Materials Science and Engineering , Tianjin Polytechnic University , Tianjin 300387 , China
| |
Collapse
|
26
|
A comprehensively fouling- and solvent-resistant aliphatic polyketone membrane for high-flux filtration of difficult oil-in-water micro- and nanoemulsions. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Polyketone-based membrane support improves the organic solvent resistance of laccase catalysis. J Colloid Interface Sci 2019; 544:230-240. [DOI: 10.1016/j.jcis.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
|