1
|
Zhao B, Wang C, Huang J, Zhang J. Wood-Derived Ionic Conductive Cellulose for Transparent and Flexible Methamphetamine Analog Sensors. ACS OMEGA 2025; 10:17770-17776. [PMID: 40352531 PMCID: PMC12059897 DOI: 10.1021/acsomega.5c00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/24/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025]
Abstract
Developing covert, convenient, rapid, and cost-effective detection methods for trace amounts of addictive drugs poses a challenging task. Herein, wood-derived ionic conductive cellulose (WICC) is presented as a sensitive material, where active metal cations serve as charge carriers and effective adsorption/binding sites for a typical analog of the addictive drug N-methylphenethylamine (MPEA). The addition of Cu2+ ions improves the sensing performance of WICC, and the simple drop-coating process will facilitate the fabrication of the device array and the integration with flexible substrates. Taking advantage of WICC with excellent ion conductivity, high transparency, and mechanical flexibility, transparent and flexible sensors based on WICC are demonstrated, enabling real-time detection of MPEA. Notably, the high transparency makes WICC particularly suitable for covert detection. More significantly, the WICC sensors exhibit outstanding selectivity, facilitating an ultralow theoretical detection limit (∼12 nL). This work provides a promising pathway toward the next-stage construction of invisible chemical sensors for addictive drug detection.
Collapse
Affiliation(s)
- Brian Zhao
- Scarsdale
High School, Scarsdale, New York 10583, United States
| | - Chenghao Wang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| | - Jia Huang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| | - Junyao Zhang
- School
of Materials Science and Engineering, Tongji
University, Shanghai 201804, China
| |
Collapse
|
2
|
Angioi R, Thamatam N, Agah M, Morrin A. Monitoring Skin Volatile Emissions Using Wearable Sensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:285-305. [PMID: 40372817 DOI: 10.1146/annurev-anchem-071024-020707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Human skin emits a continuous flux of volatile compounds reflecting various metabolic processes in the body, microbial activity, and environmental factors. Harnessing this emission for diagnostics is of great interest given the noninvasive, passive, and accessible nature of the emission, and there is much research underway to understand the value of this skin-emitted volatile organic compound (VOC) matrix. In parallel to this, wearable skin VOC sensors are emerging and garnering attention due to their potential to provide noninvasive, real-time information for monitoring human health, overcoming many of the design challenges related to biofluid monitoring via wearables. The projected opportunities for skin VOCs are fueling innovations in wearable VOC monitoring. This review discusses the most recent developments, from fully integrated wearable skin VOC sensors that exploit existing semiconductor technology to the design and preparation of advanced new sensing materials and devices to deliver new modalities for wearable skin VOC sensors. We articulate the challenges, limitations, and opportunities for technological advances to provide a perspective on promising directions for future developments.
Collapse
Affiliation(s)
- R Angioi
- School of Chemical Sciences, SFI Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland;
| | - N Thamatam
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - M Agah
- VT MEMS Lab, The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - A Morrin
- School of Chemical Sciences, SFI Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland;
| |
Collapse
|
3
|
Li Y, Li Y, Shi Y, Gao J, Lu J, Wang C, Chang J, Wang Z, Yang Y, Yang B, Feng L, Fu Q, Bao X, Wu ZS. Single cobalt atoms with unconventional dynamic coordination mechanism for selective ammonia sensor. Natl Sci Rev 2025; 12:nwaf031. [PMID: 39974516 PMCID: PMC11837343 DOI: 10.1093/nsr/nwaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Developing gas sensors that can simultaneously achieve high sensitivity and selectivity for the detection of a single-type gas remains a significant challenge. Herein we demonstrate cobalt (Co) single atoms with an unconventional dynamically changing coordination structure that could be used as NH3-sensing material with superior sensitivity and selectivity. According to the steric effect of 2-methylimidazole (2MI) molecules and carbonyl groups on graphene, the Co single atom is evolved into a bidentate coordinated structure (Co-2MI-G). In-situ characterization and theoretical simulation reveal that the sensing mechanism of Co-2MI-G is the specific chemical adsorption between unsaturated coordinated Co single atoms and NH3 molecules, causing a reversible switching of coordination number from 2 to 4, a valence state transfer from Co2+ to Co3+ of Co single atoms, and a band-gap width from 0.14 eV to 0.50 eV. Consequently, the Co-2MI-G-based gas sensor presents a sensing response of 67.598% for 1 ppm NH3 and a limit of detection of 2.67 ppb, at least 1.8 times higher than that of state-of-the-art NH3 sensors, together with robust stability and reproducibility. This work provides an innovative perspective on utilizing single atoms for ultra-selective gas sensing by coordination regulation.
Collapse
Affiliation(s)
- Yuejiao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaguang Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-Carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yushu Shi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianmei Gao
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jianmin Lu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chao Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Junyu Chang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenming Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yangyue Yang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Kumar G, Panda S. Probing the ionic activation enthalpies in anionic polysaccharide xerogel-based single ion conductor for temperature sensing. Carbohydr Polym 2024; 340:122258. [PMID: 38857999 DOI: 10.1016/j.carbpol.2024.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.
Collapse
Affiliation(s)
- Gaurav Kumar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Siddhartha Panda
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
6
|
Cao L, Li X, Hu X. An Antibacterial, Highly Sensitive Strain Sensor Based on an Anionic Copolymer Interpenetrating with κ-Carrageenan. ACS Biomater Sci Eng 2024; 10:5641-5652. [PMID: 39177479 DOI: 10.1021/acsbiomaterials.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Polysaccharide-based hydrogels are suitable for use in the field of flexible bioelectronics due to their benign mechanical properties and biocompatibility. However, the preparation of hydrogel sensors with high performance without affecting their physicochemical properties (e.g., flexibility, toughness, self-healing, and antibacterial activity) remains a challenge and needs to be solved. Herein, a metal ion cross-linking reinforced, double network hydrogel was formed from a 2-acrylamide-2-methylpropanesulfonic acid (AMPS) copolymer interpenetrating κ-carrageenan (CAR), followed by immersing the gel in a Cu2+ ion solution to obtain an antibacterial CAR/P(AM-co-AMPS)-Cu2+ conductive hydrogel. LiCl was added as the electrolyte. The presence of the LiCl electrolyte and sulfonated molecular chain units not only gives the hydrogel good electrical conductivity (conductivity up to 2.68 S/m) but also improves the sensitivity of the hydrogel as a stress-strain sensor, with a hydrogel sensitivity GF of up to 3.76 in the 20%-100% strain range and response time of up to 280 ms. The CAR double-helical structure and sol-gel properties and the interaction of multiple noncovalent bonds between polymers provide the hydrogel with excellent self-healing, with a self-healing efficiency of 68%. In addition, the electrostatic interaction of Cu2+ with Escherichia coli cells can inhibit their growth, exhibiting good antibacterial properties with an inhibition circle diameter of 20.5 mm. This work could provide an effective strategy for antibacterial multifunctional CAR-based bionic sensors.
Collapse
Affiliation(s)
- Liqin Cao
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, P.R. China
| | - Xiaotong Li
- School of Science, Xihua University, Chengdu 610039, P. R. China
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830017, P.R. China
| | - Xin Hu
- School of Science, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
7
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
8
|
Chen J, Huang J, Hu Y. An optoionic hydrogel with UV-regulated ion conductivity for reprogrammable iontronics: Logic processing and image sensing. SCIENCE ADVANCES 2024; 10:eadn0439. [PMID: 38865467 PMCID: PMC11168472 DOI: 10.1126/sciadv.adn0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
The development of smart hydrogels capable of actively controlling ion conductivity is of paramount importance for iontronics. Most current work in this field focuses on enhancing the hydrogels' ion conductivity. Few successes have been seen in achieving spatial regulation of ion flow through external control. Among various controls, light gives the best spatial and temporal resolution for practical iontronic applications. However, developing hydrogels that can generate drastic ion concentration change upon photoirradiation for tunable conductivity is challenging. Very few molecules can enable photoion generation, and most of them are hydrophobic and low quantum yield. Here, we present an optoionic hydrogel that uses triphenylmethane leuconitrile (TPMLN) for ultraviolet-regulated ion conductivity. Through postpolymerization TPMLN synthesizing, we can incorporate high concentration of the hydrophobic TPMLN in hydrogels without compromising the hydrogel's mechanical integrity. Upon light irradiation, the hydrogel's local conductivity can change an unprecedented 10-fold. We also demonstrated soft optoionic devices that are capable of logic processing and photo imaging.
Collapse
Affiliation(s)
- Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiahe Huang
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Sun Z, Yin Y, Liu B, Xue T, Zou Q. Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism. SENSORS (BASEL, SWITZERLAND) 2024; 24:3232. [PMID: 38794086 PMCID: PMC11125873 DOI: 10.3390/s24103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ϵ¯ was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (ϵ¯ in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively; ϵ¯ in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger-wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments.
Collapse
Affiliation(s)
- Zhenhao Sun
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Yunjiang Yin
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Baoguo Liu
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
| | - Tao Xue
- Center of Analysis and Testing Facilities, Tianjin University, Tianjin 300072, China;
| | - Qiang Zou
- School of Microelectronics, Tianjin University, Tianjin 300072, China; (Z.S.); (Y.Y.); (B.L.)
- Tianjin International Joint Research Center for Internet of Things, Tianjin 300072, China
- Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
11
|
Walleni C, Malik SB, Missaoui G, Alouani MA, Nsib MF, Llobet E. Selective NO 2 Gas Sensors Employing Nitrogen- and Boron-Doped and Codoped Reduced Graphene Oxide. ACS OMEGA 2024; 9:13028-13040. [PMID: 38524411 PMCID: PMC10956123 DOI: 10.1021/acsomega.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
In this paper, we develop high-performance gas sensors based on heteroatom-doped and -codoped graphene oxide as a sensing material for the detection of NO2 at trace levels. Graphene oxide (GO) was doped with nitrogen and boron by a chemical method using urea and boric acid as precursors. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The obtained results proved the successful reduction of graphene oxide by doping effects, leading to the removal of some oxygen functional groups and restoration of an sp2 carbon structure. New bonds in honeycombs, such as pyridinic, pyrrolic, graphitic, B-C3, B-C2-O, and B-O, were created. Compared to the nondoped GO, the N/B-rGO materials exhibited enhanced responses toward low concentrations of NO2 (<1 ppm) at 100 °C. Particularly, the N-rGO-based device showed the highest sensitivity and lowest limit of detection.
Collapse
Affiliation(s)
- Chiheb Walleni
- Higher
School of Sciences and Technology of Hammam Sousse, University of Sousse, 4011 Sousse, Tunisia
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
- NANOMISENE
Laboratory, LR16CRMN01, Center of Research on Microelectronics and
Nanotechnology (CRMN), Technopole of Sousse, B.P334, 4054 Sousse, Tunisia
| | - Shuja Bashir Malik
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| | - Ghada Missaoui
- Fakultät
V – Institute of Physics, Carl von
Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Mohamed Ayoub Alouani
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| | - Mohamed Faouzi Nsib
- Higher
School of Sciences and Technology of Hammam Sousse, University of Sousse, 4011 Sousse, Tunisia
- NANOMISENE
Laboratory, LR16CRMN01, Center of Research on Microelectronics and
Nanotechnology (CRMN), Technopole of Sousse, B.P334, 4054 Sousse, Tunisia
| | - Eduard Llobet
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| |
Collapse
|
12
|
Chen Q, Ke X, Cai Y, Wang H, Dong Z, Li X, Li J, Xu X, Luo J, Li J. A facile strategy to fabricate a skin-like hydrogel with adhesive and highly stretchable attributes through small molecule triggering toward flexible electronics. J Mater Chem B 2023; 11:11035-11043. [PMID: 37964679 DOI: 10.1039/d3tb02186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Polyacrylamide hydrogel is a promising matrix in biomedical applications due to its biocompatibility, transparency and flexibility. However, its implementation in skin-attachable applications is impeded by its inherent deficiency in surface-adaptive adhesion and inadequate mechanical conformity to skin tissues. Herein, tris, a biocompatible small molecule with a triple hydrogen bonding cluster in its molecule structure, is introduced for the first time into a polyacrylamide hydrogel. This incorporation is achieved via a facile one-pot strategy, resulting in a highly stretchable hydrogel with an impressive strain capacity (2574.75 ± 28.19%), a human dermis tissue-compatible Young's modulus (27.89 ± 2.05 kPa) and an intrinsically universal adhesion capacity (16.66 ± 0.32 N). These superior properties are attributed to the elevated hydrogen bonding density and the plasticizing effect induced by tris, without compromising the hydrogel's excellent transparency (>90% transmittance). Moreover, by incorporating calcium ions into the resulting soft adhesive hydrogel, we demonstrate its utility in skin-like sensors, leading to a substantial enhancement in strain sensitivity and electrical conductivity, in conjunction with the plasticizing influence exerted by tris. This work offers a facile and environmentally friendly solution to fabricate ultra-stretchable adhesive polyacrylamide hydrogel matrixes for dynamic surfaces, even under large deformation, which can broaden their potential applications in integrated bioelectronics.
Collapse
Affiliation(s)
- Qi Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Yusong Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinlong Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jinlin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Wang S, Dong Y, Li Y, Ryu K, Dong Z, Chen J, Dai Z, Ke Y, Yin J, Long Y. A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. MATERIALS HORIZONS 2023; 10:4243-4250. [PMID: 37555343 DOI: 10.1039/d3mh00671a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The energy efficiency of buildings has become a critical issue due to their substantial contribution to global energy consumption. Windows, in particular, are often the least efficient component of the building envelope, and conventional smart windows focus solely on regulating solar transmittance while overlooking radiative cooling. Although several recent designs achieved dual-control of solar and radiative cooling, these windows still face limitations in terms of durability, limited modulation ability and energy-saving performance. To address these challenges, we propose a novel dual-control smart window design consisting of a reconfigurable kirigami structure and polydimethylsiloxane-laminated thermochromic hydrogel coated with silver nanowires. In summer, the thermochromic hydrogel turns translucent to suppress the solar heat gain, while the high emissivity kirigami structure covers the exterior surface of the window, promoting radiative cooling. In winter, the hydrogel becomes transparent to allow for solar transmission. Additionally, the kirigami structure undergoes an out-of-plane structural change, opening towards the outside environment to expose the underlying low-emissivity silver nanowires and suppress heat radiation. Our design achieves a promising solar transmittance modulation ability of ∼24% and a good long-wave infrared emissivity regulation ability of 0.5. Furthermore, it exhibits significantly improved durability, which is nine times longer than the lifespan of conventional smart hydrogels. Our novel approach offers a promising solution for constructing energy-efficient and durable smart windows and outperforms existing state-of-the-art solar/radiative cooling dual-regulation smart windows in the literature.
Collapse
Affiliation(s)
- Shancheng Wang
- Department of Electrical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yuting Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Yanbin Li
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Keunhyuk Ryu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Zhili Dong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jian Chen
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhendong Dai
- Jiangsu Provincial Key Laboratory of Bionic Functional Materials, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yujie Ke
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
| | - Jie Yin
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | - Yi Long
- Department of Electrical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China.
- Institute of Environment, Energy and Sustainability (IEES), The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
14
|
Ye Y, Yu L, Lizundia E, Zhu Y, Chen C, Jiang F. Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chem Rev 2023; 123:9204-9264. [PMID: 37419504 DOI: 10.1021/acs.chemrev.2c00618] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Ionic conductors (ICs) find widespread applications across different fields, such as smart electronic, ionotronic, sensor, biomedical, and energy harvesting/storage devices, and largely determine the function and performance of these devices. In the pursuit of developing ICs required for better performing and sustainable devices, cellulose appears as an attractive and promising building block due to its high abundance, renewability, striking mechanical strength, and other functional features. In this review, we provide a comprehensive summary regarding ICs fabricated from cellulose and cellulose-derived materials in terms of fundamental structural features of cellulose, the materials design and fabrication techniques for engineering, main properties and characterization, and diverse applications. Next, the potential of cellulose-based ICs to relieve the increasing concern about electronic waste within the frame of circularity and environmental sustainability and the future directions to be explored for advancing this field are discussed. Overall, we hope this review can provide a comprehensive summary and unique perspectives on the design and application of advanced cellulose-based ICs and thereby encourage the utilization of cellulosic materials toward sustainable devices.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Le Yu
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
- BCMaterials Lab, Basque Center for Materials, Applications and Nanostructures, Leioa 48940, Spain
| | - Yeling Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Chaoji Chen
- School of Resource and Environmental Sciences, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Bioproducts Institute, The University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Wen J, Wu Y, Gao Y, Su Q, Liu Y, Wu H, Zhang H, Liu Z, Yao H, Huang X, Tang L, Shi Y, Song P, Xue H, Gao J. Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics. NANO-MICRO LETTERS 2023; 15:174. [PMID: 37420043 PMCID: PMC10328881 DOI: 10.1007/s40820-023-01148-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared. The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding. Simultaneously, the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength (up to 7.38 ± 0.24 MPa), fracture strain (up to 941 ± 17%), toughness (up to 31.59 ± 1.53 MJ m-3) and fracture energy (up to 5.41 ± 0.63 kJ m-2). Moreover, the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance. Remarkably, owing to the organohydrogel stabilized conductive network, the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself. This work provides new ideas for the design of high-strength, tough, stretchable, anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.
Collapse
Affiliation(s)
- Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuxin Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Qin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Xuewu Huang
- Testing Center, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
16
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
17
|
Li J, Ding Q, Wang H, Wu Z, Gui X, Li C, Hu N, Tao K, Wu J. Engineering Smart Composite Hydrogels for Wearable Disease Monitoring. NANO-MICRO LETTERS 2023; 15:105. [PMID: 37060483 PMCID: PMC10105367 DOI: 10.1007/s40820-023-01079-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/16/2023] [Indexed: 05/31/2023]
Abstract
Growing health awareness triggers the public's concern about health problems. People want a timely and comprehensive picture of their condition without frequent trips to the hospital for costly and cumbersome general check-ups. The wearable technique provides a continuous measurement method for health monitoring by tracking a person's physiological data and analyzing it locally or remotely. During the health monitoring process, different kinds of sensors convert physiological signals into electrical or optical signals that can be recorded and transmitted, consequently playing a crucial role in wearable techniques. Wearable application scenarios usually require sensors to possess excellent flexibility and stretchability. Thus, designing flexible and stretchable sensors with reliable performance is the key to wearable technology. Smart composite hydrogels, which have tunable electrical properties, mechanical properties, biocompatibility, and multi-stimulus sensitivity, are one of the best sensitive materials for wearable health monitoring. This review summarizes the common synthetic and performance optimization strategies of smart composite hydrogels and focuses on the current application of smart composite hydrogels in the field of wearable health monitoring.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ning Hu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, People's Republic of China.
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
18
|
Li L, Ji X, Chen K. Conductive, self-healing, and antibacterial Ag/MXene-PVA hydrogel as wearable skin-like sensors. J Biomater Appl 2023; 37:1169-1181. [PMID: 36189748 DOI: 10.1177/08853282221131137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The rapid development of flexible electronic technology has led to the in-depth study of flexible wearable sensors to achieve accurate sensing under different external stimuli. However, it is still a huge challenge to develop hydrogel-based wearable skin-like sensors with super ductility, high sensitivity, and self-healing properties. Herein, the Ti3C2 type of MXene was synthesized, and the Ag/MXene nanocomplexes were incorporated into polyvinyl alcohol-borax matrix to construct a novel composite hydrogel as the multifunctional nanofillers, which could bring both improved properties and novel functionalities. The Ag/MXene-Poly (vinyl alcohol) (PVA) hydrogel displayed integrated merits of highly strain sensitive (GF = 3.26), self-healing (within 10 min, 91% healing efficiency), and excellent antibacterial activity. The hydrogel could be assembled into a wearable skin-like sensor to monitor human movement, including large deformations (finger, elbow, wrist, and knee bending) and tiny deformations (mouth's movement and throat vocalization) in real time. Therefore, this work shed a new light on the development of flexible wearable skin-like sensors for the personalized healthcare monitoring, human-machine interfaces, and artificial intelligence.
Collapse
Affiliation(s)
- Lumin Li
- School of Resources and Chemical Engineering, 66283Sanming University, Sanming, Fujian, China
| | - Xiaofeng Ji
- 117895Affiliated Sanming First Hospital of Fujian Medical University, Sanming, Fujian, China
| | - Kai Chen
- School of Resources and Chemical Engineering, 66283Sanming University, Sanming, Fujian, China
| |
Collapse
|
19
|
Deng Z, Liu Y, Dai Z. Gel Electrolytes for Electrochemical Actuators and Sensors Applications. Chem Asian J 2023; 18:e202201160. [PMID: 36537994 DOI: 10.1002/asia.202201160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Advanced functional materials, especially gel electrolytes, play a very important role in the preparation of electrochemical actuators and sensors, and have received extensive attention. In this review, a general classification of gel electrolytes is firstly introduced according to the type of medium. Then, the research progress of gel electrolytes with different types used to fabricate electrochemical actuators is summarized. Next, the current research progress of gel electrolytes used in different types of electrochemical sensors, including strain sensors, stress sensors, and gas sensors is introduced. Finally, the future challenges and development prospects of electrochemical actuators and sensors based on gel electrolytes are discussed. The huge application prospects of gel electrolyte are worthy of further focusing by researchers, which will have an indispensable impact on human life and development.
Collapse
Affiliation(s)
- Zhenzhen Deng
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering at Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
20
|
3D
printable and stretchable
PVA‐PAAm
dual network hydrogel with conductivities for wearable sensors. J Appl Polym Sci 2022. [DOI: 10.1002/app.53468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Ling Wa Eric Shi
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| |
Collapse
|
22
|
Ultrasensitive, stretchable, and transparent humidity sensor based on ion-conductive double-network hydrogel thin films. SCIENCE CHINA MATERIALS 2022; 65:2540-2552. [PMID: 35600911 PMCID: PMC9109751 DOI: 10.1007/s40843-021-2022-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022]
Abstract
Ion-conductive hydrogels with intrinsic biocompatibility, stretchability, and stimuli-responsive capability have attracted considerable attention because of their extensive application potential in wearable sensing devices. The miniaturization and integration of hydrogel-based devices are currently expected to achieve breakthroughs in device performance and promote their practical application. However, currently, hydrogel film is rarely reported because it can be easily wrinkled, torn, and dehydrated, which severely hinders its development in microelectronics. Herein, thin, stretchable, and transparent ion-conductive double-network hydrogel films with controllable thickness are integrated with stretchable elastomer substrates, which show good environmental stability and ultrahigh sensitivity to humidity (78,785.5%/% relative humidity (RH)). Benefiting from the ultrahigh surface-area-to-volume ratio, abundant active sites, and short diffusion distance, the hydrogel film humidity sensor exhibits 2 × 105 times increased response to 98% RH, as well as 5.9 and 7.6 times accelerated response and recovery speeds compared with the bulk counterpart, indicating its remarkable thickness-dependent humidity-sensing properties. The humidity-sensing mechanism reveals that the adsorption of water improves the ion migration and dielectric constant, as well as establishes the electrical double layer. Furthermore, the noncontact human-machine interaction and real-time respiratory frequency detection are enabled by the sensors. This work provides an innovative strategy to achieve further breakthroughs in device performance and promote the development of hydrogel-based miniaturized and integrated electronics.
![]()
Collapse
|
23
|
Li X, Jin L, Ni A, Zhang L, He L, Gao H, Lin P, Zhang K, Chu X, Wang S. Tough and Antifreezing MXene@Au Hydrogel for Low-Temperature Trimethylamine Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30182-30191. [PMID: 35731700 DOI: 10.1021/acsami.2c06749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Trimethylamine (TMA) is one of the important chemical indexes to judge the freshness of marine fish. It is necessary to develop a low temperature TMA sensor to help the monitoring and prediction of the quality of marine fish in cold chain. Herein, a flexible low temperature TMA gas sensor featuring antifreezing and superior mechanical properties was developed based on the Au nanoparticle-modified MXene (MXene@Au) composite. MXene@Au was synthesized and then polymerized with a hydrogel composed of acrylamide (AM), N,N'-methylenebisacrylamide (BIS), sodium carboxymethyl cellulose (CMC), and EG, and the resultant MXene@Au hydrogel was found to exhibit excellent antifreezing performance even at extremely low temperature as well as high tensile strength, ultrastretchability, and toughness, which enabled an efficient gas sensing platform for TMA detection at low temperature. The TMA sensing properties of the flexible MXene@Au DN hydrogel sensor at 25 °C and a low temperature of 0 °C were studied, and a linear relationship between TMA sensitivity and concentration was built. The excellent sensing properties were maintained even under deformation. The application of the MXene@Au DN hydrogel sensor in detection of fish freshness at 0 °C was investigated. The result indicated the potential application of the flexible MXene@Au DN hydrogel gas sensor in dynamic quality monitoring and prediction of marine fish products during its transportation and storage in the cold chain.
Collapse
Affiliation(s)
- Xuhan Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Ling Jin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Anqi Ni
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Liqiang Zhang
- School of Metallurgy, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lifang He
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Hong Gao
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Peng Lin
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xiangfeng Chu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Suhua Wang
- College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| |
Collapse
|
24
|
Wei Y, Wang H, Ding Q, Wu Z, Zhang H, Tao K, Xie X, Wu J. Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO 2 sensors and the mechanism. MATERIALS HORIZONS 2022; 9:1921-1934. [PMID: 35535754 DOI: 10.1039/d2mh00284a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly stretchable, sensitive and room-temperature nitrogen dioxide (NO2) sensors are fabricated by exploiting intrinsically stretchable, transparent and ion-conducting hydrogels and active metals as the novel transducing materials and electrodes, respectively. The NO2 sensor exhibits high sensitivity (60.02% ppm-1), ultralow theoretical limit of detection (6.8 ppb), excellent selectivity, linearity and reversibility at room temperature. Notably, the sensitivity can be maintained even under 50% tensile strain. For the first time, it's found that the metal electrodes significantly impact the sensing performance. Specifically, the sensitivity is boosted from 31.18 to 60.02% ppm-1 by replacing the anodic silver with copper-tin alloy. Importantly, by applying specially designed sensing tests, and microscopic and composition analyses, we have obtained the inherent NO2 sensing mechanism: the anodic metal tends to be oxidized and the NO2 molecules tend to react in the cathode-gel interface. The introduction of glycerol converts the hydrogel into the organohydrogel with remarkably enhanced anti-drying and anti-freezing capacities and toughness, which effectively improved the long-time stability of the sensors. Importantly, we execute sound/light alarms and a wireless smartphone alarm by utilizing a designed circuit board and applet. This work gives an incisive investigation for the preparation, performance improvement, mechanism and application of hydrogel-based NO2 sensors, promoting the evolution of hydrogel ionotronics.
Collapse
Affiliation(s)
- Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - He Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT), Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
25
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
High-Strength, Conductive, Antifouling, and Antibacterial Hydrogels for Wearable Strain Sensors. ACS Biomater Sci Eng 2022; 8:2624-2635. [PMID: 35512312 DOI: 10.1021/acsbiomaterials.1c01630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conductive hydrogels have shown great potential in the field of flexible strain sensors. However, their application is greatly limited due to the poor antifouling and low mechanical strength. Unfortunately, it is still a challenge to improve these two distinct properties simultaneously. Herein, a hydrogel with high strength, good conductivity, and excellent antifouling and antibacterial properties was prepared through the synergistic effect of physical and chemical cross-linking. First, acrylic acid (AA), acrylamide (AM), and 2-methacryloyloxyethyl phosphorylcholine (MPC) monomers were polymerized in the presence of chitosan chains to form the hydrogel. Then, the prepared hydrogel was immersed in a ferric ion solution to further strengthen the hydrogel through ion coordination. The obtained CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel showed outstanding tensile strength (1.03 MPa), excellent stretchability (1075%), good toughness (7.03 MJ/m3), and fatigue resistance. The CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel also demonstrated good ion conductivity (0.42 S/m) and excellent antifouling and antibacterial properties. In addition, the strain sensor constructed by the CS-P(AM-MPC-AA0.2)-Fe0.13+ hydrogel showed high sensitivity and good stability. This work presented a facile method to construct a zwitterionic hydrogel with high-strength, conductive, antifouling, and antibacterial properties, which suggested a promising gel platform for flexible wearable sensors.
Collapse
|
27
|
Hsieh JC, Li Y, Wang H, Perz M, Tang Q, Tang KWK, Pyatnitskiy I, Reyes R, Ding H, Wang H. Design of hydrogel-based wearable EEG electrodes for medical applications. J Mater Chem B 2022; 10:7260-7280. [PMID: 35678148 DOI: 10.1039/d2tb00618a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electroencephalogram (EEG) is considered to be a promising method for studying brain disorders. Because of its non-invasive nature, subjects take a lower risk compared to some other invasive methods, while the systems record the brain signal. With the technological advancement of neural and material engineering, we are in the process of achieving continuous monitoring of neural activity through wearable EEG. In this article, we first give a brief introduction to EEG bands, circuits, wired/wireless EEG systems, and analysis algorithms. Then, we review the most recent advances in the interfaces used for EEG recordings, focusing on hydrogel-based EEG electrodes. Specifically, the advances for important figures of merit for EEG electrodes are reviewed. Finally, we summarize the potential medical application of wearable EEG systems.
Collapse
Affiliation(s)
- Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yang Li
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C3J7, Canada
| | - Huiqian Wang
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Matt Perz
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Qiong Tang
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Raymond Reyes
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Hong Ding
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
28
|
Chakraborty N, Mondal S. Chemiresistive NH 3 detection at sub-zero temperatures by polypyrrole- loaded Sn 1-xSb xO 2 nanocubes. MATERIALS HORIZONS 2022; 9:1750-1762. [PMID: 35507312 DOI: 10.1039/d2mh00236a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemiresistive gas sensors operate mainly at high temperatures, primarily due to the need of energy for surface adsorption-desorption of analytes. As a result, the operating temperature of the chemiresistive sensors could be reduced only to room temperature. Hence, a plethora of sensing requirements at temperatures below ambient have remained outside the scope of chemiresistive materials. In this work, we have developed an antimony-doped SnO2 nanocube-supported expanded polypyrrole network that could detect low ppm ammonia gas (≤20 ppm) at sub-zero temperatures with high response (∼4), selectivity, and short response and recovery times. The low temperature chemiresistive sensing has been explained in terms of the interplay of an extended conducting network of an in situ deposited polymer, effective transport properties of majority charge carriers and a loosely bound exciton-like electron-hole pair formation and breakage mechanism.
Collapse
Affiliation(s)
- Nirman Chakraborty
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Swastik Mondal
- CSIR Central Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
29
|
Yin J, Bai Y, Lu J, Ma J, Zhang Q, Hong W, Jiao T. Enhanced mechanical performances and high-conductivity of rGO/PEDOT:PSS/PVA composite fiber films via electrospinning strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Trung ND, Huy DTN, Jade Catalan Opulencia M, Lafta HA, Abed AM, Bokov DO, Shomurodov K, Van Thuc Master H, Thaeer Hammid A, Kianfar E. Conductive Gels: Properties and Applications of Nanoelectronics. NANOSCALE RESEARCH LETTERS 2022; 17:50. [PMID: 35499625 PMCID: PMC9061932 DOI: 10.1186/s11671-022-03687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Conductive gels are a special class of soft materials. They harness the 3D micro/nanostructures of gels with the electrical and optical properties of semiconductors, producing excellent novel attributes, like the formation of an intricate network of conducting micro/nanostructures that facilitates the easy movement of charge carriers. Conductive gels encompass interesting properties, like adhesion, porosity, swelling, and good mechanical properties compared to those of bulk conducting polymers. The porous structure of the gels allows the easy diffusion of ions and molecules and the swelling nature provides an effective interface between molecular chains and solution phases, whereas good mechanical properties enable their practical applications. Due to these excellent assets, conductive gels are promising candidates for applications like energy conversion and storage, sensors, medical and biodevices, actuators, superhydrophobic coatings, etc. Conductive gels offer promising applications, e.g., as soft sensors, energy storage, and wearable electronics. Hydrogels with ionic species have some potential in this area. However, they suffer from dehydration due to evaporation when exposed to the air which limits their applications and lifespan. In addition to conductive polymers and organic charge transfer complexes, there is another class of organic matter called "conductive gels" that are used in the organic nanoelectronics industry. The main features of this family of organic materials include controllable photoluminescence, use in photon upconversion technology, and storage of optical energy and its conversion into electricity. Various parameters change the electronic and optical behaviors of these materials, which can be changed by controlling some of the structural and chemical parameters of conductive gels, their electronic and optical behaviors depending on the applications. If the conjugated molecules with π bonds come together spontaneously, in a relative order, to form non-covalent bonds, they form a gel-like structure that has photoluminescence properties. The reason for this is the possibility of excitation of highest occupied molecular orbital level electrons of these molecules due to the collision of landing photons and their transfer to the lowest unoccupied molecular orbital level. This property can be used in various nanoelectronic applications such as field-effect organic transistors, organic solar cells, and sensors to detect explosives. In this paper, the general introduction of conductive or conjugated gels with π bonds is discussed and some of the physical issues surrounding electron excitation due to incident radiation and the mobility of charge carriers, the position, and role of conductive gels in each of these applications are discussed.
Collapse
Affiliation(s)
| | - Dinh Tran Ngoc Huy
- Banking University HCMC, Ho Chi Minh city, Vietnam
- International University of Japan, Niigata, Japan
| | | | | | - Azher M Abed
- Department of Air Conditioning and Refrigeration, Al-Mustaqbal University College, Babylon, Iraq
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, Russian Federation, 119991
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, Russian Federation, 109240
| | - Kahramon Shomurodov
- Department of Maxillo-Facial Surgery, Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan, 100147
| | - Hoang Van Thuc Master
- Thai Nguyen University, University of Information and Communication Technology, Thái Nguyên, Vietnam
| | - Ali Thaeer Hammid
- Computer Engineering Department, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Ehsan Kianfar
- Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran.
- Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
| |
Collapse
|
31
|
Tao K, Chen Z, Yu J, Zeng H, Wu J, Wu Z, Jia Q, Li P, Fu Y, Chang H, Yuan W. Ultra-Sensitive, Deformable, and Transparent Triboelectric Tactile Sensor Based on Micro-Pyramid Patterned Ionic Hydrogel for Interactive Human-Machine Interfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104168. [PMID: 35098703 PMCID: PMC8981453 DOI: 10.1002/advs.202104168] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/02/2022] [Indexed: 05/19/2023]
Abstract
Rapid advances in wearable electronics and mechno-sensational human-machine interfaces impose great challenges in developing flexible and deformable tactile sensors with high efficiency, ultra-sensitivity, environment-tolerance, and self-sustainability. Herein, a tactile hydrogel sensor (THS) based on micro-pyramid-patterned double-network (DN) ionic organohydrogels to detect subtle pressure changes by measuring the variations of triboelectric output signal without an external power supply is reported. By the first time of pyramidal-patterned hydrogel fabrication method and laminated polydimethylsiloxane (PDMS) encapsulation process, the self-powered THS shows the advantages of remarkable flexibility, good transparency (≈85%), and excellent sensing performance, including extraordinary sensitivity (45.97 mV Pa-1 ), fast response (≈20 ms), very low limit of detection (50 Pa) as well as good stability (36 000 cycles). Moreover, with the LiBr immersion treatment method, the THS possesses excellent long-term hyper anti-freezing and anti-dehydrating properties, broad environmental tolerance (-20 to 60 °C), and instantaneous peak power density of 20 µW cm-2 , providing reliable contact outputs with different materials and detecting very slight human motions. By integrating the signal acquisition/process circuit, the THS with excellent self-power sensing ability is utilized as a switching button to control electric appliances and robotic hands by simulating human finger gestures, offering its great potentials for wearable and multi-functional electronic applications.
Collapse
Affiliation(s)
- Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Zhensheng Chen
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jiahao Yu
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Haozhe Zeng
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologySun Yat‐sen UniversityGuangzhou510275P. R. China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE)Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE)Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME)Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yongqing Fu
- Faculty of Engineering and EnvironmentNorthumbria UniversityNewcastle upon TyneNE1 8STUK
| | - Honglong Chang
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| | - Weizheng Yuan
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace Northwestern Polytechnical UniversityXi'an710072P. R. China
| |
Collapse
|
32
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
33
|
Wang T, Song J, Liu R, Chan SY, Wang K, Su Y, Li P, Huang W. Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14596-14606. [PMID: 35293735 DOI: 10.1021/acsami.2c00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels have attracted considerable interest in developing flexible bioelectronics such as wearable devices, brain-machine interface products, and health-monitoring sensors. However, these bioelectronics are always challenged by microbial contamination, which frequently reduces their service life and durability due to a lack of antibacterial property. Herein, we report a class of inherently antibacterial conductive hydrogels (ACGs) as bioelectronics for motion and temperature detection. The ACGs were composed of poly(N-isopropylacrylamide) (pNIPAM) and silver nanowires (AgNWs) via a two-step polymerization strategy, which increased the crosslink density for enhanced mechanical properties. The introduction of AgNWs improved the conductivity of ACGs and endowed them with excellent antibacterial activity against both Gram-positive and -negative bacteria. Meanwhile, pNIPAM existed in ACGs and exhibited a thermal responsive behavior, thereby inducing sharp changes in their conductivity around body temperature, which was successfully employed to assemble a temperature alarm. Moreover, ACG-based sensors exhibited excellent sensitivity (within a small strain of 5%) and the capability of capturing various motion signals (finger bending, elbow bending, and even throat vibrating). Benefiting from the superiority of ACG-based sensors, we further demonstrated a wearable wireless system for the remote control of a vehicle, which is expected to help disabled people in the future.
Collapse
Affiliation(s)
- Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Jiang Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Rongjun Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Yang Su
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| |
Collapse
|
34
|
Srivastava S, Pal P, Sharma DK, Kumar S, Senguttuvan TD, Gupta BK. Ultrasensitive Boron-Nitrogen-Codoped CVD Graphene-Derived NO 2 Gas Sensor. ACS MATERIALS AU 2022; 2:356-366. [PMID: 36855380 PMCID: PMC9888635 DOI: 10.1021/acsmaterialsau.2c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent trends in 2D materials like graphene are focused on heteroatom doping in a hexagonal honeycomb lattice to tailor the desired properties for various lightweight atomic thin-layer derived portable devices, particularly in the field of gas sensors. To design such gas sensors, it is important to either discover new materials with enhanced properties or tailor the properties of existing materials via doping. Herein, we exploit the concept of codoping of heteroatoms in graphene for more improvements in gas sensing properties and demonstrate a boron- and nitrogen-codoped bilayer graphene-derived gas sensor for enhanced nitrogen dioxide (NO2) gas sensing applications, which may possibly be another alternative for an efficient sensing device. A well-known method of low-pressure chemical vapor deposition (LPCVD) is employed for synthesizing the boron- and nitrogen-codoped bilayer graphene (BNGr). To validate the successful synthesis of BNGr, the Raman, XPS, and FESEM characterization techniques were performed. The Raman spectroscopy results validate the synthesis of graphene nanosheets, and moreover, the FESEM and XPS characterization confirms the codoping of nitrogen and boron in the graphene matrix. The gas sensing device was fabricated on a Si/SiO2 substrate with prepatterned gold electrodes. The proposed BNGr sensor unveils an ultrasensitive nature for NO2 at room temperature. A plausible NO2 gas sensing mechanism is explored via a comparative study of the experimental results through the density functional theory (DFT) calculations of the adsorbed gas molecules on doped heteroatom sites. Henceforth, the obtained results of NO2 sensing with the BNGr gas sensor offer new prospects for designing next-generation lightweight and ultrasensitive gas sensing devices.
Collapse
Affiliation(s)
- Shubhda Srivastava
- CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India,Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prabir Pal
- Energy
Materials and Devices Division, CSIR-Central
Glass and Ceramic Research Institute, 196, Raja S. C. Mullick Road, Kolkata 700032, India,Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durgesh Kumar Sharma
- Applied
Physics Department, Faculty of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243006, India
| | - Sudhir Kumar
- Applied
Physics Department, Faculty of Engineering and Technology, M.J.P. Rohilkhand University, Bareilly 243006, India
| | - T. D. Senguttuvan
- CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India,Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,
| | - Bipin Kumar Gupta
- CSIR-National
Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012, India,Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India,
| |
Collapse
|
35
|
Sun H, He Y, Wang Z, Liang Q. An Insight into Skeletal Networks Analysis for Smart Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202108489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 01/06/2025]
Abstract
AbstractHydrogels are 3D cross‐linked polymer networks. Benefiting from the flexible designs and reasonable constructions of these networks, a large number of smart hydrogels with response characteristics to specific stimuli have received widespread attention and developed rapidly. The skeletal networks composed of the skeletal polymer chains and effectual cross‐links are the soul of such soft materials, and the response behaviors fundamentally depend on the dynamic characteristics of skeletal networks. Herein, the novel concepts of skeletal networks analysis to describe, understand, and guide the advanced designs and applications of smart hydrogels are proposed. Representative glucose‐sensitive hydrogels and DNA‐based smart hydrogels are reviewed to demonstrate the principle of skeletal networks analysis and clarify its practical guidance. Summarizing and classifying the characterizations and conversions of skeletal networks dynamics based on different response mechanisms provides a realistic solution. On this basis, advanced applications of smart hydrogels guided by skeletal networks dynamics including biochemical detection, cell mechanics sensing, drug delivery systems, and dynamic complex soft materials are typically reviewed. The skeletal networks analysis for smart hydrogels is of great significance for understanding the microstructures of hydrogels and guiding the designs of soft materials and their smart applications in the fields of analytical science and advanced materials.
Collapse
Affiliation(s)
- Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Yan He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering Shandong Sino‐Japanese Center for Collaborative Research of Carbon Nanomaterials Qingdao University Qingdao 266071 China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Beijing Key Lab of Microanalytical Methods and Instrumentation Department of Chemistry Center for Synthetic and Systems Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
36
|
Tie J, Mao Z, Zhang L, Zhong Y, Sui X, Xu H. Highly transparent, self-healing and adhesive wearable ionogel as strain and temperature sensor. Polym Chem 2022. [DOI: 10.1039/d2py00594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A stable ionogel with good self-healing capability and adhesion, excellent stretchability (2017%), high durability (1000 cycles) and high transparency (92%) is fabricated and assembled into a strain and temperature sensor with high sensitivity.
Collapse
Affiliation(s)
- Jianfei Tie
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Taian City, Shandong Province, 271000, People's Republic of China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
37
|
Nguyen TD, Lee JS. Recent Development of Flexible Tactile Sensors and Their Applications. SENSORS (BASEL, SWITZERLAND) 2021; 22:s22010050. [PMID: 35009588 PMCID: PMC8747637 DOI: 10.3390/s22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 05/15/2023]
Abstract
With the rapid development of society in recent decades, the wearable sensor has attracted attention for motion-based health care and artificial applications. However, there are still many limitations to applying them in real life, particularly the inconvenience that comes from their large size and non-flexible systems. To solve these problems, flexible small-sized sensors that use body motion as a stimulus are studied to directly collect more accurate and diverse signals. In particular, tactile sensors are applied directly on the skin and provide input signals of motion change for the flexible reading device. This review provides information about different types of tactile sensors and their working mechanisms that are piezoresistive, piezocapacitive, piezoelectric, and triboelectric. Moreover, this review presents not only the applications of the tactile sensor in motion sensing and health care monitoring, but also their contributions in the field of artificial intelligence in recent years. Other applications, such as human behavior studies, are also suggested.
Collapse
Affiliation(s)
| | - Jun Seop Lee
- Correspondence: ; Tel.: +82-31-750-5814; Fax: +82-31-750-5389
| |
Collapse
|
38
|
Liang Y, Shen Y, Sun X, Liang H. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. Int J Biol Macromol 2021; 193:629-637. [PMID: 34717973 DOI: 10.1016/j.ijbiomac.2021.10.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
As a kind of promising material for flexible wearable electronics, conductive hydrogels have attracted extensive interests of researchers for their inherent merits such as superior mechanical properties, biocompatibility, and permeability. Herein, we constructed a new type of highly stretchable, anti-freezing, self-healable, and conductive hydrogel based on chitosan/polyacrylic acid. The large amount of ions inside the network had five functions for the proposed hydrogel, including excellent mechanical behaviors, high conductivity, self-recovery, self-healing and anti-freezing capability. Consequently, the proposed hydrogel possessed tunable stretchability (1190-1550%), tensile strength (0.96-2.56 MPa), toughness (5.7-14.7 MJ/m3), superior self-healing property (self-healing efficiency up to 83.7%), high conductivity (4.58-5.76 S/m), and excellent anti-freezing capability. To our knowledge, the self-healable hydrogel with balanced tensile strength, toughness, conductivity, and low-temperature tolerance can hardly be achieved till now. Furthermore, the conductive hydrogels exhibited high sensitivity (gauge factor up to 10.8) in a broad strain window (0-1000%) and could detect the conventional motion signals of human body such as bending of a knuckle, swallowing, and pressure signal at both room temperature and -20 °C. Moreover, the hydrogels could also be fabricated as flexible detectors to identify different temperatures, different kinds of solutions, and different concentrations of the solution.
Collapse
Affiliation(s)
- Yongzhi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuexin Shen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingyue Sun
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiyi Liang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China; IAT-Chungu Joint Laboratory for Additive Manufacturing, Institute of Advanced Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
39
|
Ouyang K, Zhuang J, Chen C, Wang X, Xu M, Xu Z. Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Biomacromolecules 2021; 22:5033-5041. [PMID: 34813283 DOI: 10.1021/acs.biomac.1c01003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, because of the unique properties of anisotropic and isotropic structures, there are more research studies on anisotropic hydrogels. We prepared a gradient anisotropic carboxymethyl cellulose hydrogel (CMC-Al3+) by directionally diffusing aluminum chloride solution. The orientation of carboxymethyl cellulose (CMC) chains is perpendicular to the direction of aluminum ion diffusion. The degree of cross-linking and orientation gradually decrease along the direction of aluminum ion diffusion. Compared with anisotropic hydrogels prepared by other methods, the hydrogels prepared by directionally diffusing aluminum ion solution have a gradient lamellar structure. Because of the large amount of aluminum ions in CMC-Al3+, the hydrogel shows good sensing performance. CMC-Al3+ is packaged with PVC electrical flame retardant tape to produce a strain sensor used to detect human tiny movements, which can accurately and stably monitor tiny movements. Hydrogel-based strain sensors can be widely used in the fields of human-computer intelligence, human-computer interaction, and wearable devices in the future.
Collapse
Affiliation(s)
- Kangwen Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Zhuang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuerong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengting Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Wu Z, Rong L, Yang J, Wei Y, Tao K, Zhou Y, Yang BR, Xie X, Wu J. Ion-Conductive Hydrogel-Based Stretchable, Self-Healing, and Transparent NO 2 Sensor with High Sensitivity and Selectivity at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104997. [PMID: 34672085 DOI: 10.1002/smll.202104997] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Here stretchable, self-healable, and transparent gas sensors based on salt-infiltrated hydrogels for high-performance NO2 sensing in both anaerobic environment and air at room temperature, are reported. The salt-infiltrated hydrogel displays high sensitivity to NO2 (119.9%/ppm), short response and recovery time (29.8 and 41.0 s, respectively), good linearity, low theoretical limit of detection (LOD) of 86 ppt, high selectivity, stability, and conductivity. A new gas sensing mechanism based on redox reactions occurring at the electrode-hydrogel interface is proposed to understand the sensing behaviors. The gas sensing performance of hydrogel is greatly improved by incorporating calcium chloride (CaCl2 ) in the hydrogel via a facile salt-infiltration strategy, leading to a higher sensitivity (2.32 times) and much lower LOD (0.06 times). Notably, both the gas sensing ability, conductivity, and mechanical deformability of hydrogels are readily self-healable after cutting off and reconnection. Such large deformations as 100% strain do not deprive the gas sensing capability, but rather shorten the response and recovery time significantly. The CaCl2 -infiltrated hydrogel shows excellent selectivity of NO2 , with good immunity to the interference gases. These results indicate that the salt-infiltrated hydrogel has great potential for wearable electronics equipped with gas sensing capability in both anaerobic and aerobic environments.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Limin Rong
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinglan Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Yubin Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, P.R. China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
41
|
A Wearable Electrochemical Gas Sensor for Ammonia Detection. SENSORS 2021; 21:s21237905. [PMID: 34883908 PMCID: PMC8659774 DOI: 10.3390/s21237905] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 μA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure.
Collapse
|
42
|
Liu L, Fei T, Guan X, Zhao H, Zhang T. Highly sensitive and chemically stable NH 3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosens Bioelectron 2021; 191:113459. [PMID: 34175649 DOI: 10.1016/j.bios.2021.113459] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022]
Abstract
Due to interference by the high moisture content and complicated compositions of human exhaled breath, the trace-level detection of ammonia (NH3) with desirable selectivity and stability is a large challenge for exhaled breath analysis. Carboxyl-sensitized hydrogels can be activated by moisture to exhibit a significant response and excellent selectivity to NH3. However, the high activity of carboxyl groups in hydrogels is a double-edged sword, resulting in poor chemical stability during NH3 detection. Herein, organic acids were embedded into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogel via thiol-ene photochemistry to form stable hydrogels for NH3 detection in a humid atmosphere. As a result, under high humidity conditions (80% RH), the optimal sensors exhibited superior selectivity to NH3 among various interfering gas species, a remarkably high NH3 response (Za/Zg=6.20) towards 20 ppm NH3, and an extremely low actual detection limit (50 ppb) at room temperature. Moreover, the sensors exhibited excellent chemical stability due to the moderate equilibrium water content of the hydrogel composites and acid dissociation constant of the acid groups. The moisture-activated NH3 sensing mechanism was thoroughly investigated by complex impedance spectroscopy (CIS), quartz crystal microbalance (QCM) measurements, Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). To explore the application prospects of cross-linked hydrogel sensors for detecting NH3 in exhaled breath, a simulated exhaled breath test was also performed.
Collapse
Affiliation(s)
- Lichao Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai, 200050, PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai, 200050, PR China
| | - Xin Guan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
43
|
Lei H, Zhao J, Ma X, Li H, Fan D. Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring. Adv Healthc Mater 2021; 10:e2101089. [PMID: 34453781 DOI: 10.1002/adhm.202101089] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Polymer-based conductive hydrogels have the synergistic advantages of high conductivity and tissue-like properties, making them promising candidates for the construction of flexible electronic devices. However, conductive hydrogel materials can easily absorb microorganisms due to their high water content. To address the problem that conductive hydrogels are susceptible to infection by external pathogens when monitoring wounds and when used in implanted organs, tannic acid-borax (TA-B) complexes are introduced into classical dual network polyacrylamide/agarose (PAM/Agar) hydrogels to form PAM/Agar/TA-B hydrogel conductors. These hydrogels are antibacterial and have good mechanical properties, light transmission, electrical conductivity, and adhesion. TA-B increases the compressive stress of the PAM/Agar/TA-B hydrogel by 58.14% compared to a PAM/Agar hydrogel. The PAM/Agar/TA-B hydrogel can be used as an electronic conductor for electronic skin and wearable sensors. Outstanding biocompatibility allows the hydrogel to be used as a monitoring device at wounds to monitor heartbeat, skin wounds, and internal tissue status in real time. In summary, an antibacterial strain sensing matrix that is safe for human health monitoring is developed.
Collapse
Affiliation(s)
- Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials Shaanxi R&D Center of Biomaterials and Fermentation Engineering Biotech. & Biomed. Research Institute Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Jing Zhao
- Shaanxi Key Laboratory of Degradable Biomedical Materials Shaanxi R&D Center of Biomaterials and Fermentation Engineering Biotech. & Biomed. Research Institute Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Xiaoxuan Ma
- Shaanxi Key Laboratory of Degradable Biomedical Materials Shaanxi R&D Center of Biomaterials and Fermentation Engineering Biotech. & Biomed. Research Institute Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| | - Hang Li
- Department of Dermatology Peking University First Hospital Xishiku Street No.8 Beijing 100034 China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials Shaanxi R&D Center of Biomaterials and Fermentation Engineering Biotech. & Biomed. Research Institute Northwest University Taibai North Road 229 Xi'an Shaanxi 710069 China
| |
Collapse
|
44
|
Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. SOFT MATTER 2021; 17:8786-8804. [PMID: 34596200 DOI: 10.1039/d1sm00997d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.
Collapse
Affiliation(s)
- Qin Yu
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Zirong Zheng
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xinhao Dong
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Rui Cao
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Shuheng Zhang
- Northeast Petroleum University, Chemistry and Chemical Engineering, Daqing, 163318, China
| | - Xiaolin Wu
- Daqing Research Institute of Exploration and Development, Daqing Oilfield Co., Ltd, 163318, China
| | - Xinya Zhang
- South China University of Technology, Chemistry and Chemical Engineering, Guangzhou, 510006, China
| |
Collapse
|
45
|
Zhao Q, Sun D, Wang S, Duan Z, Yuan Z, Wei G, Xu JL, Tai H, Jiang Y. Enhanced Blocking Effect: A New Strategy to Improve the NO 2 Sensing Performance of Ti 3C 2T x by γ-Poly(l-glutamic acid) Modification. ACS Sens 2021; 6:2858-2867. [PMID: 34185511 DOI: 10.1021/acssensors.1c00132] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Titanium carbide (Ti3C2Tx) with a distinctive structure, abundant surface chemical groups, and good electrical conductivity has shown great potential in fabricating superior gas sensors, but several challenges, such as low response kinetics, poor reversibility, and serious baseline drift, still remain. In this work, γ-poly(l-glutamic acid) (γ-PGA) with a blocking effect is exploited to modify Ti3C2Tx, thereby stimulating the positive response behavior of Ti3C2Tx and improving its gas sensing performance. On account of the unique synergetic interaction between Ti3C2Tx and γ-PGA, the response of the flexible Ti3C2Tx/γ-PGA gas sensor to 50 ppm NO2has been improved to a large extent (average 1127.3%), which is 85 times that of Ti3C2Tx (only 13.2%). Moreover, the as-fabricated Ti3C2Tx/γ-PGA sensor not only exhibits a shorter response/recovery time (average 43.4/3 s) compared with the Ti3C2Tx-based sensor (∼18.5/18.3 min) but also shows good reversibility and repeatability (relative standard deviation (RSD) <1%) at room temperature within 50% relative humidity (RH). The improved gas sensing properties of the Ti3C2Tx/γ-PGA sensor can be attributed to the enhancement of effective adsorption and the blocking effect assisted by water molecules. Furthermore, the gas sensing response of the Ti3C2Tx/γ-PGA sensor is studied at different RHs, and humidity compensation of the sensor is carried out using the multiple regression method. This work demonstrates a novel strategy to enhance the gas sensing properties of Ti3C2Tx by γ-PGA modification and provides a new way to realize highly responsive gas detection at room temperature.
Collapse
Affiliation(s)
- Qiuni Zhao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Deming Sun
- Key University Laboratory of Sensing Technology and Control of Shandong Province, School of Information and Electronic Engineering, Shandong Technology and Business University (SDTBU), Yantai 264000, China
| | - Si Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zaihua Duan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Zhen Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Guangfen Wei
- Key University Laboratory of Sensing Technology and Control of Shandong Province, School of Information and Electronic Engineering, Shandong Technology and Business University (SDTBU), Yantai 264000, China
| | - Jian-Long Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huiling Tai
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yadong Jiang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
46
|
Wang C, Zhu M, Yu HY, Abdalkarim SYH, Ouyang Z, Zhu J, Yao J. Multifunctional Biosensors Made with Self-Healable Silk Fibroin Imitating Skin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33371-33382. [PMID: 34236852 DOI: 10.1021/acsami.1c08568] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on robust silk fibroin (SF) gels fabricated by incorporating cellulose nanocrystals (SF/CNC) as a "tough" unit and photopolymerization of acrylamide as an "elastic" segment. The addition of CNC affects the refolding process of SF molecules controlled by nucleation via templating, resulting in a stable mesoscopic structure. The gel shows robust mechanical stability (88.8% of initial stress after 1000 compression cycles) and excellent adhesion to various materials. The connected gel can recover its ionic conductivity within 20 s and be stretched to a maximum strain of 498% after healing for 10 h with an efficiency of 95.2%. This multifunctional gel sensor can sensitively detect different toxic gases and small-scale and large-scale human motions in real-time. Its sensitivity is calculated as GF = 3.84 at 0-200% strain. Especially, the gel with 5 wt % thermochromic pigments as a visual temperature indicator can quickly reflect abnormal human body temperature according to the color change. Therefore, the strategy shows potential applications in flexible electrodes, biomimetic sensors, and visual biosensors.
Collapse
Affiliation(s)
- Chuang Wang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Maihao Zhu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Institute of Technology and Automatic Control, College of Mechanical and Automatic Control, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhaofeng Ouyang
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaying Zhu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
47
|
Jiang Z, Guo L, Yuan F, Wang J, Jiang X. Tough chitosan/poly(acrylamide-acrylic acid)/cellulose nanofibrils/ethylene glycol nanocomposite organohydrogel with tolerance to hot and cold environments. Int J Biol Macromol 2021; 186:952-961. [PMID: 34237375 DOI: 10.1016/j.ijbiomac.2021.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Simultaneously achieving good mechanical properties and high tolerance to hot and cold environments in hydrogel materials remains a challenge. In this work, ethylene glycol (EG) and cellulose nanofibrils (CNFs) were introduced into chitosan/poly(acrylamide-acrylic acid) double-network hydrogels to improve their toughness and tolerance to hot and cold environments. The effect of EG and CNFs on the properties of the hydrogels was studied respectively. EG increases the tolerance of the hydrogel to hot and cold environments. However, EG had a negative effect on the mechanical properties of hydrogels. In addition, CNFs substantially enhanced the strength and toughness of the chitosan/poly(acrylamide-acrylic acid)/EG organohydrogels. Finally, with the cooperative action of EG and CNFs, high-strength and tough organohydrogels (tensile strength = 0.71 MPa, elongation at break = 787.2%) with a high tolerance to hot and cold environments (-23 °C to 60 °C) were obtained. Further, EG enabled the organohydrogel to revert to its original state after drying at 60 °C. This paper provides a new route to prepare high-strength and tough organohydrogels with a high tolerance to hot and cold environments.
Collapse
Affiliation(s)
- Zuming Jiang
- Exploration and Development Research Institute of Shengli Oilfield, SINOPEC, Dongying 257015, China
| | - Lanlei Guo
- Exploration and Development Research Institute of Shengli Oilfield, SINOPEC, Dongying 257015, China
| | - Fuqing Yuan
- Exploration and Development Research Institute of Shengli Oilfield, SINOPEC, Dongying 257015, China
| | - Jinquan Wang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
48
|
Xiong J, Xie R, Zhang H, Gao J, Wang J, Liang Q. Nitrite-responsive hydrogel for long-term and smart control of cyanobacteria bloom. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125150. [PMID: 33858106 DOI: 10.1016/j.jhazmat.2021.125150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Frequent cyanobacteria bloom has caused serious environmental consequences and economic loss, especially in aquaculture. Direct algaecide addition, the most commonly used method, suffered from the poor control and overdose of algaecide. In this manuscript, we designed a smart nitrite-responsive hydrogel (DHPG) loading algaecide (BZK@DHPG) based on selective crosslinker: a kind of dihydropyridine derivatives termed DHPL. The network of the polymer could be decomposed by the nitrite-induced cleavage of DHPL. Compared to the traditional method, BZK@DHPG can adjust releasing speed according to the concentration of NO2-, the marker of cyanobacteria bloom level, and elongate the releasing time. Furthermore, BZK@DHPG could shift the effective dose of algaecide much ahead of the safety threshold, thus reducing deterioration of water quality caused by the overdose of algaecide.
Collapse
Affiliation(s)
- Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, PR China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, PR China
| | - Huiying Zhang
- School of Chemistry and Bioengineering, Hechi University, Yizhou 546300, Guangxi Province, PR China
| | - Jianyi Gao
- Astronaut Centre of China, Beijing 100094, PR China
| | - Jiaping Wang
- Astronaut Centre of China, Beijing 100094, PR China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
49
|
Abstract
Flexible bioelectronics have promising applications in electronic skin, wearable devices, biomedical electronics, etc. Hydrogels have unique advantages for bioelectronics due to their tissue-like mechanical properties and excellent biocompatibility. Particularly, conductive and tissue adhesive hydrogels can self-adhere to bio-tissues and have great potential in implantable wearable bioelectronics. This review focuses on the recent progress in tissue adhesive hydrogel bioelectronics, including the mechanism and preparation of tissue adhesive hydrogels, the fabrication strategies of conductive hydrogels, and tissue adhesive hydrogel bioelectronics and applications. Some perspectives on tissue adhesive hydrogel bioelectronics are provided at the end of the review.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| | - Yang Cong
- College of Materials Science and Chemical Engineering, Ningbo University of Technology, Ningbo 315201, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
50
|
Zhang Z, Hao J. Bioinspired organohydrogels with heterostructures: Fabrications, performances, and applications. Adv Colloid Interface Sci 2021; 292:102408. [PMID: 33932827 DOI: 10.1016/j.cis.2021.102408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/08/2023]
Abstract
Since emerging in 1960, the artificial hydrogels have garnered enormous attentions in scientific community due to their high level of similarities to biological soft tissues in both structures and properties. With the proceeding of research, the concern of hydrogels is gradually shifted from fundamental investigation to abundant functionalization. In contrast to the natural soft tissues, the current artificial hydrogels still possess relatively simple structures and unsatisfactory environmental adaptability, extremely limiting their practical applications in complex environments. Enlightened by the prominent adaptability of biological organisms, the binary cooperative complementary principle is utilized to develop bioinspired organohydrogels by combining two components with opposite but cooperative physiochemical features. The present review provides the advanced progresses of bioinspired organohydrogels with sophisticated heterogeneous networks and desirably environmental adaptabilities. We clearly summarize the synthesizing strategies in regard to both corresponding mechanisms and typical examples, including macroscopic organohydrogels, organohydrogels with binary solvent, organohydrogels with heteronetworks, and emulsion-based organohydrogels. Meanwhile, the intriguing features of the reported organohydrogels, such as temperature resistance, switchable mechanics, adaptive wettability, and opposite components compatibility, are also clearly highlighted with a short overview of their promising applications. Ultimately, the current challenges and perspectives on the future development of bioinspired organohydrogels are also discussed.
Collapse
|