1
|
Sun J, Chen C, Zhang B, Yao C, Zhang Y. Advances in 3D-printed scaffold technologies for bone defect repair: materials, biomechanics, and clinical prospects. Biomed Eng Online 2025; 24:51. [PMID: 40301861 PMCID: PMC12042599 DOI: 10.1186/s12938-025-01381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
The treatment of large bone defects remains a significant clinical challenge due to the limitations of current grafting techniques, including donor site morbidity, restricted availability, and suboptimal integration. Recent advances in 3D bioprinting technology have enabled the fabrication of structurally and functionally optimized scaffolds that closely mimic native bone tissue architecture. This review comprehensively examines the latest developments in 3D-printed scaffolds for bone regeneration, focusing on three critical aspects: (1) material selection and composite design encompassing metallic; (2) structural optimization with hierarchical porosity (macro/micro/nano-scale) and biomechanical properties tailored; (3) biological functionalization through growth factor delivery, cell seeding strategies and surface modifications. We critically analyze scaffold performance metrics from different research applications, while discussing current translational barriers, including vascular network establishment, mechanical stability under load-bearing conditions, and manufacturing scalability. The review concludes with a forward-looking perspective on innovative approaches such as 4D dynamic scaffolds, smart biomaterials with stimuli-responsive properties, and the integration of artificial intelligence for patient-specific design optimization. These technological advancements collectively offer unprecedented opportunities to address unmet clinical needs in complex bone reconstruction.
Collapse
Affiliation(s)
- Jie Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Cao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Bo Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yafeng Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
2
|
Zhang J, Zhuang Y, Feng C, Li X, Chen K, Han L, Wang Y, Zhu X, Yang M, Yin G, Lin J, Zhang X. Inverse design of skull osteoinductive implants with multi-level pore structures through machine learning. J Mater Chem B 2024; 12:9991-10003. [PMID: 39246118 DOI: 10.1039/d4tb01104j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
How to accurately design a personalized matching implant that can induce skull regeneration is the focus of current research. However, the design space for the porous structure of implants is extensive, and the mapping relationships between these structures and their mechanical and osteogenic properties are complex. At present, the forward design of skull implants mainly relies on expert experience, leading to high cost and a lengthy process, while the existing inverse design approaches face challenges due to data dependence and manufacturing process errors. This study presents an efficient inverse design method for personalized multilevel structures of skull implants using a machine learning pipeline composed of a finite element method, topological optimization, and neural networks. Based on the mechanical response of the human body falls, this method can tailor multi-level structures for implants in various defect positions. The results show that the proposed method establishes a bidirectional relationship between topological parameters and mechanical properties, enabling the customization of mechanical behavior at low computational cost while accounting for manufacturing errors in the 3D printing process. Additionally, the design results are also mutually consistent with analytical relationships between lattice parameters and the elastic modulus obtained from experiments and finite element simulations. Thus, this study provides a general and practical approach to rapidly design skull osteoinductive implants.
Collapse
Affiliation(s)
- Jixin Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yan Zhuang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Cong Feng
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Xiangfeng Li
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Ke Chen
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Lin Han
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Yilei Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xiangdong Zhu
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Mingli Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Jiangli Lin
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China.
- Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610065, China
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
3
|
Wu Y, Liu P, Feng C, Cao Q, Xu X, Liu Y, Li X, Zhu X, Zhang X. 3D printing calcium phosphate ceramics with high osteoinductivity through pore architecture optimization. Acta Biomater 2024; 185:111-125. [PMID: 39002921 DOI: 10.1016/j.actbio.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The osteoinductivity of 3D printed calcium phosphate (CaP) ceramics has a large gap compared with those prepared by conventional foaming methods, and improving the osteoinductivity of 3D printing CaP ceramics is crucial for successful application in bone regeneration. Pore architecture plays a critical role in osteoinductivity. In this study, CaP ceramics with a hexagonal close-packed (HCP) spherical pore structure were successfully fabricated using DLP printing technology. Additionally, octahedral (Octahedral), diamond (Diamond), and helical (Gyroid) structures were constructed with similar porosity and macropore diameter. CaP ceramics with the HCP structure exhibited higher compression strength (8.39 ± 1.82 MPa) and lower permeability (6.41 × 10-11 m2) compared to the Octahedral, Diamond, and Gyroid structures. In vitro cellular responses indicated that the macropore architecture strongly influenced the local growth rate of osteoblast-formed cell tissue; cells grew uniformly and formed circular rings in the HCP group. Furthermore, the HCP group promoted the expression of osteogenic genes and proteins more effectively than the other three groups. The outstanding osteoinductivity of the HCP group was confirmed in canine intramuscular implantation studies, where the new bone area reached up to 8.02 ± 1.94 % after a 10-week implantation. Additionally, the HCP group showed effective bone regeneration in repairing femoral condyle defects. Therefore, our findings suggest that 3D printed CaP bioceramics with an HCP structure promote osteoinductivity and can be considered as candidates for personalized precise treatment of bone defects in clinical applications. STATEMENT OF SIGNIFICANCE: 1. 3D printing BCP ceramics with high osteoinductivity were constructed through pore architecture optimization. 2. BCP ceramics with HCP structure exhibited relatively higher mechanical strength and lower permeability than those with Octahedral, Diamond and Gyroid structures. 3. BCP ceramics with HCP structure could promote the osteogenic differentiation of MC3T3-E1, and showed the superior in-vivo osteoinductivity and bone regeneration comparing with the other structures.
Collapse
Affiliation(s)
- Yonghao Wu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Puxin Liu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiujuan Xu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Med-X Center for Materials, Sichuan University, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Provincial Engineering Research Center for Biomaterials Genome of Sichuan, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
da Cruz JA, Pezarini RR, Sales AJM, Benjamin SR, de Oliveira Silva PM, Graça MPF. Study of biphasic calcium phosphate (BCP) ceramics of tilapia fish bones by age. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124289. [PMID: 38692101 DOI: 10.1016/j.saa.2024.124289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Biphasic calcium phosphate (BCP), consisting of bioceramics such as HAp + β-TCP and Ca10(PO4)6(OH)2 + Ca3(PO4)2, is a popular choice for optimizing performance due to its superior biological reabsorption and osseointegration. In this study, BCP was produced by calcining the bones of tilapia fish (Oreochromis niloticus) reared in net cages and slaughtered at an age ranging from 15 to 420 days. The bones were cleaned and dried, calcined at 900 °C for 8 h, and then subjected to high-energy grinding for 3 h to produce BCP powders. After the calcination process, the crystalline phase's hydroxyapatite (HAp) and/or beta-tricalcium phosphate (β-TCP) were present in the composition of the bioceramic. The age-dependent variation in phase composition was confirmed by complementary vibrational spectroscopy techniques, revealing characteristic peaks and bands of the bioceramic. This variation was marked by an increase in HAp phase and a decrease in β-TCP phase. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) from 25 to 1400 °C showed the characteristic mass losses of the material, with a greater loss observed for younger fish, indicating the complete removal of organic components at temperatures above 600 °C. Comparison of the results obtained by X-Ray Diffraction (XRD) and Rietveld refinement with Raman spectroscopy showed excellent agreement. These results showed that with temperature and environment control and adequate fish feeding, it is possible to achieve the desired amounts of each phase by choosing the ideal age of the fish. This bioceramic enables precise measurement of HAp and β-TCP concentrations and Ca/P molar ratio, suitable for medical orthopedics and dentistry.
Collapse
Affiliation(s)
- José Adauto da Cruz
- Department of Environment, State University of Maringá, Umuarama, PR ,87506-370, Brazil; Department of Physics, State University of Maringá, Maringá, PR, 87020-900, Brazil; i3N-Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal.
| | - Rogério Ribeiro Pezarini
- Department of Environment, State University of Maringá, Umuarama, PR ,87506-370, Brazil; Department of Physics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Antonio Jefferson Mangueira Sales
- i3N-Department of Physics, University of Aveiro, Aveiro, 3810-193, Portugal; Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil
| | - Stephen Rathinaraj Benjamin
- Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil; Behavioral Neuroscience Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará (UFC), Coronel Nunes de Melo 1127, Porangabussu, Fortaleza, Ceará, 60430-270, Brazil
| | - Paulo Maria de Oliveira Silva
- Telecommunications and Materials Science and Engineering Laboratory (LOCEM), Federal University of Ceará (UFC), Fortaleza, CE, 60455-760, Brazil
| | | |
Collapse
|
5
|
Bai Y, Wang Z, He X, Zhu Y, Xu X, Yang H, Mei G, Chen S, Ma B, Zhu R. Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering. SMALL METHODS 2024; 8:e2301283. [PMID: 38509851 DOI: 10.1002/smtd.202301283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/04/2023] [Indexed: 03/22/2024]
Abstract
Bone tissue defects present a major challenge in orthopedic surgery. Bone tissue engineering using multiple versatile bioactive materials is a potential strategy for bone-defect repair and regeneration. Due to their unique physicochemical and mechanical properties, biofunctional materials can enhance cellular adhesion, proliferation, and osteogenic differentiation, thereby supporting and stimulating the formation of new bone tissue. 3D bioprinting and physical stimuli-responsive strategies have been employed in various studies on bone regeneration for the fabrication of desired multifunctional biomaterials with integrated bone tissue repair and regeneration properties. In this review, biomaterials applied to bone tissue engineering, emerging 3D bioprinting techniques, and physical stimuli-responsive strategies for the rational manufacturing of novel biomaterials with bone therapeutic and regenerative functions are summarized. Furthermore, the impact of biomaterials on the osteogenic differentiation of stem cells and the potential pathways associated with biomaterial-induced osteogenesis are discussed.
Collapse
Affiliation(s)
- Yuxin Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xu Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Guangyu Mei
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Shengguang Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, Shanghai, 200135, China
| | - Bei Ma
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, School of Life Science and Technology, School of Medicine, Tongji University, Shanghai, 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200065, China
| |
Collapse
|
6
|
Wei J, Chen X, Xu Y, Shi L, Zhang M, Nie M, Liu X. Significance and considerations of establishing standardized critical values for critical size defects in animal models of bone tissue regeneration. Heliyon 2024; 10:e33768. [PMID: 39071581 PMCID: PMC11283167 DOI: 10.1016/j.heliyon.2024.e33768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Establishing animal models with critical size defects (CSDs) is critical for conducting experimental investigations engineering of bone tissue regeneration. Currently, a standardised protocol for establishing an animal CSDs model has not been developed. Furthermore, a consensus has not been reached regarding the critical values of CSDs. Successful establishment of animal models for CSDs is a complex process that requires researchers to meticulously consider a variety of factors such as age, species, bone defect size and anatomic location. The specific numerical values for CSDs in small animal models vary, and a clear definition of the critical value for large animal CSDs models in the literature is still lacking. This review consolidates the advancements in critical bone defects animal models by outlining the research landscape across variables, including animal species, age groups, bone defect sites, and sizes, to offer valuable guidance and a theoretical framework for the establishment of pertinent experimental animal models.
Collapse
Affiliation(s)
- Jian Wei
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xiao Chen
- Department of Oral Medical Technology, Sichuan College of Traditional Chinese Medicine, Mianyang, 621000, China
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, 621000, China
| | - Yingjiao Xu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Menglian Zhang
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| | - Xuqian Liu
- Department of Basic Medicine of Stomatology, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, 646000, China
| |
Collapse
|
7
|
Zhao X, Zhang Y, Wang P, Guan J, Zhang D. Construction of multileveled and oriented micro/nano channels in Mg doped hydroxyapitite bioceramics and their effect on mimicking mechanical property of cortical bone and biological performance of cancellous bone. BIOMATERIALS ADVANCES 2024; 161:213871. [PMID: 38692181 DOI: 10.1016/j.bioadv.2024.213871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Drawing on the structure and components of natural bone, this study developed Mg-doped hydroxyapatite (Mg-HA) bioceramics, characterized by multileveled and oriented micro/nano channels. These channels play a critical role in ensuring both mechanical and biological properties, making bioceramics suitable for various bone defects, particularly those bearing loads. Bioceramics feature uniformly distributed nanogrooves along the microchannels. The compressive strength or fracture toughness of the Mg-HA bioceramics with micro/nano channels formed by single carbon nanotube/carbon fiber (CNT/CF) (Mg-HA(05-CNT/CF)) are comparable to those of cortical bone, attributed to a combination of strengthened compact walls and microchannels, along with a toughening mechanism involving crack pinning and deflection at nanogroove intersections. The introduction of uniform nanogrooves also enhanced the porosity by 35.4 %, while maintaining high permeability owing to the capillary action in the oriented channels. This leads to superior degradation properties, protein adsorption, and in vivo osteogenesis compared with bioceramics with only microchannels. Mg-HA(05-CNT/CF) exhibited not only high strength and toughness comparable to cortical bone, but also permeability similar to cancellous bone, enhanced cell activity, and excellent osteogenic properties. This study presents a novel approach to address the global challenge of applying HA-based bioceramics to load-bearing bone defects, potentially revolutionizing their application in tissue engineering.
Collapse
Affiliation(s)
- Xueni Zhao
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China.
| | - Yu Zhang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Pengfei Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jinxin Guan
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Dexin Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
8
|
Zhang Q, Wang X, Yang M, Xu D. Effects of void defects on the mechanical properties of biphasic calcium phosphate nanoparticles: A molecular dynamics investigation. J Mech Behav Biomed Mater 2024; 151:106385. [PMID: 38246094 DOI: 10.1016/j.jmbbm.2024.106385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Porous biphasic calcium phosphate (BCP) ceramics are widely used in bone tissue engineering, and the mechanical properties of BCP implants must be reliable. However, the effects of pore structure (e.g., shape and size) on the mechanical properties are not well understood. In this study, we used molecular dynamics simulations to investigate the influence of pore shape and size on the mechanical behavior of BCP nanoparticles. BCP void models with cylindrical and cuboid pores ranging from 2 to 16 nm in diameter were constructed, and the elastic moduli were calculated. In addition, uniaxial tensile and compressive tests were performed on the models. We found that the pore size had a more significant impact on the mechanical properties of BCP than pore shape. Further, the elastic moduli decreased nonlinearly with increasing pore size. In addition, the tensile and compressive strength also decreased with the increase in pore size, but the ductility improved. Furthermore, deformation and fracture were more likely to occur near the pores and at the phase interfaces as a result of high atomic local strain in the calcium-deficient hydroxyapatite area. The results of this work reveal the effects of pore parameters on the mechanical properties of porous BCP at the nanometer level, which may aid the design of improved porous and multiphase CaP-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qiao Zhang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Mingli Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China; Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610065, China.
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China; Research Center for Materials Genome Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
9
|
Ke Re Mu ALM, Liang ZL, Chen L, Tu Xun AKBE, A Bu Li Ke Mu MMTAL, Wu YQ. 3D printed PLGA scaffold with nano-hydroxyapatite carrying linezolid for treatment of infected bone defects. Biomed Pharmacother 2024; 172:116228. [PMID: 38320333 DOI: 10.1016/j.biopha.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Linezolid has been reported to protect against chronic bone and joint infection. In this study, linezolid was loaded into the 3D printed poly (lactic-co-glycolic acid) (PLGA) scaffold with nano-hydroxyapatite (HA) to explore the effect of this composite scaffold on infected bone defect (IBD). METHODS PLGA scaffolds were produced using the 3D printing method. Drug release of linezolid was analyzed by elution and high-performance liquid chromatography assay. PLGA, PLGA-HA, and linezolid-loaded PLGA-HA scaffolds, were implanted into the defect site of a rabbit radius defect model. Micro-CT, H&E, and Masson staining, and immunohistochemistry were performed to analyze bone infection and bone healing. Evaluation of viable bacteria was performed. The cytocompatibility of 3D-printed composite scaffolds in vitro was detected using human bone marrow mesenchymal stem cells (BMSCs). Long-term safety of the scaffolds in rabbits was evaluated. RESULTS The linezolid-loaded PLGA-HA scaffolds exhibited a sustained release of linezolid and showed significant antibacterial effects. In the IBD rabbit models implanted with the scaffolds, the linezolid-loaded PLGA-HA scaffolds promoted bone healing and attenuated bone infection. The PLGA-HA scaffolds carrying linezolid upregulated the expression of osteogenic genes including collagen I, runt-related transcription factor 2, and osteocalcin. The linezolid-loaded PLGA-HA scaffolds promoted the proliferation and osteogenesis of BMSCs in vitro via the PI3K/AKT pathway. Moreover, the rabbits implanted with the linezolid-loaded scaffolds showed normal biochemical profiles and normal histology, which suggested the safety of the linezolid-loaded scaffolds. CONCLUSION Overall, the linezolid-loaded PLGA-HA scaffolds fabricated by 3D printing exerts significant bone repair and anti-infection effects.
Collapse
Affiliation(s)
- A Li Mu Ke Re Mu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Zhi Lin Liang
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | - Linlin Chen
- Nanjing Genebios Biotechnology Co., Ltd., Nanjing 21100, China
| | - Ai Ke Bai Er Tu Xun
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China
| | | | - Yuan Quan Wu
- Orthopedics Center, First People's Hospital of Kashgar, Kashgar 844000, Xinjiang, China.
| |
Collapse
|
10
|
Fernandes GVO, Castro F, Pereira RM, Teixeira W, Gehrke S, Joly JC, Blanco Carrion J, Fernandes JCH. Critical-size defects reconstruction with four different bone grafts associated with e-PTFE membrane: A histomorphometric experimental in vivo study. Clin Oral Implants Res 2024; 35:167-178. [PMID: 37987205 DOI: 10.1111/clr.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES The goal of this study was to assess the newly formed bone and the remnant biomaterial by comparing four different bone grafts used to treat critical-size defects, associated or not with the non-resorbable membrane. MATERIALS AND METHODS Two calvaria critical-size bone defects were created in 50 male Wistar rats. They were divided into blood (G1), autogenous (G2), bioglass (G3), hydroxyapatite (G4), and xenograft (G5) groups, associated or not with e-PTFE. The experimental periods were 15 and 45 days. Sections were prepared for histomorphometric assessment. All data were analyzed by the mixed-effects model with multiple comparisons (significance level, p < .05). RESULTS A similar level of new bone was observed for all groups, associated with a high level of vascularization. G1 and G2 ensured sovereignty over the greater quantity of new bone. A non-significant result was reported comparing groups with and without membranes. No significant result was found between the experimental synthetic biomaterials (G3 and G4). G5L achieved 22.0% of new bone after 45 days (p > .05). All groups had a stable volume of biomaterial kept in the short term (p > .05). G2 was the best material for new bone formation and final volume of biomaterial, followed by G4 < G5 < G3. Thus, it is possible that G4 had a better degradation profile among the experimental groups. CONCLUSIONS The best results were found in the autogenous group, with higher resorption and integration; non-significative new bone was found among the experimental groups; and the regeneration of critical bone defects using an e-PTFE barrier did not present significant results on new bone formation.
Collapse
Affiliation(s)
- Gustavo Vicentis Oliveira Fernandes
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- A. T. Still University, St. Louis, Missouri, USA
| | - Filipe Castro
- FP-I3ID, FCS, Universidade Fernando Pessoa, Porto, Portugal
| | - Rafael Martins Pereira
- Periodontics and Oral Medicine Department, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Wendel Teixeira
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Sérgio Gehrke
- Department of Research, Bioface/PgO/UCAM, Montevideo, Uruguay
| | | | | | | |
Collapse
|
11
|
Huang K, Cai S, Fu T, Zhu Q, Liu L, Yao Z, Rao P, Lan X, Li Q, Xiao J. Wnt10b regulates osteogenesis of adipose-derived stem cells through Wnt/β-catenin signalling pathway in osteoporosis. Cell Prolif 2024; 57:e13522. [PMID: 37340715 PMCID: PMC10771102 DOI: 10.1111/cpr.13522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
Our previous finding revealed that the Wnt10b RNA expression of osteoporotic adipose-derived stem cells (OP-ASCs) with impaired osteogenic capacity was significantly reduced than that of ASCs. There are no ideas that the relationship between the OP-ASCs' impaired osteogenic potential and Wnt10b expression. This study aimed to indicate the potential molecular mechanisms and functional role of Wnt10b in OP-ASCs, as well as to investigate a potential application to reverse the OP-ASCs' impaired osteogenic differentiation potential. The OP-ASCs and ASCs were harvested from the inguinal fat of osteoporosis (OP) mice with bilateral ovariectomy (OVX) and normal mice. qPCR and WB were used to detect the different levels of the expression of the Wnt10b RNA in both OP-ASCs and ASCs. Lentiviral-mediated regulation of Wnt10b expression was employed for OP-ASCs, and the detection of the expression levels of key molecules in the Wnt signalling pathway and key osteogenic factors was performed through qPCR and WB in vitro experiments. The capacity of OP-ASCs to osteogenesis was determined using alizarin red staining. Lastly, the repair effect of the BCP scaffolds incorporating modified OP-ASCs on the critical-sized calvarial defects (CSCDs) in OP mice was scanned and detected by micro-computed tomography, haematoxylin and eosin staining, Masson's trichrome staining and immunohistochemistry. First, we discovered that both the RNA and protein expression levels of Wnt10b were significantly lower in OP-ASCs than that in ASCs. In vitro experiments, upregulation of Wnt10b could activate the Wnt signalling pathway, and increase expression of β-catenin, Lef1, Runx2 and osteopontin (Opn), thereby enhancing the osteogenic ability of OP-ASCs. In addition, the OP-ASCs with Wnt10b-overexpressing could promote the repair of CSCD in osteoporotic mice with increasing new bone volume, bone mineral density, and increased expression of Opn in new bone in vivo. Taken together, overexpression of Wnt10b could partially facilitate the differentiation of OP-ASCs towards osteogenesis and accelerated the healing of bone defects by activating the Wnt/β-catenin signalling pathway in vitro and in vivo experiments. This study confirmed the important role of Wnt10b in regulating the osteogenic differentiation capability of OP-ASCs and indicated Wnt10b could be a potential therapeutic target for reversing the impaired osteogenic capabilities of OP-ASCs to therapy bone defects of OP patients.
Collapse
Affiliation(s)
- Kui Huang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Shuyu Cai
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Ting Fu
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Qiang Zhu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Lin Liu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Zhihao Yao
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Pengcheng Rao
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
| | - Jingang Xiao
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationLuzhouChina
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
12
|
Bańkosz M, Urbaniak MM, Szwed A, Rudnicka K, Włodarczyk M, Drabczyk A, Kudłacik-Kramarczyk S, Tyliszczak B, Sobczak-Kupiec A. Physicochemical and biological analysis of composite biomaterials containing hydroxyapatite for biological applications. J Biomed Mater Res B Appl Biomater 2023; 111:2077-2088. [PMID: 37596849 DOI: 10.1002/jbm.b.35309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Bone tissue regeneration is one of the main areas of tissue engineering. A particularly important aspect is the development of new innovative composite materials intended for bone tissue engineering and/or bone substitution. In this article, the synthesis and characterization of ceramic-polymer composites based on polyvinylpyrrolidone, poly(vinyl alcohol) and hydroxyapatite (HAp) have been presented. The first part of the work deals with the synthesis and characterization of the ceramic phase. It was demonstrated that the obtained calcium phosphate is characterized by a heterogeneity and porosity indicating simultaneously its large specific surface area. Additionally, in the wound healing test, it was shown that the obtained powder supports the regeneration of L929 cells. Next, HAp-containing composite materials were obtained in the waste-free photopolymerization process and characterized in detail. It was proved that the obtained composites were characterized by sorption properties and stability during 12-day incubation in simulated physiological liquids. Importantly, the obtained composites showed no cytotoxic effect against the L929 murine fibroblasts - the cell viability was 94.5%. Then, confocal microscopy allowed to observe that murine fibroblasts effectively colonized the surface of the obtained polymer-ceramic composites, covering the entire surface of the biomaterial. Thus, the obtained results confirm the high potential of the obtained composites in the application of bone tissue regenerative medicine.
Collapse
Affiliation(s)
- Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Mateusz M Urbaniak
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
- Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Szwed
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Marcin Włodarczyk
- Department of Immunology and Infectious Biology, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Bożena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, Krakow, Poland
| |
Collapse
|
13
|
Gasperini FM, Fernandes GVO, Mitri FF, Calasans-Maia MD, Mavropoulos E, Malta Rossi A, Granjeiro JM. Histomorphometric evaluation, SEM, and synchrotron analysis of the biological response of biodegradable and ceramic hydroxyapatite-based grafts: from the synthesis to the bed application. Biomed Mater 2023; 18:065023. [PMID: 37844570 DOI: 10.1088/1748-605x/ad0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
This study aimed to analyze the physicochemical and histological properties of nanostructured hydroxyapatite and alginate composites produced at different temperatures with and without sintering and implanted in rabbit tibiae. Hydroxyapatite-alginate (HA) microspheres (425-600 µm) produced at 90 and 5 °C without (HA90 and HA5) or with sintering at 1000 °C (HA90S and HA5S) were characterized and applied to evaluate thein vitrodegradation; also were implanted in bone defects on rabbit's tibiae (n= 12). The animals were randomly divided into five groups (blood clot, HA90S, HA5S, HA90, and HA5) and euthanized after 7 and 28 d. X-ray diffraction and Fourier-transform infrared analysis of the non-sintered biomaterials showed a lower crystallinity than sintered materials, being more degradablein vitroandin vivo. However, the sinterization of HA5 led to the apatite phase's decomposition into tricalcium phosphate. Histomorphometric analysis showed the highest (p< 0.01) bone density in the blood clot group, similar bone levels among HA90S, HA90, and HA5, and significantly less bone in the HA5S. HA90 and HA5 groups presented higher degradation and homogeneous distribution of the new bone formation onto the surface of biomaterial fragments, compared to HA90S, presenting bone only around intact microspheres (p< 0.01). The elemental distribution (scanning electron microscope and energy dispersive spectroscopy andμXRF-SR analysis) of Ca, P, and Zn in the newly formed bone is similar to the cortical bone, indicating bone maturity at 28 d. The synthesized biomaterials are biocompatible and osteoconductive. The heat treatment directly influenced the material's behavior, where non-sintered HA90 and HA5 showed higher degradation, allowing a better distribution of the new bone onto the surface of the biomaterial fragments compared to HA90S presenting the same level of new bone, but only on the surface of the intact microspheres, potentially reducing the bone-biomaterial interface.
Collapse
Affiliation(s)
- Flávio Marcos Gasperini
- Prosthetic Dentistry Department, Dentistry School, Iguaçu University Nova Iguaçu, RJ, Brazil
| | | | - Fabio Franceschini Mitri
- Department of Morphology, Biomedical Sciences Institute, Federal Uberlandia University, Uberlandia, MG, Brazil
| | - Mônica Diuana Calasans-Maia
- Clinical Research Laboratory in Dentistry, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Elena Mavropoulos
- Biomaterials Laboratory-LABIOMAT, Brazilian Center of Physics Research, Rio de Janeiro, RJ, Brazil
| | - Alexandre Malta Rossi
- Biomaterials Laboratory-LABIOMAT, Brazilian Center of Physics Research, Rio de Janeiro, RJ, Brazil
| | - José Mauro Granjeiro
- Clinical Research Laboratory in Dentistry, Dentistry School, Fluminense Federal University, Niteroi, RJ, Brazil
- Laboratory of Biology, Coordination of Biology, National Institute of Metrology, Quality, and Technology, Duque de Caxias, RJ, Brazil
| |
Collapse
|
14
|
Sivakumar PM, Yetisgin AA, Demir E, Sahin SB, Cetinel S. Polysaccharide-bioceramic composites for bone tissue engineering: A review. Int J Biol Macromol 2023; 250:126237. [PMID: 37567538 DOI: 10.1016/j.ijbiomac.2023.126237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Limitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites. Polysaccharides are abundant in nature, and present in human body. Biominerals, like hydroxyapatite are present in natural bone and some of them possess osteoconductive and osteoinductive properties. Ion doped bioceramics could substitute protein-based biosignal molecules to achieve osteogenesis, vasculogenesis, angiogenesis, and stress shielding. This review is a systemic summary on properties, advantages, and limitations of polysaccharide-bioceramic/ion doped bioceramic composites along with their recent advancements in BTE.
Collapse
Affiliation(s)
- Ponnurengam Malliappan Sivakumar
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; School of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Istanbul 34956, Turkey
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sevilay Burcu Sahin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; Sabanci University, Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Istanbul 34956, Turkey.
| |
Collapse
|
15
|
He F, Yuan X, Fu W, Huang W, Chen T, Feng S, Wang H, Ye J. Preparation of lithium-containing magnesium phosphate-based composite ceramics having high compressive strength, osteostimulation and proangiogenic effects. Biomed Mater 2023; 18:065008. [PMID: 37703901 DOI: 10.1088/1748-605x/acf985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Fairly high concentrations of magnesium and lithium are conducive to improving the osteogenic and angiogenic capacities. In the current study, lithium-containing magnesium phosphate-based ceramics (AMP/LMPGs) were prepared from amorphous magnesium phosphate (AMP) at a low sintering temperature (650 °C), and the lithium/magnesium-containing phosphate glasses (LMPGs) were utilized as sintering additives. During the sintering procedure of AMP/LMPGs, the AMP reacted with LMPGs, producing new compounds. The AMP/LMPGs displayed nano-size grains and plentiful micropores. The addition of LMPGs noticeably increased the porosity as well as compressive strength of the AMP/LMPGs ceramics. The AMP/LMPGs sustainedly released Mg, P and Li ions, forming Mg-rich ionic microenvironment, which ameliorated cellular proliferation, osteogenic differentiation and proangiogenic capacities. The AMP/LMPGs ceramics with considerably high compressive strength, osteostimulation and proangiogenic effects were expected to efficiently regenerate the bone defects.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Wenhao Fu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Wenhao Huang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Tengyun Chen
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Songheng Feng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
16
|
Chen Z, Feng F, Su X, Xu Y, Zhang Y, Tan H. Experimental study of a 3D-printing technique combined with biphasic calcium phosphates to treat osteonecrosis of the femoral head in a canine model. J Orthop Surg Res 2023; 18:693. [PMID: 37716998 PMCID: PMC10504695 DOI: 10.1186/s13018-023-04185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023] Open
Abstract
OBJECTIVE This study was aimed to use a digital design of 3D-printing technology to create a surgical navigation template. At the same time, biphasic calcium phosphate (BCP) was applied to treat osteonecrosis of the femoral head (ONFH) in animal models, based on accurate positioning of necrotic lesions in the navigation templates and observation of its therapeutic effect. METHODS Fifteen healthy adult male and female beagle dogs weighing 20 + 2 kg were randomly divided into three groups (n = 5) after establishing a model of ONFH using the liquid nitrogen freezing method. Each model underwent necrotic lesion creation and BPC implantations on one side of the femoral head and only necrotic lesion creation on the other side of the femoral head. Each group underwent CT examination, gross observation, histological examination and immunohistochemical staining at 6 weeks, 12 weeks and 18 weeks postoperatively. RESULTS At weeks 6, 12, and 18, CT and gross examination showed that the necrotic area in the experimental group was basically intact and had been completely raised by BCP material. In the control group, there were signs of bone repair in the femoral head, but there were still large bone defects and cavities. At week 18, extensive collapse of the cartilage surface was observed. Through histological examination, in the experimental group at 12 and 18 weeks, a large number of new and reconstructed bone trabeculae containing a large amount of collagen fibres were observed (P < 0.05), while in the control group, there was extensive necrosis of the bone trabeculae without cellular structural areas. Immunohistochemical examination observation: A large number of CD31-positive cells were observed in the experimental group at 6 weeks, gradually decreasing at 12 and 18 weeks (P < 0.05), while a small number of CD31-positive cells were observed in the control group at 18 weeks. CONCLUSION The 3D-printed navigation template can accurately locate ONFH lesions. Implantation of BCP material can effectively play a supporting role, prevent the collapse of the loading surface, and induce bone formation and angiogenesis to some extent.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Fanzhe Feng
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Xixiong Su
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Yongqing Xu
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Ying Zhang
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
17
|
Desnica J, Vujovic S, Stanisic D, Ognjanovic I, Jovicic B, Stevanovic M, Rosic G. Preclinical Evaluation of Bioactive Scaffolds for the Treatment of Mandibular Critical-Sized Bone Defects: A Systematic Review. APPLIED SCIENCES 2023; 13:4668. [DOI: 10.3390/app13084668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This systematic review evaluated current in vivo research on regenerating critical-sized mandibular defects and discussed methodologies for mandibular bone tissue engineering. Out of the 3650 articles initially retrieved, 88 studies were included, and all studies that used a scaffold reported increased bone formation compared to negative controls. Combining scaffolds with growth factors and mesenchymal stem cells improved bone formation and healing. Bone morphogenic proteins were widely used and promoted significant bone formation compared to controls. However, discrepancies between studies exist due to the various methodologies and outcome measures used. The use of scaffolds with bioactive molecules and/or progenitor cells enhances success in mandibular bone engineering. Scaffold-based mandibular bone tissue engineering could be introduced into clinical practice due to its proven safety, convenience, and cost-effectiveness.
Collapse
Affiliation(s)
- Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Sanja Vujovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Jovicic
- Dental Clinic, Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
18
|
Hayashi K, Yanagisawa T, Kishida R, Tsuchiya A, Ishikawa K. Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Comput Struct Biotechnol J 2023; 21:2514-2523. [PMID: 37077175 PMCID: PMC10106487 DOI: 10.1016/j.csbj.2023.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Synthetic bone grafts are in high demand owing to increased age-related bone disorders in the global aging population. Here, we report fabrication of gear-shaped granules (G-GRNs) for rapid bone healing. G-GRNs possessed six protrusions and a hexagonal macropore in the granular center. These were composed of carbonate apatite, i.e., bone mineral, microspheres with ∼1-μm micropores in the spaces between the microspheres. G-GRNs formed new bone and blood vessels (both on the granular surface and within the macropores) 4 weeks after implantation in the rabbit femur defects. The formed bone structure was similar to that of cancellous bone. The bone percentage in the defect recovered to that in a normal rabbit femur at week-4 post-implantation, and the bone percentage remained constant for the following 8 weeks. Throughout the entire period, the bone percentage in the G-GRN-implanted group was ∼10% higher than that of the group implanted with conventional carbonate apatite granules. Furthermore, a portion of the G-GRNs resorbed at week-4, and resorption continued for the following 8 weeks. Thus, G-GRNs are involved in bone remodeling and are gradually replaced with new bone while maintaining a suitable bone level. These findings provide a basis for the design and fabrication of synthetic bone grafts for achieving rapid bone regeneration.
Collapse
|
19
|
Jung Y, Kim J, Kim S, Chung SH, Wie J. Development of Cellular Signaling Pathways by Bioceramic Heat Treatment (Sintering) in Osteoblast Cells. Biomedicines 2023; 11:biomedicines11030785. [PMID: 36979764 PMCID: PMC10045186 DOI: 10.3390/biomedicines11030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Bioceramics are calcium-phosphate-based materials used in medical and dental implants for replacing or repairing damaged bone tissues; however, the effect of bioceramic sintering on the intracellular signaling pathways remains unknown. In order to address this, we analyzed the impact of sintering on the cell signaling pathways of osteoblast cells using sintered and non-sintered hydroxyapatite (HA) and beta-tricalcium phosphate (β-TCP). X-ray diffraction indicated that only the morphology of HA was affected by sintering; however, the sintered bioceramics were found to have elevated the calcium concentrations in relation to the non-sintered variants. Both bioceramics inhibited the JNK signaling pathway; the sintered HA exhibited half the value of the non-sintered variant, while the sintered β-TCP rarely expressed a p-JNK value. The total Src and Raptor protein concentrations were unaffected by the sintering, while the p-Src concentrations were decreased. The p-EGFR signaling pathway was regulated by the non-sintered bioceramics, while the p-p38 concentrations were reduced by both the sintered β-TCP and HA. All of the bioceramics attenuated the total AKT concentrations, particularly the non-sintered HA, and the AKT phosphorylation concentration, except for the non-sintered β-TCP. Thus, the sintering of bioceramics affects several intracellular signaling pathways. These findings may elucidate the bioceramic function and expand their application scope as novel substrates in clinical applications.
Collapse
Affiliation(s)
- Yoona Jung
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Jooseong Kim
- HudensBio Co., Ltd., 318 Cheomdanyeonsin-ro, Buk-gu, Gwangju 61088, Republic of Korea
- Department of Biomedical Engineering, Yeungnam University, Daegu 42415, Republic of Korea
| | - Sukyoung Kim
- HudensBio Co., Ltd., 318 Cheomdanyeonsin-ro, Buk-gu, Gwangju 61088, Republic of Korea
| | - Shin hye Chung
- Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jinhong Wie
- Department of Physiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- Correspondence:
| |
Collapse
|
20
|
Lu T, Yan S, Shi H, Ye J. Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite. ACS Biomater Sci Eng 2023; 9:918-931. [PMID: 36700921 DOI: 10.1021/acsbiomaterials.2c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hydroxyapatite (HA) has been commonly used as an alternative bone substitute. But it has drawbacks, such as poor degradation and limited osteogenesis. Low-crystalline carbonated hydroxyapatite (L-CHA), which has greater biodegradability than HA, is suggested as one of the main components of bone minerals, but the exact mechanism behind the roles of carbonate substituted in biological behaviors of low-crystalline HA is still a mystery. In this study, L-CHAs with different carbonate contents were prepared, and the effects of the content on the physicochemical properties, in vitro cytological responses, and in vivo bone defects repair effects of L-CHAs were investigated. The results demonstrated that CO32- had successfully entered the lattice structure of L-CHAs with a maximum content of 9.2 wt %. Both low-crystalline undoped HA (L-HA) and L-CHAs were nanocrystalline (20-30 nm) with significantly higher specific surface areas, protein adsorption capacities, and biodegradability compared to high-crystalline HA (H-HA) with submicron crystalline size (200-400 nm). Besides, the amounts of the adsorbed protein and released Ca2+ ions increased in a carbonate-content-dependent manner. Compared to L-HA and H-HA, L-CHAs promoted the adhesion and proliferation of bone marrow mesenchymal stem cells and significantly upregulated the levels of alkaline phosphatase (ALP) activity and the expression of osteogenesis-related genes. In addition, L-CHA-9 not only showed a faster biodegradation rate but also effectively promoted bone regeneration when implanted in the critical-sized bone defects of rabbit femora. This study provided evidence for the development of L-CHA as a promising biodegradable and bioactive material with great osteoconductivity and osteogenic capability with respect to conventional HA.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Siwen Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou510632, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, P. R. China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou510006, P. R. China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou510006, P. R. China
| |
Collapse
|
21
|
Jin P, Liu L, Cheng L, Chen X, Xi S, Jiang T. Calcium-to-phosphorus releasing ratio affects osteoinductivity and osteoconductivity of calcium phosphate bioceramics in bone tissue engineering. Biomed Eng Online 2023; 22:12. [PMID: 36759894 PMCID: PMC9912630 DOI: 10.1186/s12938-023-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Calcium phosphate (Ca-P) bioceramics, including hydroxyapatite (HA), biphasic calcium phosphate (BCP), and beta-tricalcium phosphate (β-TCP), have been widely used in bone reconstruction. Many studies have focused on the osteoconductivity or osteoinductivity of Ca-P bioceramics, but the association between osteoconductivity and osteoinductivity is not well understood. In our study, the osteoconductivity of HA, BCP, and β-TCP was investigated based on the osteoblastic differentiation in vitro and in situ as well as calvarial defect repair in vivo, and osteoinductivity was evaluated by using pluripotent mesenchymal stem cells (MSCs) in vitro and heterotopic ossification in muscles in vivo. Our results showed that the cell viability, alkaline phosphatase activity, and expression of osteogenesis-related genes, including osteocalcin (Ocn), bone sialoprotein (Bsp), alpha-1 type I collagen (Col1a1), and runt-related transcription factor 2 (Runx2), of osteoblasts each ranked as BCP > β-TCP > HA, but the alkaline phosphatase activity and expression of osteogenic differentiation genes of MSCs each ranked as β-TCP > BCP > HA. Calvarial defect implantation of Ca-P bioceramics ranked as BCP > β-TCP ≥ HA, but intramuscular implantation ranked as β-TCP ≥ BCP > HA in vivo. Further investigation indicated that osteoconductivity and osteoinductivity are affected by the Ca/P ratio surrounding the Ca-P bioceramics. Thus, manipulating the appropriate calcium-to-phosphorus releasing ratio is a critical factor for determining the osteoinductivity of Ca-P bioceramics in bone tissue engineering.
Collapse
Affiliation(s)
- Pan Jin
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and MinistryGuangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lei Liu
- Articular Surgery, The Second Nanning People's Hospital, Third Affiliated Hospital of Guangxi Medical University), Nanning, 530031, Guangxi, China
| | - Lin Cheng
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xichi Chen
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Shanshan Xi
- Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, 571199, China.
- Key Laboratory of Emergency and Trauma, Ministry of Education, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
22
|
Recent Developments in Polymer Nanocomposites for Bone Regeneration. Int J Mol Sci 2023; 24:ijms24043312. [PMID: 36834724 PMCID: PMC9959928 DOI: 10.3390/ijms24043312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Most people who suffer acute injuries in accidents have fractured bones. Many of the basic processes that take place during embryonic skeletal development are replicated throughout the regeneration process that occurs during this time. Bruises and bone fractures, for example, serve as excellent examples. It almost always results in a successful recovery and restoration of the structural integrity and strength of the broken bone. After a fracture, the body begins to regenerate bone. Bone formation is a complex physiological process that requires meticulous planning and execution. A normal healing procedure for a fracture might reveal how the bone is constantly rebuilding as an adult. Bone regeneration is becoming more dependent on polymer nanocomposites, which are composites made up of a polymer matrix and a nanomaterial. This study will review polymer nanocomposites that are employed in bone regeneration to stimulate bone regeneration. As a result, we will introduce the role of bone regeneration nanocomposite scaffolds, and the nanocomposite ceramics and biomaterials that play a role in bone regeneration. Aside from that, recent advances in polymer nanocomposites might be used in a variety of industrial processes to help people with bone defects overcome their challenges will be discussed.
Collapse
|
23
|
Cuylear D, Elghazali NA, Kapila SD, Desai TA. Calcium Phosphate Delivery Systems for Regeneration and Biomineralization of Mineralized Tissues of the Craniofacial Complex. Mol Pharm 2023; 20:810-828. [PMID: 36652561 PMCID: PMC9906782 DOI: 10.1021/acs.molpharmaceut.2c00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calcium phosphate (CaP)-based materials have been extensively used for mineralized tissues in the craniofacial complex. Owing to their excellent biocompatibility, biodegradability, and inherent osteoconductive nature, their use as delivery systems for drugs and bioactive factors has several advantages. Of the three mineralized tissues in the craniofacial complex (bone, dentin, and enamel), only bone and dentin have some regenerative properties that can diminish due to disease and severe injuries. Therefore, targeting these regenerative tissues with CaP delivery systems carrying relevant drugs, morphogenic factors, and ions is imperative to improve tissue health in the mineralized tissue engineering field. In this review, the use of CaP-based microparticles, nanoparticles, and polymer-induced liquid precursor (PILPs) amorphous CaP nanodroplets for delivery to craniofacial bone and dentin are discussed. The use of these various form factors to obtain either a high local concentration of cargo at the macroscale and/or to deliver cargos precisely to nanoscale structures is also described. Finally, perspectives on the field using these CaP materials and next steps for the future delivery to the craniofacial complex are presented.
Collapse
Affiliation(s)
- Darnell
L. Cuylear
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States
| | - Nafisa A. Elghazali
- Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States
| | - Sunil D. Kapila
- Section
of Orthodontics, School of Dentistry, University
of California, Los Angeles, California 90095-1668, United States
| | - Tejal A. Desai
- Graduate
Program in Oral and Craniofacial Sciences, School of Dentistry, University of California, San Francisco, California 94143-2520, United States,Department
of Bioengineering and Therapeutic Sciences, University of California, San
Francisco, California 94143-2520, United States,UC
Berkeley - UCSF Graduate Program in Bioengineering, San Francisco, California 94143, United States,Department
of Bioengineering, University of California, Berkeley, California 94143-2520, United States,School
of
Engineering, Brown University, Providence, Rhode Island 02912, United States,
| |
Collapse
|
24
|
Zhang Q, Xue Z, Wang X, Xu D. Molecular Dynamics Simulation of Biomimetic Biphasic Calcium Phosphate Nanoparticles. J Phys Chem B 2022; 126:9726-9736. [PMID: 36378585 DOI: 10.1021/acs.jpcb.2c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biphasic calcium phosphate (BCP) is used as a bone substitute and bone tissue repair material due to its better control over bioactivity and biodegradability. It is crucial to stabilize the implanted biomaterial while promoting bone ingrowth. However, a lack of standard experimental and theoretical protocols to characterize the physicochemical properties of BCP limits the optimization of its composition and properties. Computational simulations can help us better to learn BCP at a nanoscale level. Here, the Voronoi tessellation method was combined with simulated annealing molecular dynamics to construct BCP nanoparticle models of different sizes, which were used to understand the physicochemical properties of BCP (e.g., melting point, infrared spectrum, and mechanical properties). We observed a ∼20 to 30 Å layer of calcium-deficient hydroxyapatite at the HAP/β-TCP interface due to particle migration, which may contribute to BCP stability. The BCP model may stimulate further research into BCP ceramics and multiphasic ceramics. Moreover, our study may facilitate the optimization of compositions of BCP-based biomaterials.
Collapse
Affiliation(s)
- Qiao Zhang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Zhiyu Xue
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Xin Wang
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| | - Dingguo Xu
- MOE Key Laboratory of Green Chemistry and Technology, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, PR China
| |
Collapse
|
25
|
Alfayez E, Veschini L, Dettin M, Zamuner A, Gaetani M, Carreca AP, Najman S, Ghanaati S, Coward T, Di Silvio L. DAR 16-II Primes Endothelial Cells for Angiogenesis Improving Bone Ingrowth in 3D-Printed BCP Scaffolds and Regeneration of Critically Sized Bone Defects. Biomolecules 2022; 12:biom12111619. [PMID: 36358970 PMCID: PMC9687468 DOI: 10.3390/biom12111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Bone is a highly vascularized tissue and relies on the angiogenesis and response of cells in the immediate environmental niche at the defect site for regeneration. Hence, the ability to control angiogenesis and cellular responses during osteogenesis has important implications in tissue-engineered strategies. Self-assembling ionic-complementary peptides have received much interest as they mimic the natural extracellular matrix. Three-dimensional (3D)-printed biphasic calcium phosphate (BCP) scaffolds coated with self-assembling DAR 16-II peptide provide a support template with the ability to recruit and enhance the adhesion of cells. In vitro studies demonstrated prompt the adhesion of both human umbilical vein endothelial cells (HUVEC) and human mesenchymal stem cells (hMSC), favoring endothelial cell activation toward an angiogenic phenotype. The SEM-EDS and protein micro bicinchoninic acid (BCA) assays demonstrated the efficacy of the coating. Whole proteomic analysis of DAR 16-II-treated HUVECs demonstrated the upregulation of proteins involved in cell adhesion (HABP2), migration (AMOTL1), cytoskeletal re-arrangement (SHC1, TMOD2), immuno-modulation (AMBP, MIF), and morphogenesis (COL4A1). In vivo studies using DAR-16-II-coated scaffolds provided an architectural template, promoting cell colonization, osteogenesis, and angiogenesis. In conclusion, DAR 16-II acts as a proactive angiogenic factor when adsorbed onto BCP scaffolds and provides a simple and effective functionalization step to facilitate the translation of tailored 3D-printed BCP scaffolds for clinical applications.
Collapse
Affiliation(s)
- Eman Alfayez
- Faculty of Dentistry, Oral Biology Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Lorenzo Veschini
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, 35131 Padua, Italy
| | - Annj Zamuner
- Department of Civil, Environmental, and Architectural Engineering, University of Padua, 35131 Padua, Italy
| | - Massimiliano Gaetani
- Fondazione Ricerca nel Mediterraneo (Ri.MED) and Department of Laboratory Medicine and Advanced Biotechnologies, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90100 Palermo, Italy
- Chemical Proteomics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and SciLifeLab (Science for Life Laboratory), SE-17 177 Stockholm, Sweden
| | - Anna P. Carreca
- Fondazione Ricerca nel Mediterraneo (Ri.MED) and Department of Laboratory Medicine and Advanced Biotechnologies, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90100 Palermo, Italy
| | - Stevo Najman
- Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Shahram Ghanaati
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, 60323 Frankfurt, Germany
| | - Trevor Coward
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences King’s College London, London SE1 9RT, UK
- Correspondence: ; Tel.: +44-02-07848-8475
| |
Collapse
|
26
|
Wu Y, Yang L, Chen L, Geng M, Xing Z, Chen S, Zeng Y, Zhou J, Sun K, Yang X, Shen B. Core-Shell Structured Porous Calcium Phosphate Bioceramic Spheres for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47491-47506. [PMID: 36251859 DOI: 10.1021/acsami.2c15614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core-shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H2O2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65-70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core-shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Collapse
Affiliation(s)
- Yuangang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Chen
- Analytical & Testing Center, Sichuan University, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064, China
| | - Mengyu Geng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Zhengyi Xing
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yi Zeng
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan Zhou
- Core Facilities of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaibo Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin Shen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
27
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
28
|
Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System. ACS NANO 2022; 16:11755-11768. [PMID: 35833725 PMCID: PMC9413413 DOI: 10.1021/acsnano.2c03776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Although studies on scaffolds for tissue generation have mainly focused on the chemical composition and pore structure, the effects of scaffold shape have been overlooked. Scaffold shape determines the scaffold surface area (SA) at the single-scaffold level (i.e., microscopic effects), although it also affects the amount of interscaffold space in the tissue defect at the whole-system level (i.e., macroscopic effects). To clarify these microscopic and macroscopic effects, this study reports the osteogenesis abilities of three types of carbonate apatite granular scaffolds with different shapes, namely, irregularly shaped dense granules (DGs) and two types of honeycomb granules (HCGs) with seven hexagonal channels (∼255 μm in length between opposite sides). The HCGs possessed either 12 protuberances (∼75 μm in length) or no protuberances. Protuberances increased the SA of each granule by 3.24 mm2 while also widening interscaffold spaces and increasing the space percentage in the defect by ∼7.6%. Interscaffold spaces were lower in DGs than HCGs. On DGs, new bone formed only on the surface, whereas on HCGs, bone simultaneously formed on the surface and in intrascaffold channels. Interestingly, HCGs without protuberances formed approximately 30% more new bone than those with protuberances. Thus, even tiny protuberances on the scaffold surface can affect the percentage of interscaffold space, thereby exerting dominant effects on osteogenesis. Our findings demonstrate that bone regeneration can be improved by considering macroscopic shape effects beyond the microscopic effects of the scaffold.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Mussel-inspired multifunctional surface through promoting osteogenesis and inhibiting osteoclastogenesis to facilitate bone regeneration. NPJ Regen Med 2022; 7:29. [PMID: 35562356 PMCID: PMC9106696 DOI: 10.1038/s41536-022-00224-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Osteogenesis and osteoclastogenesis are closely associated during the bone regeneration process. The development of multifunctional bone repair scaffolds with dual therapeutic actions (pro-osteogenesis and anti-osteoclastogenesis) is still a challenging task for bone tissue engineering applications. Herein, through a facile surface coating process, mussel-inspired polydopamine (PDA) is adhered to the surface of a biocompatible porous scaffold followed by the immobilization of a small-molecule activator (LYN-1604 (LYN)) and the subsequent in situ coprecipitation of hydroxyapatite (HA) nanocrystals. PDA, acting as an intermediate bridge, can provide strong LYN immobilization and biomineralization ability, while LYN targets osteoclast precursor cells to inhibit osteoclastic differentiation and functional activity, which endows LYN/HA-coated hybrid scaffolds with robust anti-osteoclastogenesis ability. Due to the synergistic effects of the LYN and HA components, the obtained three-dimensional hybrid scaffolds exhibited the dual effects of osteoclastic inhibition and osteogenic stimulation, thereby promoting bone tissue repair. Systematic characterization experiments confirmed the successful fabrication of LYN/HA-coated hybrid scaffolds, which exhibited an interconnected porous structure with nanoroughened surface topography, favorable hydrophilicity, and improved mechanical properties, as well as the sustained sequential release of LYN and Ca ions. In vitro experiments demonstrated that LYN/HA-coated hybrid scaffolds possessed satisfactory cytocompatibility, effectively promoting cell adhesion, spreading, proliferation, alkaline phosphatase activity, matrix mineralization, and osteogenesis-related gene and protein secretion, as well as stimulating angiogenic differentiation of endothelial cells. In addition to osteogenesis, the engineered scaffolds also significantly reduced osteoclastogenesis, such as tartrate-resistant acid phosphatase activity, F-actin ring staining, and osteoclastogenesis-related gene and protein secretion. More importantly, in a rat calvarial defect model, the newly developed hybrid scaffolds significantly promoted bone repair and regeneration. Microcomputed tomography, histological, and immunohistochemical analyses all revealed that the LYN/HA-coated hybrid scaffolds possessed not only reliable biosafety but also excellent osteogenesis-inducing and osteoclastogenesis-inhibiting effects, resulting in faster and higher-quality bone tissue regeneration. Taken together, this study offers a powerful and promising strategy to construct multifunctional nanocomposite scaffolds by promoting osteo/angiogenesis and suppressing osteoclastogenesis to accelerate bone regeneration.
Collapse
|
30
|
The Relationship between Osteoinduction and Vascularization: Comparing the Ectopic Bone Formation of Five Different Calcium Phosphate Biomaterials. MATERIALS 2022; 15:ma15103440. [PMID: 35629467 PMCID: PMC9146137 DOI: 10.3390/ma15103440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Objective: The objective of this study is to compare the bone induction of five kinds of calcium phosphate (Ca-P) biomaterials implanted in mice and explore the vascularization and particle-size-related osteoinductive mechanism. Methods: The following five kinds of Ca-P biomaterials including hydroxyapatite (HA) and/or tricalcium phosphate (TCP) were implanted in the muscle of 30 BALB/c mice (n = 6): 20 nm HA (20HA), 60 nm HA (60HA), 12 µm HA (12HA), 100 nm TCP (100TCP) and 12 µm HA + 100 nm TCP (HATCP). Then, all animals were put on a treadmill to run 30 min at a 6 m/h speed each day. Five and ten weeks later, three mice of each group were killed, and the samples were harvested to assess the osteoinductive effects by hematoxylin eosin (HE), Masson’s trichrome and safranine−fast green stainings, and the immunohistochemistry of the angiogenesis and osteogenesis markers CD31 and type I collagen (ColI). Results: The numbers of blood vessels were 139 ± 29, 118 ± 25, 78 ± 15, 65 ± 14 in groups HATCP, 100TCP, 60HA and 20HA, respectively, which were significantly higher than that of group 12HA (12 ± 5) in week 5 (p < 0.05). The area percentages of new bone tissue were (7.33 ± 1.26)% and (8.49 ± 1.38)% in groups 100TCP and HATCP, respectively, which were significantly higher than those in groups 20HA (3.27 ± 0.38)% and 60HA (3.43 ± 0.27)% (p < 0.05); however, no bone tissue was found in group 12HA 10 weeks after transplantation. The expression of CD31 was positive in new blood vessels, and the expression of ColI was positive in new bone tissue. Conclusions: Nanoscale Ca-P biomaterials could induce osteogenesis in mice muscle, and the osteoinductive effects of TCP were about 124% higher than those of 20HA and 114% higher than those of 60HA. The particle size of the biomaterials affected angiogenesis and osteogenesis. There was a positive correlation between the number of blood vessels and the area percentage of new bone tissue; therefore, osteoinduction is closely related to vascularization. Our results provide an experimental basis for the synthesis of calcium−phosphorus matrix composites and for further exploration of the osteoinductive mechanism.
Collapse
|
31
|
Wang Y, Li X, Luo Y, Zhang L, Chen H, Min L, Chang Q, Zhou Y, Tu C, Zhu X, Zhang X. Application of osteoinductive calcium phosphate ceramics in giant cell tumor of the sacrum: report of six cases. Regen Biomater 2022; 9:rbac017. [PMID: 35480862 PMCID: PMC9039503 DOI: 10.1093/rb/rbac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed at evaluating the possibility and effectiveness of osteoinductive bioceramics to fill the tumor cavity following the curettage of sacral giant cell tumor (GCT). Six patients (four females and two males, 25–45 years old) underwent nerve-sparing surgery, in which the tumor was treated by denosumab, preoperative arterial embolization and extensive curettage. The remaining cavity was filled with commercial osteoinductive calcium phosphate (CaP) bioceramics, whose excellent osteoinductivity was confirmed by intramuscular implantation in beagle canine. All patients were followed by computed tomography (CT) scans postoperatively. According to the modified Neer criterion, five cases obtained Type I healing status, and one case had Type II. At the latest follow-up, no graft-related complications and local recurrence were found. The CT scan indicated a median time of healing initiation of 3 months postoperatively, and the median time for relatively complete healing was 12 months. The excellent bone regenerative ability of the ceramics was also confirmed by increased CT attenuation value, blurred boundary and cortical rim rebuilding. In conclusion, osteoinductive CaP bioceramics could be an ideal biomaterial to treat the large remaining cavity following extensive curettage of sacral GCT. However, further investigation with more cases and longer follow-up was required to confirm the final clinical effect. ![]()
Collapse
Affiliation(s)
- Yitian Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Yi Luo
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Li Zhang
- Sichuan Baiameng Bioactive Materials Limited Liability Company, Chengdu, 610065, China
| | - Hezhong Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
- Sichuan Baiameng Bioactive Materials Limited Liability Company, Chengdu, 610065, China
| | - Li Min
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Qing Chang
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Yong Zhou
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Chongqi Tu
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- Bone and Joint 3D-Printing & Biomechanical Laboratory, Department of Orthopedics, West China Hospital, Sichuan University, No. 37 Guoxuexiang, Chengdu 610041, Sichuan, People’s Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
32
|
Hayashi K, Yanagisawa T, Shimabukuro M, Kishida R, Ishikawa K. Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis. Mater Today Bio 2022; 14:100247. [PMID: 35378911 PMCID: PMC8976130 DOI: 10.1016/j.mtbio.2022.100247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
Granular porous calcium phosphate scaffolds are used for bone regeneration in dentistry. However, in conventional granules, the macropore interconnectivity is poor and has varying size. Herein, we developed a productive method for fabricating carbonate apatite honeycomb granules with uniformly sized macropores based on extrusion molding. Each honeycomb granule possesses three hexagonal macropores of ∼290 μm along its diagonal. Owing to these macropores, honeycomb granules simultaneously formed new and mature bone and blood vessels in both the interior and exterior of the granules at 4 weeks after implantation. The honeycomb granules are useful for achieving rapid osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
Chen Y, Sheng W, Lin J, Fang C, Deng J, Zhang P, Zhou M, Liu P, Weng J, Yu F, Wang D, Kang B, Zeng H. Magnesium Oxide Nanoparticle Coordinated Phosphate-Functionalized Chitosan Injectable Hydrogel for Osteogenesis and Angiogenesis in Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7592-7608. [PMID: 35119809 DOI: 10.1021/acsami.1c21260] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural polysaccharide (NPH)-based injectable hydrogels have shown great potential for critical-sized bone defect repair. However, their osteogenic, angiogenic, and mechanical properties are insufficient. Here, MgO nanoparticles (NPs) were incorporated into a newly synthesized water-soluble phosphocreatine-functionalized chitosan (CSMP) water solution to form an injectable hydrogel (CSMP-MgO) via supramolecular combination between phosphate groups in CSMP and magnesium in MgO NPs to circumvent these drawbacks of chitosan-based injectable hydrogels. Water-soluble chitosan deviate CSMP was first synthesized by grafting methacrylic anhydride and phosphocreatine into a chitosan chain in a one-step lyophilization process. The phosphocreatine in this hydrogel not only provides sites to combine with MgO NPs to form supramolecular binding but also serves as the reservoir to control Mg2+ release. As a result, the lyophilized CSMP-MgO hydrogels presented a porous structure with some small holes in the pore wall, and the pore diameters ranged from 50 to 100 μm. The CSMP-MgO injectable hydrogels were restricted from swelling in DI water (lowest swelling ratio was 16.0 ± 1.1 g/g) and presented no brittle failure during compression even at a strain above 85% (maximum compressive strength was 195.0 kPa) versus the control groups (28.0 and 41.3 kPa for CSMP and CSMP-MgO (0.5) hydrogels), with regulated Mg2+ release in a stable and sustained manner. The CSMP-MgO injectable hydrogels promoted in vitro calcium phosphate (hydroxyapatite (HA) and tetracalcium phosphate (TTCP)) deposition in supersaturated calcium phosphate solution and presented no cytotoxicity to MC3T3-E1 cells; the CSMP-MgO hydrogel promoted MC3T3-E1 cell osteogenic differentiation with upregulation of BSP, OPN, and Osterix osteogenic gene expression and mineralization and HUVEC tube formation. Among them, CSMP-MgO (5) presented most of these properties. Moreover, this hydrogel (CSMP-MgO (5)) showed an excellent ability to promote new bone formation in critical-sized calvarial defects in rats. Thus, the CSMP-MgO injectable hydrogel shows great promise for bone regeneration.
Collapse
Affiliation(s)
- Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Weibei Sheng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Jianjing Lin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Chongzhou Fang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Jiapeng Deng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Peng Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Meng Zhou
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Bin Kang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, P.R. China
| |
Collapse
|
34
|
Li X, Zhou Q, Wu Y, Feng C, Yang X, Wang L, Xiao Y, Zhang K, Zhu X, Liu L, Song Y, Zhang X. Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size. Bioact Mater 2021; 11:90-106. [PMID: 34938915 PMCID: PMC8665272 DOI: 10.1016/j.bioactmat.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoinductivity is a crucial factor to determine the success and efficiency of posterolateral spinal fusion (PLF) by employing calcium phosphate (Ca-P) bioceramics. In this study, three kinds of Ca-P ceramics with microscale to nanoscale gain size (BCP-control, BCP-micro and BCP-nano) were prepared and their physicochemical properties were characterized. BCP-nano had the spherical shape and nanoscale gain size, BCP-micro had the spherical shape and microscale gain size, and BCP-control (BAM®) had the irregular shape and microscale gain size. The obtained BCP-nano with specific nanotopography could well regulate in vitro protein adsorption and osteogenic differentiation of MC3T3 cells. In vivo rabbit PLF procedures further confirmed that nanotopography of BCP-nano might be responsible for the stronger bone regenerative ability comparing with BCP-micro and BCP-control. Collectedly, due to nanocrystal similarity with natural bone apatite, BCP-nano has excellent efficacy in guiding bone regeneration of PLF, and holds great potentials to become an alternative to standard bone grafts for future clinical applications. The nanocrystal of porous BCP ceramic spheres is similar to natural bone apatite. BCP nanoceramics is conducive to protein adsorption and osteogenic differentiation of MC3T3 cells. Osteoindutivity of BCP ceramics is a crucial factor to determine the sucess and efficiency of PLF. BCP ceramic spheres with nanotopography hold great potential in clinical PLF applications.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Quan Zhou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Yang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linnan Wang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Limin Liu
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yueming Song
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
35
|
Wu M, Chen F, Wu P, Yang Z, Zhang S, Xiao L, Deng Z, Zhang C, Chen Y, Cai L. Bioinspired Redwood-Like Scaffolds Coordinated by In Situ-Generated Silica-Containing Hybrid Nanocoatings Promote Angiogenesis and Osteogenesis both In Vitro and In Vivo. Adv Healthc Mater 2021; 10:e2101591. [PMID: 34569182 DOI: 10.1002/adhm.202101591] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Indexed: 12/11/2022]
Abstract
Inspired by natural redwood and bone, a biomimetic strategy is presented to develop a highly bioactive redwood-like nanocomposite via radial freeze casting of biocompatible hydrogels followed by the in situ coprecipitation of a Si-containing CaP hybrid nanocoating (SCPN). The engineered material displays radially aligned macrochannels and a porous network structure similar to those of natural redwood. In addition to acting as a mechanical reinforcement, introducing SCPNs into the weak redwood-like scaffold yields not only a nanoroughened surface topography, a low swelling ratio, retarded enzymatic degradation, and enhanced protein absorption abilities but also the sustained sequential release of Si and Ca ions, thereby providing essential biophysical and biochemical cues for effective bone regeneration. Benefiting from the redwood-like structures and bioactive SCPNs, the biomimetic materials create a favorable microenvironment for promoting the initial adhesion, spreading, proliferation, and migration of bone marrow-derived mesenchymal stem cells and human umbilical vein endothelial cells. Furthermore, the in vitro and in vivo data showed that the biocompatible redwood-like scaffold with precipitated SCPN can synergistically promote osteogenesis and angiogenesis in their aligned direction. Collectively, this work presents a novel bioinspired redwood-like material with multifunctional properties that provides new insight into bone defect repair.
Collapse
Affiliation(s)
- Minhao Wu
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Sciences Wuhan University Wuhan 430071 China
| | - Ping Wu
- College of Life Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
| | - Zhiqiang Yang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Sheng Zhang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Lingfei Xiao
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Chong Zhang
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases School of Basic Medical Sciences Wuhan University Wuhan 430071 China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor Zhongnan Hospital of Wuhan University 168 Donghu Street, Wuchang District Wuhan Hubei 430071 P. R. China
| |
Collapse
|
36
|
He W, Wu Z, Wu Y, Cai Y, Cui Z, Yu B, Hong Y. Construction of Antimicrobial Material-Loaded Porous Tricalcium Phosphate Beads for Treatment of Bone Infections. ACS APPLIED BIO MATERIALS 2021; 4:6280-6293. [PMID: 35006920 DOI: 10.1021/acsabm.1c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Due to low success rates of antibiotic therapy in most osteomyelitis diseases, continuous efforts have been made to fabricate local delivery systems with high antimicrobial effects. Here, we reported a kind of ε-polylysine(PL)/Ag-loaded porous tricalcium phosphate (TCP) bead instead of antibiotics as local delivery systems for the treatment of Staphylococcus aureus-caused osteomyelitis. Such local delivery systems were prepared by the fabrication of porous TCP beads at first and then the loading of Ag and PL in turn into porous TCP beads via in situ Ag-doping and layer-by-layer methods. In vitro experiments demonstrated that the release of PL and Ag was controllable. Especially, the release dosage of Ag could be controlled to be less than 0.05 ppm 28 days later. The surface coating of PL improved the cytocompatibility and antibacterial activity of local delivery systems. In vivo experiments demonstrated that the Ag/PL-loaded porous TCP beads displayed strong antibacterial activity and good osteoconductivity, and the combination of Ag and PL was better than the use of single antibacterial materials to treat S. aureus-caused osteomyelitis. The implantation of Ag into the infected marrow had low toxicity because Ag has been integrated into the TCP grains, which could be absorbed in marrow. Therefore, the Ag/PL-loaded porous TCP beads presented potential for treating osteomyelitis, especially sequestrum-debrided osteomyelitis.
Collapse
Affiliation(s)
- Wenchao He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhen Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yanmei Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Yuyan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| | - Zhuang Cui
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China.,Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| | - Youliang Hong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
37
|
Sun S, Jiao Z, Wang Y, Wu Z, Wang H, Ji Q, Liu Y, Wang Z, Zhang P. Porous polyetheretherketone microcarriers fabricated via hydroxylation together with cell-derived mineralized extracellular matrix coatings promote cell expansion and bone regeneration. Regen Biomater 2021; 8:rbab013. [PMID: 33763233 PMCID: PMC7975764 DOI: 10.1093/rb/rbab013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
Porous microcarriers have aroused increasing attention recently by facilitating oxygen and nutrient transfer, supporting cell attachment and growth with sufficient cell seeding density. In this study, porous polyetheretherketone (PEEK) microcarriers coated with mineralized extracellular matrix (mECM), known for their chemical, mechanical and biological superiority, were developed for orthopedic applications. Porous PEEK microcarriers were derived from smooth microcarriers using a simple wet-chemistry strategy involving the reduction of carbonyl groups. This treatment simultaneously modified surface topology and chemical composition. Furthermore, the microstructure, protein absorption, cytotoxicity and bioactivity of the obtained porous microcarriers were investigated. The deposition of mECM through repeated recellularization and decellularization on the surface of porous MCs further promoted cell proliferation and osteogenic activity. Additionally, the mECM coated porous microcarriers exhibited excellent bone regeneration in a rat calvarial defect repair model in vivo, suggesting huge potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zixue Jiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Zhenxu Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haowei Wang
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Qingming Ji
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yi Liu
- Department of Spine Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130021, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
38
|
Feng C, Wu Y, Cao Q, Li X, Zhu X, Zhang X. Effect of Hydrothermal Media on the in-situ Whisker Growth on Biphasic Calcium Phosphate Ceramics. Int J Nanomedicine 2021; 16:147-159. [PMID: 33456309 PMCID: PMC7804068 DOI: 10.2147/ijn.s280130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND There is still a big challenge to achieve a balance between mechanical characteristics and biological properties in biphasic calcium phosphate (BCP) ceramics. PURPOSE The present study focused on the in-situ whisker growth on BCP ceramics via different hydrothermal treatments and investigated the influences of these whiskers on the mechanical property and biological performance of the ceramics. METHODS Five kinds of BCP ceramics with in-situ whisker growth, ie, BCP-C, BCP-HNO3, BCP-Citric, BCP-NaOH, BCP-CaCl2 and BCP-Na3PO4 were fabricated by different hydrothermal treatments. The phase compositions, morphologies, crystal structures and mechanical strengths of the obtained BCP ceramics were firstly characterized. Then, the in vitro cell adhesion, proliferation and alkaline phosphatase (ALP) activity of bone marrow stromal cells (BMSCs) on the BCP ceramics were evaluated. Lastly, the effects of in-situ whisker growth on the bone-like apatite formation abilities of BCP ceramics were also investigated by immersing them in simulated body fluid (SBF). RESULTS The results demonstrated that the hydrothermal conditions, especially the hydrothermal media, were crucial to determine the phase composition and morphology of the in-situ whisker. Especially among the five media used (HNO3, Citric, NaOH, CaCl2 and Na3PO4), the Na3PO4 treatment resulted in the shortest whisker with a unique hollow structure, and kept the original biphasic composition. All five kinds of whiskers increased the mechanical strength of BCP ceramics to some extent, and showed the good ability of bone-like apatite formation. The in vitro cell study demonstrated that the in-situ whisker growth had no adverse but even positive effect on the adhesion, proliferation and ALP activity of BMSCs. CONCLUSION Due to the growth of in-situ whiskers, the mechanical property and biological performance of the obtained BCP ceramics could increase simultaneously. Therefore, in-situ whiskers growth offers a promising strategy for the expanded application of BCP ceramics to meet the requirements of regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
39
|
Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:598607. [PMID: 33381499 PMCID: PMC7767872 DOI: 10.3389/fbioe.2020.598607] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Laboratory Diagnostic Medicine, The Affiliated Hospital of the University of Chinese Academy of Sciences, Chongqing General Hospital, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery Section of Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
40
|
Osteogenic effects of the bioactive small molecules and minerals in the scaffold-based bone tissue engineering. Colloids Surf B Biointerfaces 2020; 198:111462. [PMID: 33239252 DOI: 10.1016/j.colsurfb.2020.111462] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
Reconstruction of the damaged bone is a striking challenge in the medical field. The bone grafts as a current treatment is associated with inherent limitations; hence, the bone tissue engineering as an alternative therapeutic approach has been considered in the recent decades. Bone tissue engineering aims at replacing the lost tissue and restoring its function by recapitulating the natural regeneration process. Concerted participation and combination of the biocompatible materials, osteoprogenitor/ stem cells and bioactive factors closely mimic the bone microenvironment. The bioactive factors regulate the cell behavior and they induce the stem cells to osteogenic differentiation by activating specific signaling cascades. Growth factors (GFs) are the most important bioactive molecules and mediators of the natural bone repair process. Although these soluble factors have approved applications in the bone regeneration, however, there are several limitations such as the instability, high dose requirements, and serious side effects which could restrict their clinical usage. Alternatively, a new generation of bioactive molecules with the osteogenic properties are used. The non-peptide organic or inorganic molecules are physiologically stable and non-immunogenic due to their small size. Many of them are obtained from the natural resources and some are synthesized through the chemical methods. As a result, these molecules have been introduced as the cost-effective osteogenic agents in the bone tissue regeneration. In this paper, three groups of these bioactive agents including the organic small molecules, minerals and metallic nanoparticles have been investigated, considering their function in accelerating the bone regeneration. We review the recent in vitro and in vivo studies that utilized the osteogenic molecules to promote the bone formation in the scaffold-based bone tissue engineering systems.
Collapse
|
41
|
Geng Z, Ji L, Li Z, Wang J, He H, Cui Z, Yang X, Liu C. Nano-needle strontium-substituted apatite coating enhances osteoporotic osseointegration through promoting osteogenesis and inhibiting osteoclastogenesis. Bioact Mater 2020; 6:905-915. [PMID: 33102935 PMCID: PMC7553892 DOI: 10.1016/j.bioactmat.2020.09.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 12/30/2022] Open
Abstract
Implant loosening remains a major clinical challenge for osteoporotic patients. This is because osteoclastic bone resorption rate is higher than osteoblastic bone formation rate in the case of osteoporosis, which results in poor bone repair. Strontium (Sr) has been widely accepted as an anti-osteoporosis element. In this study, we fabricated a series of apatite and Sr-substituted apatite coatings via electrochemical deposition under different acidic conditions. The results showed that Ca and Sr exhibited different mineralization behaviors. The main mineralization products for Ca were CaHPO4·2H2O and Ca3(PO4)2 with the structure changed from porous to spherical as the pH values increased. The main mineralization products for Sr were SrHPO4 and Sr5(PO4)3OH with the structure changed from flake to needle as the pH values increased. The in vitro experiment demonstrated that coatings fabricated at high pH condition with the presence of Sr were favorable to MSCs adhesion, spreading, proliferation, and osteogenic differentiation. In addition, Sr-substituted apatite coatings could evidently inhibit osteoclast differentiation and fusion. Moreover, the in vivo study indicated that nano-needle like Sr-substituted apatite coating could suppress osteoclastic activity, improve new bone formation, and enhance bone-implant integration. This study provided a new theoretical guidance for implant coating design and the fabricated Sr-substituted coating might have potential applications for osteoporotic patients. Ca2+ and Sr2+ showed different mineralization behaviors in acidic environments. Apatites fabricated at high pH conditions were beneficial to MSCs growth. Sr-substituted apatite exhibited superior anti-osteoclast activity ability. Sr-substituted apatite facilitated osteogenesis, bone growth, and osseointegration.
Collapse
Affiliation(s)
- Zhen Geng
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Luli Ji
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhaoyang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhenduo Cui
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xianjin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.,The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Xu XL, Shu GF, Wang XJ, Qi J, Jin FY, Shen QY, Ying XY, Ji JS, Du YZ. Sialic acid-modified chitosan oligosaccharide-based biphasic calcium phosphate promote synergetic bone formation in rheumatoid arthritis therapy. J Control Release 2020; 323:578-590. [PMID: 32376462 DOI: 10.1016/j.jconrel.2020.04.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/30/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022]
Abstract
Therapeutic goals for rheumatoid arthritis (RA) consist of inhibiting the inflammatory response and repairing the damaged bone/cartilage. Tissue engineering could achieve both goals, however, it was hindered due to the lack of biologically relevant tissue complexity, limitation in covering the entire polyarthritis lesions and requirement of extra surgical implantation. Integrating nanotechnologies into clinically sized implants represents a major opportunity to overcome these problems. Herein, we designed a sialic acid (SA)-modified chitosan oligosaccharide-based biphasic calcium phosphate (BCP), a biomimetic nanoplatform that could load with methotrexate. We found that SA modification could not only improve the accumulation of the designed organic-inorganic nanoplatform in arthritic paws (34.38% higher than those without SA modification at 48 h), but also cooperate with BCP to exert synergetic mineralization of calcium phosphate, allowing more osteoblasts to attach, proliferate and differentiate. The more differentiated osteoblasts produced 4.46-fold type I collagen and 2.60-fold osteoprotegerin compared to the control group. Besides, the disassembled nanorods released chitosan oligosaccharide-based micelles, revealing a cartilage-protective effect by reducing the loss of glycosaminoglycan. All these improvements contributed to the light inflammatory response and reduced destruction on cartilage/bone. The findings provide a novel strategy for RA therapy via nanometer-scale dimension mimicking the natural tissues.
Collapse
Affiliation(s)
- Xiao-Ling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gao-Feng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, PR China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jing Qi
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Fei-Yang Jin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qi-Ying Shen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiao-Ying Ying
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Jian-Song Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, Lishui 323000, PR China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
43
|
Li X, Liu M, Chen F, Wang Y, Wang M, Chen X, Xiao Y, Zhang X. Design of hydroxyapatite bioceramics with micro-/nano-topographies to regulate the osteogenic activities of bone morphogenetic protein-2 and bone marrow stromal cells. NANOSCALE 2020; 12:7284-7300. [PMID: 32196048 DOI: 10.1039/c9nr10561a] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomimicking the nanostructure of natural bone apatite to enhance the bioactivity of hydroxyapatite (HA) biomaterials is an eternal topic in the bone regeneration field. In the present study, we designed four kinds of HA bioceramics with micro- to nanosized grains and investigated the effects of bioceramic topographies on the structures of bone morphogenetic protein-2 (BMP-2) and the effects on the responses of bone marrow stromal cells (BMSCs). Compared to the samples with submicron-scale crystalline particles, HA bioceramics with grain sizes of 104.6 ± 27.8 nm exhibited increased roughness, improved hydrophilicity and enhanced mechanical properties. The synergistic effects of these surface characteristics could well maintain the conformation of BMP-2, facilitate cell adhesion and spreading, and activate the osteogenic differentiation of BMSCs. Furthermore, SBF immersion and in vivo canine intramuscular implantation confirmed that the HA bioceramics with nanotopography also processed excellent bone-like apatite forming ability and outstanding osteoinductivity. In summary, these findings suggest that the nanotopography of HA bioceramics is a critical factor to enhance their bioactivity and osteoinductivity.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules 2019; 9:E750. [PMID: 31752393 PMCID: PMC6920773 DOI: 10.3390/biom9110750] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022] Open
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
Affiliation(s)
- Saba Abdulghani
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-080 Marinha Grande, Portugal;
| | | |
Collapse
|
45
|
Abstract
This review focuses on a somewhat unexplored strand of regenerative medicine, that is in situ tissue engineering. In this approach manufactured scaffolds are implanted in the injured region for regeneration within the patient. The scaffold is designed to attract cells to the required volume of regeneration to subsequently proliferate, differentiate, and as a consequence develop tissue within the scaffold which in time will degrade leaving just the regenerated tissue. This review highlights the wealth of information available from studies of ex-situ tissue engineering about the selection of materials for scaffolds. It is clear that there are great opportunities for the use of additive manufacturing to prepare complex personalized scaffolds and we speculate that by building on this knowledge and technology, the development of in situ tissue engineering could rapidly increase. Ex-situ tissue engineering is handicapped by the need to develop the tissue in a bioreactor where the conditions, however optimized, may not be optimum for accelerated growth and maintenance of the cell function. We identify that in both methodologies the prospect of tissue regeneration has created much promise but delivered little outside the scope of laboratory-based experiments. We propose that the design of the scaffolds and the materials selected remain at the heart of developments in this field and there is a clear need for predictive modelling which can be used in the design and optimization of materials and scaffolds.
Collapse
|
46
|
Chen F, Wang M, Wang J, Chen X, Li X, Xiao Y, Zhang X. Effects of hydroxyapatite surface nano/micro-structure on osteoclast formation and activity. J Mater Chem B 2019; 7:7574-7587. [PMID: 31729515 DOI: 10.1039/c9tb01204d] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The surface structure of calcium phosphate (CaP) ceramic plays an important role in its osteoinductivity; however, little is known about its effects on osteoclastogenesis. In this study, an intramuscular implantation model suggested a potential relationship between hydroxyapatite (HA)-induced bone formation and osteoclast appearance in the non-osseous site, which might be modulated by scaffold surface structure. Then, three dense HA discs with different grain sizes from biomimetic nanoscale (∼100 nm) to submicron scale (∼500 nm) were fabricated via distinct sintering procedures, and their impacts on osteoclastic differentiation of RAW 264.7 macrophages under RANKL stimulation were further investigated. Our results showed that compared with the ones in the submicron-scale dimension, nano-structured HA discs markedly impaired osteoclastic formation and function, as evidenced by inhibited cell fusion, reduced osteoclast size, less-defined actin ring, increased osteoclast apoptosis, suppressed expression of osteoclast specific genes and proteins, decreased TRAP-positive cells, and hampered resorption activity. This demonstrated that the surface structure of CaP ceramics has a great influence on osteoclastogenesis, which might be further related to its osteoinductive capacity. These findings might not only help us gain insight into biomolecular events during CaP-involved osteoinduction, but also offer a principle for designing orthopaedic implants with an ability of regulating both osteogenesis and osteoclastogenesis to achieve the desired performance.
Collapse
Affiliation(s)
- Fuying Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Menglu Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
47
|
Nie L, Wu Q, Long H, Hu K, Li P, Wang C, Sun M, Dong J, Wei X, Suo J, Hua D, Liu S, Yuan H, Yang S. Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1636-1657. [PMID: 31393229 DOI: 10.1080/09205063.2019.1654210] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chitosan/gelatin hydrogel incorporated with biphasic calcium phosphate nanoparticles (BCP-NPs) as scaffold (CGB) for bone tissue engineering was reported in this article. Such nanocomposite hydrogels were fabricated by using cycled freeze-thawing method, of which physicochemical and biological properties were regulated by adjusting the weight ratio of chitosan/gelatin/BCP-NPs. The needle-like BCP-NPs were dispersed into composites uniformly, and physically cross-linked with chitosan and gelatin, which were identified via Scanning Electron Microscope (SEM) images and Fourier Transform Infrared Spectroscopy (FT-IR) analysis. The porosity, equilibrium swelling ratio, and compressive strength of CGB scaffolds were mainly influenced by the BCP-NPs concentration. In vitro degradation analysis in simulated body fluids (SBF) displayed that CGB scaffolds were degraded up to at least 30 wt% in one month. Also, CCK-8 analysis confirmed that the prepared scaffolds had a good cytocompatibility through in culturing with bone marrow mesenchymal stem cells (BMSCs). Finally, In vivo animal experiments revealed that new bone tissue was observed inside the scaffolds, and gradually increased with increasing months, when implanted CGB scaffolds into large necrotic lesions of rabbit femoral head. The above results suggested that prepared CGB nanocomposites had the potential to be applied in bone tissue engineering.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University , Xinyang , China.,Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium
| | - Qiaoyun Wu
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Haiyue Long
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Kehui Hu
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium.,Department of Mechanical Engineering, Tsinghua University , Beijing , China
| | - Pei Li
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Can Wang
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Meng Sun
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Jing Dong
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Xiaoyan Wei
- Max Planck Institute for Molecular Genetics , Berlin , Germany
| | - Jinping Suo
- State Key Laboratory of Mould Technology, College of Materials Science and Engineering, Huazhong University of Science and Technology , Wuhan , China
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University , Zhengzhou , China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University , Zhengzhou , China
| | - Hongyu Yuan
- College of Life Sciences, Xinyang Normal University , Xinyang , China
| | - Shoufeng Yang
- Department of Mechanical Engineering, Member of Flanders Make, KU Leuven (Catholic University of Leuven) , Leuven , Belgium
| |
Collapse
|