1
|
Lou L, Dolmetsch T, Aguiar BA, Mohammed SMAK, Agarwal A. Quantum Dots on a String: In Situ Observation of Branching and Reinforcement Mechanism of Electrospun Fibers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311073. [PMID: 38566548 DOI: 10.1002/smll.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Immobilization of quantum dots (QDs) on fiber surfaces has emerged as a robust approach for preserving their functional characteristics while mitigating aggregation and instability issues. Despite the advancement, understanding the impacts of QDs on jet-fiber evolution during electrospinning, QDs-fiber interface, and composites functional behavior remains a knowledge gap. The study adopts a high-speed imaging methodology to capture the immobilization effects on the QDs-fiber matrix. In situ observations reveal irregular triangular branches within the QDs-fiber matrix, exhibiting distinctive rotations within a rapid timeframe of 0.00667 ms. The influence of FeQDs on Taylor cone dynamics and subsequent fiber branching velocities is elucidated. Synthesis phenomena are correlated with QD-fiber's morphology, crystallinity, and functional properties. PAN-FeQDs composite fibers substantially reduced (50-70%) nano-fibrillar length and width while their diameter expanded by 17%. A 30% enhancement in elastic modulus and reduction in adhesion force for PAN-FeQDs fibers is observed. These changes are attributed to chemical and physical intertwining between the FeQDs and the polymer matrix, bolstered by the shifts in the position of C≡N and C═C bonds. This study provides valuable insights into the quantum dot-fiber composites by comprehensively integrating and bridging jet-fiber transformation, fiber structure, nanomechanics, and surface chemistry.
Collapse
Affiliation(s)
- Lihua Lou
- Plasma Forming Laboratory, Mechanical and Materials Engineering, School of Biomedical, Materials and Mechanical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| | - Tyler Dolmetsch
- Plasma Forming Laboratory, Mechanical and Materials Engineering, School of Biomedical, Materials and Mechanical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| | - Brandon A Aguiar
- Plasma Forming Laboratory, Mechanical and Materials Engineering, School of Biomedical, Materials and Mechanical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| | - Sohail Mazher Ali Khan Mohammed
- Plasma Forming Laboratory, Mechanical and Materials Engineering, School of Biomedical, Materials and Mechanical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| | - Arvind Agarwal
- Plasma Forming Laboratory, Mechanical and Materials Engineering, School of Biomedical, Materials and Mechanical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA
| |
Collapse
|
2
|
Yang Y, Liu Y, Song L, Cui X, Zhou J, Jin G, Boccaccini AR, Virtanen S. Iron oxide nanoparticle-based nanocomposites in biomedical application. Trends Biotechnol 2023; 41:1471-1487. [PMID: 37407395 DOI: 10.1016/j.tibtech.2023.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
Iron-oxide-based biomagnetic nanocomposites, recognized for their significant properties, have been utilized in MRI and cancer treatment for several decades. The expansion of clinical applications is limited by the occurrence of adverse effects. These limitations are largely attributed to suboptimal material design, resulting in agglomeration, reduced magnetic relaxivity, and inadequate functionality. To address these challenges, various synthesis methods and modification strategies have been used to tailor the size, shape, and properties of iron oxide nanoparticle (FeONP)-based nanocomposites. The resulting modified nanocomposites exhibit significant potential for application in diagnostic, therapeutic, and theranostic contexts, including MRI, drug delivery, and anticancer and antimicrobial activity. Yet, their biosafety profile must be rigorously evaluated. Such efforts will facilitate the broader clinical translation of FeONP-based nanocomposites in biomedical applications.
Collapse
Affiliation(s)
- Yuyun Yang
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China.
| | - Yuejun Liu
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Laiming Song
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Xiufang Cui
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Juncen Zhou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Guo Jin
- Institute of Corrosion Science and Surface Technology, Department of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, 15001, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sannakaisa Virtanen
- Institute of Surface Science and Corrosion, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Fan Z, Wen X, Ding X, Wang Q, Wang S, Yu W. Advances in biotechnology and clinical therapy in the field of peripheral nerve regeneration based on magnetism. Front Neurol 2023; 14:1079757. [PMID: 36970536 PMCID: PMC10036769 DOI: 10.3389/fneur.2023.1079757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common neurological diseases. Recent studies on nerve cells have provided new ideas for the regeneration of peripheral nerves and treatment of physical trauma or degenerative disease-induced loss of sensory and motor neuron functions. Accumulating evidence suggested that magnetic fields might have a significant impact on the growth of nerve cells. Studies have investigated different magnetic field properties (static or pulsed magnetic field) and intensities, various magnetic nanoparticle-encapsulating cytokines based on superparamagnetism, magnetically functionalized nanofibers, and their relevant mechanisms and clinical applications. This review provides an overview of these aspects as well as their future developmental prospects in related fields.
Collapse
|
4
|
Franconi F, Lefranc O, Radlovic A, Lemaire L. Can magnetisation transfer magnetic resonance imaging help for the follow-up of synthetic hernia composite meshes fate? A pilot study. MAGMA (NEW YORK, N.Y.) 2022; 35:1021-1029. [PMID: 35552915 DOI: 10.1007/s10334-022-01016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE This study aims at evaluating the non-invasive Magnetic Resonance Imaging (MRI) technic to visualize a synthetic composite hernia mesh using a rodent model and to document the integration of this device over 4 months. METHODS Uncoated polyethylene terephthalate mesh and synthetic composite mesh-faced on the visceral side with a chemically engineered layer of copolymer of glycolide, caprolactone, trimethylene carbonate, and lactide to minimize tissue attachment-were placed intraperitoneally in rats, facing the caecum previously scraped to promote petechial bleeding and subsequent adhesions. Meshes fate follow-up was performed 4, 10, and 16-weeks post-implantation using a rodent dedicated high field MRI. Magnetization transfer (MT) images were acquired, associated with pneumoperitonealMRI performed after intraperitoneal injection of 8 mL gas to induce mechanical stress on the abdominal wall. RESULTS Uncoated meshes were clearly visible using both T2-weighted and MT imaging during the whole study while composite meshes conspicuity was not so evident on T2-weighted MRI and could be improved using MT imaging. Adhesions and collagen infiltration were massive for the uncoated meshes as expected. On the contrary, composite meshes showed very limited adhesion, and, if any, occurring at the edge of the mesh, starting at the fixation points. CONCLUSIONS Magnetization transfer imaging allows to detect mesh integration and, associated with pneumoperitoneum, was able to probe the effective minimizing effect of the synthetic polymeric barrier on visceral attachments. However, magnetization transfer imaging could not unambiguously allow the visualization of the mesh through the polymeric barrier.
Collapse
Affiliation(s)
- Florence Franconi
- UNIV ANGERS, PRISM-Plateforme de Recherche en Imagerie et Spectroscopie Multimodales, 4 rue Larrey, 49933, Angers, France
- UNIV ANGERS, INSERM UMR-S 1066- CNRS 6021, Micro et Nanomédecines Translationnelles-MINT, 4 rue Larrey, 49933, Angers, France
| | - Olivier Lefranc
- SOFRADIM Production, 116 avenue du Formans, 01600, Trevoux, France
| | | | - Laurent Lemaire
- UNIV ANGERS, PRISM-Plateforme de Recherche en Imagerie et Spectroscopie Multimodales, 4 rue Larrey, 49933, Angers, France.
- UNIV ANGERS, INSERM UMR-S 1066- CNRS 6021, Micro et Nanomédecines Translationnelles-MINT, 4 rue Larrey, 49933, Angers, France.
| |
Collapse
|
5
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
6
|
El-Moghazy AY, Amaly N, Sun G, Nitin N. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Advances in Electrospun Hybrid Nanofibers for Biomedical Applications. NANOMATERIALS 2022; 12:nano12111829. [PMID: 35683685 PMCID: PMC9181850 DOI: 10.3390/nano12111829] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Electrospun hybrid nanofibers, based on functional agents immobilized in polymeric matrix, possess a unique combination of collective properties. These are beneficial for a wide range of applications, which include theranostics, filtration, catalysis, and tissue engineering, among others. The combination of functional agents in a nanofiber matrix offer accessibility to multifunctional nanocompartments with significantly improved mechanical, electrical, and chemical properties, along with better biocompatibility and biodegradability. This review summarizes recent work performed for the fabrication, characterization, and optimization of different hybrid nanofibers containing varieties of functional agents, such as laser ablated inorganic nanoparticles (NPs), which include, for instance, gold nanoparticles (Au NPs) and titanium nitride nanoparticles (TiNPs), perovskites, drugs, growth factors, and smart, inorganic polymers. Biocompatible and biodegradable polymers such as chitosan, cellulose, and polycaprolactone are very promising macromolecules as a nanofiber matrix for immobilizing such functional agents. The assimilation of such polymeric matrices with functional agents that possess wide varieties of characteristics require a modified approach towards electrospinning techniques such as coelectrospinning and template spinning. Additional focus within this review is devoted to the state of the art for the implementations of these approaches as viable options for the achievement of multifunctional hybrid nanofibers. Finally, recent advances and challenges, in particular, mass fabrication and prospects of hybrid nanofibers for tissue engineering and biomedical applications have been summarized.
Collapse
|
8
|
Kumar N, Tyeb S, Verma V. Recent advances on Metal oxide-polymer systems in targeted therapy and diagnosis: Applications and toxicological perspective. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102814] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Awada H, Sene S, Laurencin D, Lemaire L, Franconi F, Bernex F, Bethry A, Garric X, Guari Y, Nottelet B. Long-term in vivo performances of polylactide/iron oxide nanoparticles core-shell fibrous nanocomposites as MRI-visible magneto-scaffolds. Biomater Sci 2021; 9:6203-6213. [PMID: 34350906 DOI: 10.1039/d1bm00186h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing interest in magnetic nanocomposites in biomaterials science. In particular, nanocomposites that combine poly(lactide) (PLA) nanofibers and superparamagnetic iron oxide nanoparticles (SPIONs), which can be obtained by either electrospinning of a SPION suspension in PLA or by precipitating SPIONs at the surface of PLA, are well documented in the literature. However, these two classical processes yield nanocomposites with altered materials properties, and their long-term in vivo fate and performances have in most cases only been evaluated over short periods of time. Recently, we reported a new strategy to prepare well-defined PLA@SPION nanofibers with a quasi-monolayer of SPIONs anchored at the surface of PLA electrospun fibers. Herein, we report on a 6-month in vivo rat implantation study with the aim of evaluating the long-term magnetic resonance imaging (MRI) properties of this new class of magnetic nanocomposites, as well as their tissue integration and degradation. Using clinically relevant T2-weighted MRI conditions, we show that the PLA@SPION nanocomposites are clearly visible up to 6 months. We also evaluate here by histological analyses the slow degradation of the PLA@SPIONs, as well as their biocompatibility. Overall, these results make these nanocomposites attractive for the development of magnetic biomaterials for biomedical applications.
Collapse
Affiliation(s)
- Hussein Awada
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France. .,ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Saad Sene
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Laurent Lemaire
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, Angers, France.,PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat, Angers, France
| | - Florence Franconi
- Micro & Nanomédecines Translationnelles-MINT, UNIV Angers, INSERM U1066, CNRS UMR 6021, Angers, France.,PRISM Plate-forme de recherche en imagerie et spectroscopie multi-modales, PRISM-Icat, Angers, France
| | - Florence Bernex
- RHEM, BioCampus Montpellier, CNRS, INSERM, Univ Montpellier, Montpellier, France.,IRCM, U1194 INSERM, Univ Montpellier, Montpellier, France
| | - Audrey Bethry
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Xavier Garric
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Yannick Guari
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
10
|
Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, Nottelet B, Gilbert RJ. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater 2021; 131:302-313. [PMID: 34271170 PMCID: PMC8373811 DOI: 10.1016/j.actbio.2021.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Magnetic fiber composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and electrospun fibers have shown promise in tissue engineering fields. Controlled grafting of SPIONs to the fibers post-electrospinning generates biocompatible magnetic composites without altering desired fiber morphology. Here, for the first time, we assess the potential of SPION-grafted scaffolds combined with magnetic fields to promote neurite outgrowth by providing contact guidance from the aligned fibers and mechanical stimulation from the SPIONs in the magnetic field. Neurite outgrowth from primary rat dorsal root ganglia (DRG) was assessed from explants cultured on aligned control and SPION-grafted electrospun fibers as well as on non-grafted fibers with SPIONs dispersed in the culture media. To determine the optimal magnetic field stimulation to promote neurite outgrowth, we generated a static, alternating, and linearly moving magnet and simulated the magnetic flux density at different areas of the scaffold over time. The alternating magnetic field increased neurite length by 40% on control fibers compared to a static magnetic field. Additionally, stimulation with an alternating magnetic field resulted in a 30% increase in neurite length and 62% increase in neurite area on SPION-grafted fibers compared to DRG cultured on PLLA fibers with untethered SPIONs added to the culture media. These findings demonstrate that SPION-grafted fiber composites in combination with magnetic fields are more beneficial for stimulating neurite outgrowth on electrospun fibers than dispersed SPIONs. STATEMENT OF SIGNIFICANCE: Aligned electrospun fibers improve axonal regeneration by acting as a passive guidance cue but do not actively interact with cells, while magnetic nanoparticles can be remotely manipulated to interact with neurons and elicit neurite outgrowth. Here, for the first time, we examine the combination of magnetic fields, magnetic nanoparticles, and aligned electrospun fibers to enhance neurite outgrowth. We show an alternating magnetic field alone increases neurite outgrowth on aligned electrospun fibers. However, combining the alternating field with magnetic nanoparticle-grafted fibers does not affect neurite outgrowth compared to control fibers but improves outgrowth compared to freely dispersed magnetic nanoparticles. This study provides the groundwork for utilizing magnetic electrospun fibers and magnetic fields as a method for promoting axonal growth.
Collapse
Affiliation(s)
- Jessica L Funnell
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Alexis M Ziemba
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - James F Nowak
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Hussein Awada
- IBMM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicos Prokopiou
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Johnson Samuel
- Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Ryan J Gilbert
- Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| |
Collapse
|
11
|
Tang R, Yao X, Chen J, Sridar S, He X, Pu Y, Wang JX, Wang D, Wang S. A Highly Controlled Organic-Inorganic Encapsulation Nanocomposite with Versatile Features toward Wearable Device Applications. Macromol Rapid Commun 2021; 42:e2100134. [PMID: 34355445 DOI: 10.1002/marc.202100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 11/06/2022]
Abstract
Ultraviolet-curable polyurethane acrylate (PUA) materials can be used in a number of important applications spanning from microfluidics, surface patterning to wearable technology. For the first time, the potential of encapsulation of modified zirconia (ZrO2 ) nanoparticles is reported in PUA-based hybrid films aimed to facilitate profoundly enhanced hardness and refractive index. By successfully manipulating the interfacial reaction conditions between ZrO2 nanoparticles and PUA film, the PUA-based nanocomposites exhibit an ultrahigh hardness of 9 and superior refractive index of 1.64 (589.3 nm). The outcomes obtained pave the way for seamless application of nanozirconia/PUA as a potent encapsulating material that provides structurally morphable, water resistant, and optically transparent light emitting diodes toward wearables devices in healthcare.
Collapse
Affiliation(s)
- Ruijie Tang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoxue Yao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Jingyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sreepathy Sridar
- Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Xianglei He
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuan Pu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
12
|
|
13
|
Myrovali E, Papadopoulos K, Iglesias I, Spasova M, Farle M, Wiedwald U, Angelakeris M. Long-Range Ordering Effects in Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21602-21612. [PMID: 33929817 DOI: 10.1021/acsami.1c01820] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
Collapse
Affiliation(s)
- Eirini Myrovali
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Kyrillos Papadopoulos
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| | - Irene Iglesias
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Marina Spasova
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Michael Farle
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Ulf Wiedwald
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47048, Germany
| | - Makis Angelakeris
- School of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Magnetic Nanostructure Characterization: Technology and Applications, CIRI-AUTH, Thessaloniki 57001, Greece
| |
Collapse
|
14
|
Cai Z, Fan L, Wang H, Lamon S, Alexander SE, Lin T, Edwards SL. Constructing 3D Macroporous Microfibrous Scaffolds with a Featured Surface by Heat Welding and Embossing. Biomacromolecules 2021; 22:1867-1874. [PMID: 33881832 DOI: 10.1021/acs.biomac.0c01654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) microfibrous scaffolds hold great promise for biomedical applications due to their good mechanical properties and biomimetic structure similar to that of the fibrous natural extracellular matrix. However, the large diameter and smooth surface of microfibers provide limited cues for regulating cell activity and behaviors. In this work, we report a facile heat-welding-and-embossing strategy to develop 3D macroporous microfibrous scaffolds with a featured surface topography. Here, solid monosodium glutamate (MSG) particles with crystalline ridge-like surface features play a key role as templates in both the formation of scaffold pores and the surface embossing of scaffold fibers when short thermoplastic polypropylene microfibers were heat-welded. The embossing process can be programmed by adjusting heating temperatures and MSG/fiber ratios. Compared to traditional 3D microfibrous scaffolds, the as-welded 3D scaffolds show higher compressive strength and modulus. Taking mouse C2C12 myoblasts as a model cell line, the scaffolds with embossed surface features significantly promoted the growth of cells, interactions of cells and scaffolds, and formation of myotubes. The findings indicate that the as-prepared 3D scaffolds are a good platform for cell culture study. The facile strategy can be applied to fabricate different fibrous scaffolds by changing the combination of templates and thermoplastic polymer fibers with a melting temperature lower than that of the template. The obtained insights in this work could provide a guide and inspiration for the design and fabrication of functional 3D fibrous scaffolds.
Collapse
Affiliation(s)
- Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia.,CSIRO Manufacturing, Geelong Technology Precinct, Geelong, Victoria 3216, Australia
| | - Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Sarah Elizabeth Alexander
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Tong Lin
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Sharon L Edwards
- CSIRO Manufacturing, Geelong Technology Precinct, Geelong, Victoria 3216, Australia
| |
Collapse
|
15
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
16
|
Electrostatic self-assembly of pFe 3O 4 nanoparticles on graphene oxide: A co-dispersed nanosystem reinforces PLLA scaffolds. J Adv Res 2020; 24:191-203. [PMID: 32368357 PMCID: PMC7186563 DOI: 10.1016/j.jare.2020.04.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 01/19/2023] Open
Abstract
Cell responses and mechanical properties are vital for scaffold in bone regeneration. Fe3O4 nanoparticles with excellent magnetism can provide magnetic stimulation for cell growth, while graphene oxide (GO) nanosheets are commonly used as reinforcement phases due to their high strength. However, Fe3O4 or GO is tended to agglomerate in matrix. In present study, a novel co-dispersed Fe3O4-GO nanosystem was constructed through electrostatic self-assembly of positively charged Fe3O4 (pFe3O4) on negatively charged GO nanosheets. In the nanosystem, pFe3O4 nanoparticles and GO nanosheets support each other, which effectively alleviates the π-π stacking between GO nanosheets and magnetic attraction between pFe3O4 nanoparticles. Subsequently, the nanosystem was incorporated into poly L-lactic acid (PLLA) scaffolds fabricated using selective laser sintering. The results confirmed that the pFe3O4-GO nanosystem exhibited a synergistic enhancement effect on stimulating cell responses by integrating the capturing effect of GO and the magnetic simulation effect of pFe3O4. The activity, proliferation and differentiation of cells grown on scaffolds were significantly enhanced. Moreover, the nanosystem also exhibited a synergistic enhancement effect on mechanical properties of scaffolds, since the pFe3O4 loaded on GO improved the efficiency of stress transfer in matrix. The tensile stress and compressive strength of scaffolds were increased by 67.1% and 132%, respectively. In addition, the nanosystem improved the degradation capability and hydrophilicity of scaffolds.
Collapse
|
17
|
New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Nucl Med Mol Imaging 2020; 54:65-80. [PMID: 32377258 DOI: 10.1007/s13139-020-00635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/29/2022] Open
Abstract
Supermagnetic Iron Oxide Nanoparticles (SPIONs) are nanoparticles that have an iron oxide core and a functionalized shell. SPIONs have recently raised much interest in the scientific community, given their exciting potential diagnostic and theragnostic applications. The possibility to modify their surface and the characteristics of their core make SPIONs a specific contrast agent for magnetic resonance imaging but also an intriguing family of tracer for nuclear medicine. An example is 68Ga-radiolabeled bombesin-conjugated to superparamagnetic nanoparticles coated with trimethyl chitosan that is selective for the gastrin-releasing peptide receptors. These receptors are expressed by several human cancer cells such as breast and prostate neoplasia. Since the coating does not interfere with the properties of the molecules bounded to the shell, it has been proposed to link SPIONs with antibodies. SPIONs can be used also to monitor the biodistribution of mesenchymal stromal cells and take place in various applications. The aim of this review of literature is to analyze the diagnostic aspect of SPIONs in magnetic resonance imaging and in nuclear medicine, with a particular focus on sentinel lymph node applications. Moreover, it is taken into account the possible toxicity and the effects on human physiology to determine the SPIONs' safety.
Collapse
|
18
|
El-Moghazy AY, Huo J, Amaly N, Vasylieva N, Hammock BD, Sun G. An Innovative Nanobody-Based Electrochemical Immunosensor Using Decorated Nylon Nanofibers for Point-of-Care Monitoring of Human Exposure to Pyrethroid Insecticides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6159-6168. [PMID: 31927905 PMCID: PMC7799635 DOI: 10.1021/acsami.9b16193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A novel ultrasensitive nanobody-based electrochemical immunoassay was prepared for assessing human exposure to pyrethroid insecticides. 3-Phenoxybenzoic acid (3-PBA) is a common human urinary metabolite for numerous pyrethroids, which broadly served as a biomarker for following the human exposure to this pesticide group. The 3-PBA detection was via a direct competition for binding to alkaline phosphatase-embedded nanobodies between free 3-PBA and a 3-PBA-bovine serum albumin conjugate covalently immobilized onto citric acid-decorated nylon nanofibers, which were incorporated on a screen-printed electrode (SPE). Electrochemical impedance spectroscopy (EIS) was utilized to support the advantage of the employment of nanofibrous membranes and the success of the immunosensor assembly. The coupling between the nanofiber and nanobody technologies provided an ultrasensitive and selective immunosensor for 3-PBA detection in the range of 0.8 to 1000 pg mL-1 with a detection limit of 0.64 pg mL-1. Moreover, when the test for 3-PBA was applied to real samples, the established immunosensor proved to be a viable alternative to the conventional methods for 3-PBA detection in human urine even without sample cleanup. It showed excellent properties and stability over time.
Collapse
Affiliation(s)
- Ahmed Y. El-Moghazy
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Jingqian Huo
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
- College of Plant Protection, Agricultural University of Hebei, Baoding 071001, P. R. China
| | - Noha Amaly
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Natalia Vasylieva
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
19
|
Yu Z, Shen L, Li D, Pun EYB, Zhao X, Lin H. Fluctuation of photon-releasing with ligand coordination in polyacrylonitrile-based electrospun nanofibers. Sci Rep 2020; 10:926. [PMID: 31969625 PMCID: PMC6976676 DOI: 10.1038/s41598-020-57641-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 11/09/2022] Open
Abstract
Multivariate terbium-complexes were incorporated into polyacrylonitrile (PAN) and electrospun into flexible multifunctional nanofibers with a uniform diameter of ~200 nm. Fluorescence comparison in multi-ligand-binding nanofibers under ultraviolet (UV) radiation verifies that the differentiated β-diketone ligands with dual functions are the primary cause of the spectral fluctuation, adequately illustrating the available methods for the quantification of intermolecular reciprocities between organic ligands and central Tb3+ ions. Especially under 308 nm UVB-LED pumping, the total emission spectral power of supramolecular Tb-complexes/PAN nanofibers are identified to be 2.88 µW and the total emission photon number reaches to 7.94 × 1012 cps which are nearly six times higher than those of the binary complex ones in the visible region, respectively. By modifying the sorts of organic ligands, the luminous flux and luminous efficacy of multi-ligand Tb-complexes/PAN nanofibers are up to 1553.42 μlm and 13.72 mlm/W, respectively. Efficient photon-releasing and intense green-emission demonstrate that the polymer-capped multi-component terbium-complexes fibers have potential prospects for making designable flexible optoelectronic devices.
Collapse
Affiliation(s)
- Zhimin Yu
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Lifan Shen
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Desheng Li
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China
| | - Edwin Yue Bun Pun
- Department of Electronic Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| | - Xin Zhao
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China.
| | - Hai Lin
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian, 116034, P.R. China.
- Department of Electronic Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.
| |
Collapse
|
20
|
Covalent hyaluronic-based coating of magnetite nanoparticles: Preparation, physicochemical and biological characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110271. [PMID: 31761218 DOI: 10.1016/j.msec.2019.110271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/13/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
Abstract
In this paper we report about the preparation, physicochemical and biological characterization of a magneto responsive nanostructured material based on magnetite nanoparticles (NP) coated with hyaluronic acid (HA). A synthetic approach, based on a Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition "click" reaction between azido-functionalized magnetite NP and a derivative of hyaluronic acid bearing propargylated ferulic acid groups (HA-FA-Pg), was developed to link covalently the polymer layer to the magnetite NP. The functionalization steps of the magnetite NP and their coating with the HA-FA-Pg layer were monitored by Fourier Transform Infrared (FTIR) spectroscopy and Thermal Gravimetric Analysis (TGA) while Dynamic Light Scattering (DLS) and ζ-potential measurements were performed to characterize the aqueous dispersions of the HA-coated magnetite NP. Aggregation and sedimentation processes were investigated also by UV-visible spectroscopy and the dispersions of HA-coated magnetite NP were found significantly more stable than those of bare NP. Magnetization and zero field cooled/field cooled curves revealed that both bare and HA-coated magnetite NP are superparamagnetic at room temperature. Moreover, cytotoxicity studies showed that the coating with HA-FA-Pg significantly reduces the cytotoxicity of the magnetite NP providing the rational basis for the application of the HA-coated magnetite NP as healthcare material.
Collapse
|
21
|
Vilaça N, Gallo J, Fernandes R, Figueiredo F, Fonseca AM, Baltazar F, Neves IC, Bañobre-López M. Synthesis, characterization and in vitro validation of a magnetic zeolite nanocomposite with T2-MRI properties towards theranostic applications. J Mater Chem B 2019. [DOI: 10.1039/c9tb00078j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study focusses on the development of a magnetic zeolite nanocomposite as a suitable platform towards the design of a theranostic system. Herein, we explored its ability to act as a T2-MRI contrast enhancer when magnetic nanoparticles are incorporated in its structure.
Collapse
Affiliation(s)
- Natália Vilaça
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Juan Gallo
- INL – Advanced (magnetic) Theranostic Nanostructures Lab
- Life Sciences Department
- International Iberian Nanotechnology Laboratory
- Avenida Mestre José Veiga
- Braga
| | - Rui Fernandes
- i3S – Instituto de Investigação e Inovação em Saúde and HEMS/IBMC – Histology and Electron Microscopy Service
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - Francisco Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde and HEMS/IBMC – Histology and Electron Microscopy Service
- Universidade do Porto
- 4200-135 Porto
- Portugal
| | - António M. Fonseca
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)
- School of Medicine
- University of Minho
- Campus de Gualtar
- Braga
| | - Isabel C. Neves
- Centre of Chemistry
- Chemistry Department
- University of Minho
- Campus de Gualtar
- 4710-057 Braga
| | - Manuel Bañobre-López
- INL – Advanced (magnetic) Theranostic Nanostructures Lab
- Life Sciences Department
- International Iberian Nanotechnology Laboratory
- Avenida Mestre José Veiga
- Braga
| |
Collapse
|