1
|
Jiang J, Zhang L, Wu G, Zhang J, Yang Y, He W, Zhu J, Zhang J, Qin Q. Efficient Electrochemical-Enzymatic Conversion of PET to Formate Coupled with Nitrate Reduction Over Ru-Doped Co 3O 4 Catalysts. Angew Chem Int Ed Engl 2025; 64:e202421240. [PMID: 40103537 DOI: 10.1002/anie.202421240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/20/2025]
Abstract
Electrochemical reforming presents a sustainable route for the conversion of nitrate (NO3 -) and polyethylene terephthalate (PET) into value-added chemicals, such as ammonia (NH3) and formic acid (HCOOH). However, its widespread application has been constrained by low selectivity due to the complexity of reduction processes and thus energy scaling limitations. In this study, the atomically dispersed Ru sites in Co3O4 synergistically interact with Co centers, facilitating the adsorption and activation of hydroxyl radicals (OH*) and ethylene glycol (EG), resulting in a remarkable HCOOH selectivity of 99% and a yield rate of 11.2 mmol h-1 cm-2 surpassing that of pristine Co3O4 (55% and 3.8 mmol h-1 cm-2). Furthermore, when applied as a bifunctional cathode catalyst, Ru-Co3O4 achieves a remarkable Faradaic efficiency (FE) of 98.5% for NH3 production (3.54 mmol h-1 cm-2) at -0.3 V versus RHE. Additionally, we developed a prototype device powered by a commercial silicon photovoltaic cell, enabling on-site solar-driven production of formate and NH3 through enzyme-catalyzed PET and NO3 - conversion. This study offers a viable approach for waste valorization and green chemical production, paving the way for sustainable energy applications.
Collapse
Affiliation(s)
- Jiadi Jiang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Leting Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guanzheng Wu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Jianrui Zhang
- Shenzhen X-institute, Lanjing Middle Road, Shenzhen, 518000, China
| | - Yidong Yang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wenhui He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jun Zhu
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Jian Zhang
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany
| | - Qing Qin
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Xiao J, Zhang C, Yang L, Tang S, Tang W. Extraordinary synergy on 3D hierarchical porous Co-Cu nanocomposite for catalytic elimination of VOCs at low temperature and high space velocity. J Environ Sci (China) 2025; 151:714-732. [PMID: 39481976 DOI: 10.1016/j.jes.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 11/03/2024]
Abstract
It is still a challenge to develop hierarchically nanostructured catalysts with simple approaches to enhance the low-temperature catalytic activity. Herein, a set of mesoporous Co-Cu binary metal oxides with different morphologies were successfully prepared via a facile ammonium bicarbonate precipitation method without any templates or surfactants, which were further applied for catalytic removal of carcinogenic toluene. Among the catalysts with different ratios, the CoCu0.2 composite oxide presented the best performance, where the temperature required for 90% conversion of toluene was only 237°C at the high weight hour space velocity (WHSV) of 240,000 mL/(gcat·hr). Meanwhile, compared to the related Co-Cu composite oxides prepared by using different precipitants (NaOH and H2C2O4), the NH4HCO3-derived CoCu0.2 sample exhibited better catalytic efficiency in toluene oxidation, while the T90 were 22 and 28°C lower than those samples prepared by NaOH and H2C2O4 routes, respectively. Based on various characterizations, it could be deduced that the excellent performance was related to the small crystal size (6.7 nm), large specific surface area (77.0 m2/g), hollow hierarchical nanostructure with abundant high valence Co ions and adsorbed oxygen species. In situ DRIFTS further revealed that the possible reaction pathway for the toluene oxidation over CoCu0.2 catalyst followed the route of absorbed toluene → benzyl alcohol → benzaldehyde → benzoic acid → carbonate → CO2 and H2O. In addition, CoCu0.2 sample could keep stable with long-time operation and occur little inactivation under humid condition (5 vol.% water), which revealed that the NH4HCO3-derived CoCu0.2 nanocatalyst possessed great potential in industrial applications for VOCs abatement.
Collapse
Affiliation(s)
- Jinyan Xiao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Chi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Yang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shengwei Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenxiang Tang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Song X, Ke S, Ye Q, Kang W, Guan Q, Deng Z. Innovative Charge-Tuning for Highly Dispersed Pt Catalysts: Achieving Deep CO Removal in Industrial H 2 Purification for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52529-52538. [PMID: 39291640 DOI: 10.1021/acsami.4c12573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Proton exchange membrane fuel cells have strict requirements for the CO concentration in H2-rich fuel gas. Here, from the perspective of industrial practicability, a highly dispersed Pt catalyst (2-4 nm) supported on activated carbon (AC), which was modified by electronic promoters (K+) and structural promoters (isopropanol), is studied in detail. Compared with traditional metal oxide supports, the K-Pt/AC catalysts, which benefit from the tuned charge distribution, achieve a significant reduction of CO (from 1% to <0.1 ppb) under H2-rich conditions and show potential for used in large-scale industrial hydrogen purification. Experimental results and theoretical calculations reveal that the K atom, with its lower electronegativity, contributes to the shift of surface Pt2+ to a lower binding energy due to the presence of oxygen species on the AC surface. This facilitates oxygen activation and accelerates desorption of the CO2 product, thereby accelerating the reaction process and enabling the deep removal of CO in a hydrogen-rich atmosphere.
Collapse
Affiliation(s)
- Xiaoyun Song
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Shaojie Ke
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Qing Ye
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Wei Kang
- Beijing Institute of Smart Energy, Beijing 102209, China
| | - Qingxin Guan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Zhanfeng Deng
- Beijing Institute of Smart Energy, Beijing 102209, China
| |
Collapse
|
4
|
Li Q, Deng C, Zhou W, Huang P, Lu C, Feng H, Dong L, Tan L, Zhang YW, Zhou C, Qin Y, Xia D. Ultrathin La yCoO x Nanosheets with High Porosity Featuring Boosted Catalytic Oxidation of Benzene: Mechanism Elucidation via an Experiment-Theory Combined Paradigm. Inorg Chem 2024; 63:3974-3985. [PMID: 38346714 DOI: 10.1021/acs.inorgchem.3c04621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Designing transition-metal oxides for catalytically removing the highly toxic benzene holds significance in addressing indoor/outdoor environmental pollution issues. Herein, we successfully synthesized ultrathin LayCoOx nanosheets (thickness of ∼1.8 nm) with high porosity, using a straightforward coprecipitation method. Comprehensive characterization techniques were employed to analyze the synthesized LayCoOx catalysts, revealing their low crystallinity, high surface area, and abundant porosity. Catalytic benzene oxidation tests demonstrated that the La0.029CoOx-300 nanosheet exhibited the most optimal performance. This catalyst enabled complete benzene degradation at a relatively low temperature of 220 °C, even under a high space velocity (SV) of 20,000 h-1, and displayed remarkable durability throughout various catalytic assessments, including SV variations, exposure to water vapor, recycling, and long time-on-stream tests. Characterization analyses confirmed the enhanced interactions between Co and doped La, the presence of abundant adsorbed oxygen, and the extensive exposure of Co3+ species in La0.029CoOx-300 nanosheets. Theoretical calculations further revealed that La doping was beneficial for the formation of oxygen vacancies and the adsorption of more hydroxyl groups. These features strongly promoted the adsorption and activation of oxygen, thereby accelerating the benzene oxidation processes. This work underscores the advantages of doping rare-earth elements into transition-metal oxides as a cost-effective yet efficient strategy for purifying industrial exhausts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Peng Huang
- Henry Royce Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Haisong Feng
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yi Qin
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| | - Dong Xia
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K
| |
Collapse
|
5
|
Chfii H, Bouich A, Andrio A, Torres JC, Soucase BM, Palacios P, Lefdil MA, Compañ V. The Structural and Electrochemical Properties of CuCoO 2 Crystalline Nanopowders and Thin Films: Conductivity Experimental Analysis and Insights from Density Functional Theory Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2312. [PMID: 37630896 PMCID: PMC10459735 DOI: 10.3390/nano13162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.
Collapse
Affiliation(s)
- Hasnae Chfii
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
| | - Amal Bouich
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
| | - Andreu Andrio
- Departamento de Física, Universitat Jaume I, 12080 Castellón de la Plana, Spain;
| | - Joeluis Cerutti Torres
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
- Departamento Física Aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain
| | - Bernabé Mari Soucase
- Escuela Técnica Superior de Ingeniería del Diseño, Universitat Politècnica de València, 46022 València, Spain (B.M.S.)
| | - Pablo Palacios
- Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain (P.P.)
- Departamento Física Aplicada a las Ingenierías Aeronáutica y Naval, ETSI Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid, Spain
| | | | - Vicente Compañ
- Departamento de Termodinámica Aplicada, Universitat Politècnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
6
|
High-Performance Asymmetric Supercapacitor Based on Nickel-MOF Anchored MXene//NPC/rGO. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
Wang Y, Zhu YQ, Xie Z, Xu SM, Xu M, Li Z, Ma L, Ge R, Zhou H, Li Z, Kong X, Zheng L, Zhou J, Duan H. Efficient Electrocatalytic Oxidation of Glycerol via Promoted OH* Generation over Single-Atom-Bismuth-Doped Spinel Co 3O 4. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ye Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yu-Quan Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zhiheng Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Zezhou Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Lina Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing100091, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
8
|
Oxyfunctionalization of Benzylic C-H Bonds of Toluene Mediated by Covalently Anchored Co-Schiff Bases. Molecules 2022; 27:molecules27165302. [PMID: 36014538 PMCID: PMC9416660 DOI: 10.3390/molecules27165302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxyfunctionalization of toluene to value-added benzaldehyde, benzyl alcohol and benzoic acid is of great significance. In this work, Co-Schiff bases were immobilized on commercial silica gel by covalent anchoring, and resulting catalysts were used to catalyze the oxidation of toluene in the presence of the cocatalyst N-hydroxyphthalimide (NHPI). The catalysts exhibited excellent textural and structural properties, reliable bonding and a predomination of the cobaltous ions. The catalyst synthesized by diethylamino salicylaldehyde (EASA) possessed a grafting density of 0.14 mmol/g and exhibited a toluene conversion of 37.5%, with predominant selectivities to benzaldehyde, benzyl alcohol and benzoic acid under solvent-free conditions. It is concluded that the effect of ligands on their catalytic performance might be related to their electron-donating or -withdrawing properties.
Collapse
|
9
|
Zhang G, Fan G, Zheng L, Li F. Ga-Promoted CuCo-Based Catalysts for Efficient CO 2 Hydrogenation to Ethanol: The Key Synergistic Role of Cu-CoGaO x Interfacial Sites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35569-35580. [PMID: 35894691 DOI: 10.1021/acsami.2c07252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, direct catalytic CO2 hydrogenation to produce ethanol is an effective and feasible way for the resource utilization of CO2. However, constructing non-precious metal catalysts with satisfactory activity and desirable ethanol selectivity remains a huge challenge. Herein, we reported gallium-promoted CuCo-based catalysts derived from single-source Cu-Co-Ga-Al layered double hydroxide precursors. It was manifested that the introduction of Ga species could strengthen strong interactions between Cu and Co oxide species, thereby modifying their electronic structures and thus facilitating the formation of abundant metal-oxide interfaces (i.e., Cu0/Cu+-CoGaOx interfaces). Notably, the as-constructed Cu-CoGa catalyst with a Ga:Co molar ratio of 0.4 exhibited a high ethanol selectivity of 23.8% at a 17.8% conversion, along with a high space-time yield of 1.35 mmolEtOH·gcat-1·h-1 for ethanol under mild reaction conditions (i.e., 220 °C, 3 MPa pressure), which outperformed most non-noble metal-based catalysts previously reported. According to the comprehensive structural characterizations and in situ diffuse reflectance infrared Fourier transform spectra of CO2/CO adsorption and CO2 hydrogenation, it was unambiguously revealed that CHx could be formed at oxygen vacancies of defective CoGaOx species, while CO could be stabilized by Cu+ species, and thus the catalytic synergistic role of Cu0/Cu+-CoGaOx interfacial sites promoted the generation of CHx and CO intermediates to participate in the CHx-CO coupling process and simultaneously inhibited alkylation reactions. The present work points out a promising new strategy for constructing CuCo-based catalysts with favorable interfacial sites for highly efficient CO2 hydrogenation to produce ethanol.
Collapse
Affiliation(s)
- Guangcheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
10
|
Gao H, Liu X, Han N, Shi L, Wang L, Mi Y, Bao XQ, Bai J, Li H, Xiong D. Nanocrystals of CuCoO 2 derived from MOFs and their catalytic performance for the oxygen evolution reaction. Dalton Trans 2022; 51:11536-11546. [PMID: 35842940 DOI: 10.1039/d2dt01281b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, two different solvothermal synthesis routes were employed to prepare MOF-derived CuCoO2 (CCO) nanocrystals for electrocatalytic oxygen evolution reaction (OER) application. The effects of the reductants (ethylene glycol, methanol, ethanol, and isopropanol), NaOH addition, the reactants, and the reaction temperature on the structure and morphology of the reaction product were investigated. In the first route, Cu-BTC derived CCO (CCO1) nanocrystals with a size of ∼214 nm and a specific surface area of 4.93 m2 g-1 were prepared by using Cu-BTC and Co(NO3)2·6H2O as the Cu and Co source, respectively. In the second route, ZIF-67 derived CCO (CCO2) nanocrystals with a size of ∼146 nm and a specific surface area of 11.69 m2 g-1 were prepared by using ZIF-67 and Cu(NO3)2·3H2O as the Co and Cu source, respectively. Moreover, the OER performances of Ni foam supported CCO1 (Ni@CCO1) and CCO2 (Ni@CCO2) electrodes were evaluated in 1.0 M KOH solution. Ni@CCO2 demonstrates a better OER catalytic performance with a lower overpotential of 394.5 mV at 10 mA cm-2, a smaller Tafel slope of 82.6 mV dec-1, and long-term durability, which are superior to those of some previously reported delafossite oxide or perovskite oxide catalysts. This work reveals the preparation method and application potential of CCO electrocatalysts by using Cu-BTC/ZIF-67 as the precursor, providing a new approach for the preparation of delafossite oxide CCO and the enhancement of their OER performances.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xing Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Na Han
- State Key Laboratory of Advanced Technology for Float Glass, CNBM Research Institute for Advanced Glass Materials Group Co., Ltd., Bengbu 233000, P. R. China
| | - Lifen Shi
- State Key Laboratory of Advanced Technology for Float Glass, CNBM Research Institute for Advanced Glass Materials Group Co., Ltd., Bengbu 233000, P. R. China
| | - Liang Wang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Yue Mi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xiao-Qing Bao
- State Key Laboratory of Optical Technologies on Nanofabrication and Microengineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P. R. China
| | - Jilin Bai
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Hong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China. .,State Key Laboratory of Advanced Technology for Float Glass, CNBM Research Institute for Advanced Glass Materials Group Co., Ltd., Bengbu 233000, P. R. China
| |
Collapse
|
11
|
Ge K, Zhang Y, Zhao Y, Zhang Z, Wang S, Cao J, Yang Y, Sun S, Pan M, Zhu L. Room Temperature Preparation of Two-Dimensional Black Phosphorus@Metal Organic Framework Heterojunctions and Their Efficient Overall Water-Splitting Electrocatalytic Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31502-31509. [PMID: 35764924 DOI: 10.1021/acsami.2c09335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Black phosphorus/two-dimensional (2D) metal-organic framework (BP@MOF) heterojunctions were synthesized via templated growth of 2D MOF-Fe/Co nanoplatelets on the surface of exfoliated BP nanosheets at room temperature. Because Fe3+ and Co2+ ions were absorbed onto the BP surface through coordination with the lone pair electrons of 2D BP, the BP@MOF heterojunction had an intimate interface with strong interactions. Electrochemical oxygen and hydrogen evolution reactions were studied using BP@MOF as the electrocatalyst. High activity of the overall water splitting in 1.0 M KOH was observed under a current density of 10 mA cm-2. The corresponding overpotentials for HER and OER were as low as 180 and 246 mV, respectively. Meanwhile, the BP@MOF exhibited good environmental stability and long-term electrocatalytic activity for OER and HER, owing to the encapsulation of BP nanosheets by the 2D MOF-Fe/Co. Through this study, a unique hybrid 2D nanomaterial is discovered for the efficient electrolytic splitting of water.
Collapse
Affiliation(s)
- Kai Ge
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yue Zhang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yi Zhao
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Zhiheng Zhang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuang Wang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jiayu Cao
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shujuan Sun
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
12
|
Copper-Cobalt Oxides on FTO Substrate for Electrocatalytic and Pseudocapacitive Applications. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Liu X, Li G, Wu J, Zhang D, Li L. Fabrication of VO Nanorings on a Porous Carbon Architecture for High-Performance Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9454-9463. [PMID: 35142212 DOI: 10.1021/acsami.1c22915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vanadium monoxide (VO) is a promising candidate as an anode for lithium-ion batteries due to its high theoretical capacity, low cost, and considerable electronic conductivity. Unfortunately, a large volume change during electrochemical processes obstructs its practical application. In this work, a composite of VO nanorings grown on a porous carbon architecture is prepared via a topochemical self-reduction approach. When used as an anode for lithium-ion batteries, improved redox kinetics from enhanced electronic conduction and the corresponding fast lithium-ion diffusion is observed to greatly promote the electrochemical performance of lithium-ion batteries. The resulting composite delivered a reversible capacity of 336 mA h g-1 after 400 cycles at 10 A g-1 with a capacity retention of 85%, owing to the synergistic effect of VO nanorings and porous carbon in alleviating volume changes that result in a long-term cycling ability at a high current density. At 20 A g-1, the composite anode exhibited a rate capability of 235 mA h g-1, superior to all VO-based electrodes reported in the literature. Furthermore, a full cell was first fabricated by employing VO@C-2 as the anode and LiFePO4 as the cathode, which exhibited a capacity of 213 mA h g-1 after 100 cycles at 0.1 A g-1, indicating the potential of VO as an anode for practical application.
Collapse
Affiliation(s)
- Xiaoqing Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Dan Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, P. R. China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Luo L, Xiao X, Li Q, Wang S, Li Y, Hou J, Jiang B. Engineering of Single Atomic Cu-N 3 Active Sites for Efficient Singlet Oxygen Production in Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58596-58604. [PMID: 34860504 DOI: 10.1021/acsami.1c17782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalytic generation of singlet oxygen (1O2) is an attractive strategy to convert organic chemicals to high value-added products. However, the scarcity of suitable active sites in photocatalysts commonly leads to the poor adsorption and activation of oxygen molecules from a triplet state to a singlet state. Here, we report single atomic Cu-N3 sites on tubular g-C3N4 for the production of singlet oxygen. X-ray absorption fine spectroscopy, in combination with high-resolution electron microscopy techniques, determines the existence of atomically dispersed Cu sites with Cu-N3 coordination mode. The combined analysis of electron spin resonance and time-resolved optical spectra confirmed that a single atomic Cu-N3 structure facilitates a high concentration of 1O2 generation due to charge transport, electron-hole interaction, and exciton effect. Benefiting from the merits, a single atomic photocatalyst yields nearly 100% conversion and selectivity from thioanisole to sulfoxide within 2.5 h under visible light irradiation. This work deeply reveals the design and construction of catalysts with specific active sites, which are helpful to improve the activation efficiency of oxygen.
Collapse
Affiliation(s)
- Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Siyu Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
15
|
Wu L, Sun Z, Zhen Y, Zhu S, Yang C, Lu J, Tian Y, Zhong D, Ma J. Oxygen Vacancy-Induced Nonradical Degradation of Organics: Critical Trigger of Oxygen (O 2) in the Fe-Co LDH/Peroxymonosulfate System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15400-15411. [PMID: 34738465 DOI: 10.1021/acs.est.1c04600] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ubiquitous oxygen vacancies (Vo) existing in metallic compounds can activate peroxymonosulfate (PMS) for water treatment. However, under environmental conditions, especially oxygenated surroundings, the interactions between Vo and PMS as well as the organics degradation mechanism are still ambiguous. In this study, we provide a novel insight into the PMS activation mechanism over Vo-containing Fe-Co layered double hydroxide (LDH). Experimental results show that Vo/PMS is capable of selective degradation of organics via a single-electron-transfer nonradical pathway. Moreover, O2 is firstly demonstrated as the most critical trigger in this system. Mechanistic studies reveal that, with abundant electrons confined in the vacant electron orbitals of Vo, O2 is thermodynamically enabled to capture electrons from Vo to form O2•- under the imprinting effect and start the activation process. Simultaneously, Vo becomes electron-deficient and withdraws the electrons from organics to sustain the electrostatic balance and achieve organics degradation (32% for Bisphenol A without PMS). Different from conventional PMS activation, under the collaboration of kinetics and thermodynamics, PMS is endowed with the ability to donate electrons to Vo as a reductant other than an oxidant to form 1O2. In this case, 1O2 and O2•- act as the indispensable intermediate species to accelerate the circulation of O2 (as high as 14.3 mg/L) in the micro area around Vo, and promote this nano-confinement electron-recycling process with 67% improvement of Bisphenol A degradation. This study provides a brand-new perspective for the nonradical mechanism of PMS activation over Vo-containing metallic compounds in natural environments.
Collapse
Affiliation(s)
- Liying Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Yufei Zhen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chen Yang
- State key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Jing Lu
- State key Laboratory of Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, P. R. China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
16
|
Liu Z, Wang Q, Wu J, Zhang H, Liu Y, Zhang T, Tian H, Zeng S. Active Sites and Interfacial Reducibility of Cu xO/CeO 2 Catalysts Induced by Reducing Media and O 2/H 2 Activation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35804-35817. [PMID: 34313106 DOI: 10.1021/acsami.1c09332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of a highly efficient and stable catalyst for preferential oxidation of CO for the commercialization of proton-exchange membrane fuel cells has been a result of continuous effort. The main challenge is the simultaneous control of abundant active sites and interfacial reducibility over the catalyst CuxO/CeO2. Here, we report a strategy to modulate porosity, active sites, and O-vacancy sites (OV) by reducing media and O2/H2 activation. O2-pretreated CeO2-supported Cu catalysts unequivocally demonstrate the low-temperature activity owing to the excess concentrations of Cu+ and Cu2+ as well as the relative population of Ce3+ and O-vacancy sites at the surface. O2 activation improves the Cu2+ diffusion into the CeO2 lattice to generate the synergistic effect and induces the formation of electron-enriched Cu2+-OV-Ce3+ sites, which accelerate the activation and dissociation of CO/O2 and the formation of reactive oxygen species during catalysis. Density function theory (DFT) calculations reveal that CO adsorbs on Cu2O {110} and CuO {111} with relatively optimal adsorption energy and longer C-Cu lengths in contrast to that on Cu {111}, favoring the adsorption and desorption of CO. These are crucial for ongoing CO oxidation, producing CO2 by the Mars-van Krevelen mechanism.
Collapse
Affiliation(s)
- Ze Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Qi Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jinfang Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Heng Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Tiantian Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Haoyuan Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| | - Shanghong Zeng
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China
| |
Collapse
|
17
|
Ge K, Sun S, Zhao Y, Yang K, Wang S, Zhang Z, Cao J, Yang Y, Zhang Y, Pan M, Zhu L. Facile Synthesis of Two-Dimensional Iron/Cobalt Metal-Organic Framework for Efficient Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2021; 60:12097-12102. [PMID: 33709569 DOI: 10.1002/anie.202102632] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Indexed: 11/09/2022]
Abstract
A facile synthesis is reported of two-dimensional (2D) bimetallic (Fe/Co=1:2) metal-organic frameworks (MOF, ca. 2.2 nm thick) via simple stirring of the reaction mixture of Fe/Co salts and 1,4-benzene dicarboxylic acid (1,4-BDC) in the presence of triethylamine and water at room temperature. The mechanism of the 2D, rather than bulk, MOF was revealed by studying the role of each component in the reaction mixture. It was found that these 2D MOF-Fe/Co(1:2) exhibited excellent electrocatalytic activity for the oxygen evolution reaction (OER) under basic conditions. The electrocatalytic mechanism was disclosed via both experimental results and density functional theory (DFT) calculation. The 2D morphology and co-doping of Fe/Co contributed to the superior OER performance of the 2D MOF-Fe/Co(1:2). The simple and efficient synthetic method is suitable for the mass production and future commercialization of functional 2D MOF with low cost and high yield.
Collapse
Affiliation(s)
- Kai Ge
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shujuan Sun
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yi Zhao
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Kai Yang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shuang Wang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Zhiheng Zhang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiayu Cao
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Yue Zhang
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, 44106-7202, USA
| |
Collapse
|
18
|
Ge K, Sun S, Zhao Y, Yang K, Wang S, Zhang Z, Cao J, Yang Y, Zhang Y, Pan M, Zhu L. Facile Synthesis of Two‐Dimensional Iron/Cobalt Metal–Organic Framework for Efficient Oxygen Evolution Electrocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kai Ge
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Shujuan Sun
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yi Zhao
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Kai Yang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Shuang Wang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Zhiheng Zhang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiayu Cao
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yongfang Yang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Yue Zhang
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering Hebei Key Laboratory of Functional Polymers Hebei University of Technology Tianjin 300130 P. R. China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland OH 44106-7202 USA
| |
Collapse
|
19
|
Yang M, Li G, Li H, Ding J, Wang Y, Li L. Growth kinetic control over MgFe 2O 4 to tune Fe occupancy and metal–support interactions for optimum catalytic performance. CrystEngComm 2021. [DOI: 10.1039/d1ce00006c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, the growth behavior with size-dependent Fe occupancies at different sites of MgFe2O4 was examined. Hybrid catalysts of Pt/MgFe2O4 with a support size of 20.6 nm exhibited an optimal performance of CO oxidation.
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Junfang Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- PR China
| |
Collapse
|
20
|
Malwadkar S, Bera P, Satyanarayana C. Influence of cobalt on performance of Cu–CeO2 catalysts for preferential oxidation of CO. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Ding J, Li L, Wang Y, Li H, Yang M, Li G. Topological transformation of LDH nanosheets to highly dispersed PtNiFe nanoalloys enhancing CO oxidation performance. NANOSCALE 2020; 12:14882-14894. [PMID: 32638777 DOI: 10.1039/d0nr02272a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly dispersed nanoalloys with a tailored metal-oxide interface are pivotal in developing advanced catalysts with superior performance for applications. Herein, a series of highly dispersed Pt/NiFeAl nanoalloys on amorphous supports were successfully fabricated by a topological transformation of layered-double-hydroxide nanosheets. With increasing reduction temperature, samples Pt/NiFeAl-x (x = reduction temperature) showed a progressive transformation from Pt/NiFeAl-LDH to a mixture (Pt, NiFe alloys, FeOy, and NiOy) supported on amorphous Al2O3, which eventually transformed to atomically dispersed PtNiFe alloys supported on amorphous Al2O3. Systematic sample characterization demonstrates that amorphous alumina-supported PtNiFe nanoalloys are merited by excellent redox ability, outstanding O2 activation ability, and moderate CO adsorption strength. When tested as catalysts for CO oxidation, all samples have demonstrated an apparent interfacial effect on catalytic performance, among which Pt/NiFeAl-600 shows a strikingly high CO oxidation activity at low-temperatures coupled with a broader operation temperature window (i.e. CO conversion >99.0%, 100-400 °C). Such a topological transformation strategy has proven applicable for generating atomically dispersed nanoalloys on amorphous supports for catalytic applications.
Collapse
Affiliation(s)
- Junfang Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Ye Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Huixia Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Min Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
22
|
Zhang R, Esposito AM, Thornburg ES, Chen X, Zhang X, Philip MA, Magana A, Gewirth AA. Conversion of Co Nanoparticles to CoS in Metal-Organic Framework-Derived Porous Carbon during Cycling Facilitates Na 2S Reactivity in a Na-S Battery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29285-29295. [PMID: 32490653 DOI: 10.1021/acsami.0c05370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Room-temperature sodium-sulfur batteries have attracted wide interest due to their high energy density and high natural abundance. Polysulfide dissolution and irreversible Na2S conversion are challenges to achieving high battery performance. Herein, we utilize a metal-organic framework-derived Co-containing nitrogen-doped porous carbon (CoNC) as a catalytic sulfur cathode host. A concentrated sodium electrolyte based on sodium bis(fluorosulfonyl)imide, dimethoxyethane, and bis(2,2,2-trifluoroethyl) ether is used to mitigate polysulfide dissolution. We tune the amount of Co present in the CoNC carbon host by acid washing. Significant improvement in reversible sulfur conversion and capacity retention is observed with a higher Co content in CoNC, with 600 mAh g-1 and 77% capacity retention for CoNC and 261 mAh g-1 and 56% capacity retention for acid-washed CoNC at cycle 50 at 80 mAh g-1. Post-mortem X-ray photoelectron spectroscopy, transmission electron microscopy, and selected area electron diffraction suggest that CoS is formed during cycling in place of Co nanoparticles and CoN4 sites. Raman spectroscopy suggests that CoS exhibits a catalytic effect on the oxidation of Na2S. Our findings provide insights into understanding the role Co-based catalysts play in sulfur batteries.
Collapse
Affiliation(s)
- Ruixian Zhang
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Anne Marie Esposito
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Eric S Thornburg
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Xinyi Chen
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Xueyong Zhang
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Maria A Philip
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Alexis Magana
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Andrew A Gewirth
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
23
|
Zhao F, Zhan G, Zhou SF. Intercalation of laminar Cu-Al LDHs with molecular TCPP(M) (M = Zn, Co, Ni, and Fe) towards high-performance CO 2 hydrogenation catalysts. NANOSCALE 2020; 12:13145-13156. [PMID: 32584354 DOI: 10.1039/d0nr01916j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A confined space is broadly applied to enhance the dispersion and limit the aggregation of catalytically active sites, especially at high temperatures. In this work, we provided an efficient approach to immobilize transition metal ions (e.g., Zn2+, Co2+, Ni2+, and Fe2+) into the confined space of laminar Cu-Al layered double hydroxides (LDHs) using a range of molecular metalloporphyrins (viz., TCPP(M)) as shuttles. The deprotonated TCPP(M) not only provides nitrogen-based coordination sites to anchor a series of transition metal ions, but also intercalates and diffuses facilely into the interlayer gallery of LDHs by ion exchange. The obtained TCPP(M)@Cu-Al LDHs were then used as solid precursors for the fabrication of a series of heterogeneous catalysts for CO2 hydrogenation via high-temperature calcination. Two restriction forces contributed to the enhanced dispersion of the active species over the catalyst surface structures. Remarkably, the transition metals positioned within the confined space of LDHs significantly affected the catalytic performance of CO2 hydrogenation. Mainly CO, methanol, and methane were found as the C1 products, and their selectivities are highly dependent on the reaction intermediates, as suggested by the in situ DRIFTS study. Moreover, the designed catalysts fabricated via molecular TCPP(M) intercalation exhibited much better performance than the conventional catalysts derived from surface-supported CA-LDHs, due to their better metal dispersion and smaller particle size.
Collapse
Affiliation(s)
- Feigang Zhao
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| | - Shu-Feng Zhou
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China.
| |
Collapse
|
24
|
Jing P, Gong X, Liu B, Zhang J. Recent advances in synergistic effect promoted catalysts for preferential oxidation of carbon monoxide. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02073j] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We reviewed recent advances in catalysts for PROX with emphasis on synergistic effects that contribute to enhanced catalytic performance.
Collapse
Affiliation(s)
- Peng Jing
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Xia Gong
- School of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P.R. China
| | - Baocang Liu
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| | - Jun Zhang
- School of Chemistry and Chemical Engineering & Inner Mongolia Engineering and Technology Research Center for Catalytic Conversion and Utilization of Carbon Resource Molecules
- Inner Mongolia University
- Hohhot 010021
- P. R. China
| |
Collapse
|
25
|
Su K, Liu H, Zeng B, Zhang Z, Luo N, Huang Z, Gao Z, Wang F. Visible-Light-Driven Selective Oxidation of Toluene into Benzaldehyde over Nitrogen-Modified Nb2O5 Nanomeshes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04215] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Kaiyi Su
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Bin Zeng
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| | - Nengchao Luo
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhipeng Huang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuyan Gao
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
26
|
Ni/NiO Nanocomposites with Rich Oxygen Vacancies as High-Performance Catalysts for Nitrophenol Hydrogenation. Catalysts 2019. [DOI: 10.3390/catal9110944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Heterogeneous catalysis often involves charge transfer between adsorbed molecules and the surface of catalyst, and thus their activity depends on the surface charge density. The efficiency of charge transfer could be optimized by adjusting the concentration of oxygen vacancies (Ov). In this work, hexagonal Ni(OH)2 nanoparticles were initially synthesized by a hydrothermal process using aluminum powder as the sacrificial agent, and were then converted into 2D Ni/NiO nanocomposites through in situ reduction in hydrogen flow. The oxygen vacancy concentration in the NiO nanosheet could be well-controlled by adjusting the reduction temperature. This resulted in strikingly high activities for hydrogenation of nitrophenol. The Ni/NiO nanocomposite could easily be recovered by a magnetic field for reuse. The present finding is beneficial for producing better hydrogenation catalysts and paves the way for the design of highly efficient catalysts.
Collapse
|
27
|
Li W, Wang K, Huang J, Liu X, Fu D, Huang J, Li Q, Zhan G. M xO y-ZrO 2 (M = Zn, Co, Cu) Solid Solutions Derived from Schiff Base-Bridged UiO-66 Composites as High-Performance Catalysts for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33263-33272. [PMID: 31429544 DOI: 10.1021/acsami.9b11547] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks have been exploited as excellent solid precursors and templates for the preparation integrated nanocatalysts with multicomponent and hierarchical structures. Herein, a novel synthetic protocol has been developed to fabricate versatile Zr-based solid solutions (such as ZnO-ZrO2, Co3O4-ZrO2, and CuO-ZrO2) via pyrolysis of Schiff base-modified UiO-66 octahedrons (size <100 nm), which were then utilized as efficient catalysts for CO2 hydrogenation. The Schiff base serves as an effective bridge to dope secondary metal ions into UiO-66 frameworks with controlled amounts of 0.13-8.8 wt %, which are initially hard to achieve. Interestingly, by simply changing the loading metal ions, the selectivity of C1 hydrogenation products can be facilely tuned. For instance, the maximum CO2 conversion of ZnO-ZrO2, Co3O4-ZrO2, and CuO-ZrO2 solid solutions were 5.8, 11.4, and 22.5%, with the main product selectivity of 70% CH3OH, 92.5% CH4, and 86.7% CO, respectively. Moreover, in situ diffuse reflectance infrared Fourier transform spectra characterization reveals that the significant difference in C1 product selectivity is mainly determined by the balance of *HCOO, *CH3O, and *CO intermediate species over the Zr-based solid solutions.
Collapse
Affiliation(s)
- Wen Li
- Department of Ecological Engineering for Environmental Sustainability, College of the Environment and Ecology , Xiamen University , Xiamen 361102 , P. R. China
| | - Kuncan Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , P. R. China
| | - Junjie Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , P. R. China
| | - Xiao Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , P. R. China
| | - Dun Fu
- Department of Ecological Engineering for Environmental Sustainability, College of the Environment and Ecology , Xiamen University , Xiamen 361102 , P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, National Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Key Lab for Chemical Biology of Fujian Province , Xiamen University , Xiamen 361005 , P. R. China
- College of Food and Biology Engineering , Jimei University , Xiamen , Fujian 361021 , P. R. China
| | - Guowu Zhan
- College of Chemical Engineering , Huaqiao University , Xiamen 361021 , P. R. China
| |
Collapse
|