1
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
2
|
Wu CA, Zhu Y, Woo YJ. Advances in 3D Bioprinting: Techniques, Applications, and Future Directions for Cardiac Tissue Engineering. Bioengineering (Basel) 2023; 10:842. [PMID: 37508869 PMCID: PMC10376421 DOI: 10.3390/bioengineering10070842] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality in the United States. Cardiac tissue engineering is a direction in regenerative medicine that aims to repair various heart defects with the long-term goal of artificially rebuilding a full-scale organ that matches its native structure and function. Three-dimensional (3D) bioprinting offers promising applications through its layer-by-layer biomaterial deposition using different techniques and bio-inks. In this review, we will introduce cardiac tissue engineering, 3D bioprinting processes, bioprinting techniques, bio-ink materials, areas of limitation, and the latest applications of this technology, alongside its future directions for further innovation.
Collapse
Affiliation(s)
- Catherine A Wu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Chetty S, Yarani R, Swaminathan G, Primavera R, Regmi S, Rai S, Zhong J, Ganguly A, Thakor AS. Umbilical cord mesenchymal stromal cells-from bench to bedside. Front Cell Dev Biol 2022; 10:1006295. [PMID: 36313578 PMCID: PMC9597686 DOI: 10.3389/fcell.2022.1006295] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.
Collapse
Affiliation(s)
- Shashank Chetty
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Reza Yarani
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Ganesh Swaminathan
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Rosita Primavera
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Shobha Regmi
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Sravanthi Rai
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Jim Zhong
- Department of Diagnostic and Interventional Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Abantika Ganguly
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| | - Avnesh S Thakor
- Interventional Radiology Innovation at Stanford (IRIS), Stanford University, Department of Radiology, Palo Alto, CA, United States
| |
Collapse
|
4
|
Liang Y, Yang C, Ye F, Cheng Z, Li W, Hu Y, Hu J, Zou L, Jiang H. Repair of the Urethral Mucosa Defect Model Using Adipose-Derived Stem Cell Sheets and Monitoring the Fate of Indocyanine Green-Labeled Sheets by Near Infrared-II. ACS Biomater Sci Eng 2022; 8:4909-4920. [PMID: 36201040 DOI: 10.1021/acsbiomaterials.2c00695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of urethral mucosa defects is a major challenge in urology. Synthetic materials or autologous mucosa does not provide satisfactory treatment options for long-term or large urethral mucosa defects. In response to this problem, we used autologous adipose-derived stem cells (ADSCs) to synthesize cell sheets in vitro for repairing urethral mucosa defect models. In order to monitor the localization and distribution of cell sheets in vivo, cells and sheets were labeled with indocyanine green (ICG) and the second near-infrared (NIR-II) fluorescence imaging was performed. ICG-based NIR-II imaging can successfully track ADSCs and sheets in vivo up to 8 W. Then, rabbit urethral mucosa defect models were repaired with ICG-ADSCs sheets. At 3 months after operation, retrograde urethrography showed that ADSC sheets could effectively repair urethral mucosa defect and restore urethral patency. Histological analysis showed that in ADSC sheet groups, continuous epithelial cells covered the urethra at the transplantation site, and a large number of vascular endothelial cells could also be seen. In the cell-free sheet group, there was no continuous epithelial cell coverage at the repair site of the urethra, and the expression of pro-inflammatory factor TNF-α was increased. It shows that the extracellular matrix alone without cells is not suitable for repairing urethral defects. Surviving ADSCs in the sheets may play a key role in the repair process. This study provides a new tracing method for tissue engineering to dynamically track grafts using an NIR-II imaging system. The ADSC sheets can effectively restore the structure and function of the urethra. It provides a new option for the repair of urethral mucosa defects.
Collapse
Affiliation(s)
- Yingchun Liang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Zhang Cheng
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Yun Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Jimeng Hu
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Lujia Zou
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, No. 12 WuLuMuQi Middle Road, 200040 Shanghai, China.,Fudan Institute of Urology, Huashan Hospital, Fudan University, 200040 Shanghai, China.,National Clinical Research Center for Aging and Medicine, Fudan University, 200040 Shanghai, China
| |
Collapse
|
5
|
Luo M, Yukawa H, Baba Y. Micro-/nano-fluidic devices and in vivo fluorescence imaging based on quantum dots for cytologic diagnosis. LAB ON A CHIP 2022; 22:2223-2236. [PMID: 35583091 DOI: 10.1039/d2lc00113f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semiconductor quantum dots (QDs) possess attractive merits over traditional organic dyes, such as tunable emission, narrow emission spectra and good resistance against optical bleaching, and play a vital role in biosensing and bioimaging for cytologic diagnoses. Microfluidic technology is a potentially useful strategy, as it provides a rapid platform for tracing of disease markers. In vivo fluorescence imaging (FI) based on QDs has become popular for the analysis of complex biological processes. We herein report the applications of multifunctional fluorescent QDs as sensitive probes for diagnoses on cancer medicine and stem cell therapy via microfluidic chips and in vivo imaging.
Collapse
Affiliation(s)
- Minchuan Luo
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Hiroshi Yukawa
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
- Development of Quantum-nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Nanobio Analytical Chemistry, Biomolecular Chemistry, Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Abo-Aziza FAM, Zaki AKA, Adel RM, Fotouh A. Amelioration of aflatoxin acute hepatitis rat model by bone marrow mesenchymal stem cells and their hepatogenic differentiation. Vet World 2022; 15:1347-1364. [PMID: 35765490 PMCID: PMC9210847 DOI: 10.14202/vetworld.2022.1347-1364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation and their hepatogenic differentiated cells (HDCs) can be applied for liver injury repair by tissue grafting. Regenerative potentiality in liver cirrhosis models was widely investigated; however, immunomodulation and anti-inflammation in acute hepatitis remain unexplored. This study aimed to explore the immunomodulatory and evaluate twice intravenous (IV) or intrahepatic (IH) administration of either BM-MSCs or middle-stage HDCs on aflatoxin (AF) acute hepatitis rat model. Materials and Methods: BM-MSCs viability, phenotypes, and proliferation were evaluated. Hepatogenic differentiation, albumin, and mmmmmmmm-fetoprotein gene expression were assessed. AF acute hepatitis was induced in rats using AFB1 supplementation. The transplantation of BM-MSCs or their HDCs was done either by IV or IH route. Hepatic ultrasound was performed after 3-weeks of therapy. Cytokines profile (tumor necrosis factor-α [TNF-α], interleukin [IL]-4, and IL-10) was assessed. Hepatic bio-indices, serum, and hepatic antioxidant activity were evaluated, besides examining liver histological sections. Results: Acute AFB1 showed a significant increase in TNF-α (p<0.01), liver enzyme activities (p<0.05), as well as decrease in IL-4, IL-10, and antioxidant enzyme activities (p<0.05). Cytokines profile was ameliorated in groups treated with IV and IH BM-MCs, showed a negative correlation between IL-4 and TNF-α (p<0.05), and a positive correlation between IL-10 upregulation and TNF-α (p<0.01). In IV HDCs treated group, positive correlations between IL-4 and IL-10 downregulation and TNF-α were observed. However, in IH HDCs group, a significant positive correlation between IL-4 and IL-10 upregulation and TNF-α, were recorded (p<0.05). In addition, IV BM-MSCs and IH HDCs treatments significantly increased antioxidant enzymes activity (p<0.05). IV and IH BM-MSCs significantly ameliorated liver transaminase levels, whereas IH HDCs significantly ameliorated alanine aminotransferase activity and nitric oxide concentration (p<0.05). Conclusion: The administration routes of BM-MSCs did not demonstrate any significant difference; however, the IH route of HDCs showed significant amelioration from the IV route. On the other hand, it showed noticeable anti-inflammatory and immunomodulatory improvements in aflatoxicosis rats. Therefore, it can be concluded that acute hepatitis can be treated by a noninvasive IV route without the expense of hepatogenic differentiation. Further research using clinical trials that address several problems regarding engraftment and potentiation are needed to determine the optimal manipulation strategy as well as to achieve better long term effects.
Collapse
Affiliation(s)
- Faten A. M. Abo-Aziza
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Abdel Kader A. Zaki
- Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt; Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rana M. Adel
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Fotouh
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, Egypt
| |
Collapse
|
7
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
8
|
Wang L, Zhang Y, Zhong J, Zhang Y, Zhou S, Xu C. Mesenchymal Stem Cell Therapy for Acetaminophen-Related Liver Injury: A Systematic Review and Meta-Analysis of Experimental Studies in Vivo. Curr Stem Cell Res Ther 2021; 17:825-838. [PMID: 34620060 DOI: 10.2174/1574888x16666211007092055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVE The efficacy of mesenchymal stem cell (MSC) therapy in acetaminophen-induced liver injury has been investigated in animal experiments, but individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis of preclinical studies to explore the potential of using MSCs in acetaminophen-induced liver injury. METHODS Eight databases were searched for studies reporting the effects of MSCs on acetaminophen hepatoxicity. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were used. SYRCLE's risk of bias tool for animal studies was applied to assess the methodological quality. A meta-analysis was performed by using RevMan 5.4 and STATA/SE 16.0 software. RESULTS Eleven studies involving 159 animals were included according to PRISMA statement guidelines. Significant associations were found for MSCs with the levels of alanine transaminase (ALT) (standardized mean difference (SMD) - 2.58, p < 0.0001), aspartate aminotransferase (AST) (SMD - 1.75, p = 0.001), glutathione (GSH) (SMD 3.7, p < 0.0001), superoxide dismutase (SOD) (SMD 1.86, p = 0.022), interleukin 10 (IL-10) (SMD 5.14, p = 0.0002) and tumor necrosis factor-α (TNF-α) (SMD - 4.48, p = 0.011) compared with those in the control group. The subgroup analysis showed that the tissue source of MSCs significantly affected the therapeutic efficacy (p < 0.05). CONCLUSION Our meta-analysis results demonstrate that MSCs could be a potential treatment for acetaminophen-related liver injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Yiwen Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Jiajun Zhong
- Clinical Research Institute, The First Affiliated Hospital of Jinan University, Guangzhou. China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Shuisheng Zhou
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou. China
| |
Collapse
|
9
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
10
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Yu C, Bao H, Chen Z, Li X, Liu X, Wang W, Huang J, Zhang Z. Enhanced and long-term CT imaging tracking of transplanted stem cells labeled with temperature-responsive gold nanoparticles. J Mater Chem B 2021; 9:2854-2865. [PMID: 33711088 DOI: 10.1039/d0tb02997a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gold nanoparticles (AuNPs) have been extensively employed for computed tomography (CT) imaging in cell labeling and tracking because of their strong X-ray attenuation coefficient and excellent biocompatibility. However, the design and synthesis of stimuli-responsive AuNPs to modulate their endocytosis and exocytosis for optimal cell labeling and tracking are promising but challenging. Herein, we report an innovative labeling strategy based on temperature-responsive AuNPs (TRAuNPs) with high cell labeling efficiency and extended intracellular retention duration. We have manifested that the TRAuNP labeling imposes a negligible adverse effect on the function of human mesenchymal stem cells (hMSCs). Further experiment with idiopathic pulmonary fibrosis (IPF) model mice has demonstrated the feasibility of TRAuNP labeling for long time CT imaging tracking of transplanted hMSCs. What's more, the survival of transplanted hMSCs could also be monitored simultaneously using bioluminescence imaging after the expression of luciferase reporter genes. Therefore, we believe that this dual-modal labeling and tracking strategy enables visualization of the transplanted hMSCs in vivo, which may provide an important insight into the role of stem cells in the IPF therapy.
Collapse
Affiliation(s)
- Chenggong Yu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang J, Mohsin A, Peng Y, Dai Y, Zhuang Y, Guo M, Zhao P. Sandwich-Type Near-Infrared Conjugated Polymer Nanoparticles for Revealing the Fate of Transplanted Human Umbilical Cord Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3512-3520. [PMID: 33435676 DOI: 10.1021/acsami.0c13815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-infrared conjugated polymer nanoparticles (NIR-CPNs) have been widely used in in vivo imaging fields. However, most of them face the aggregation-induced fluorescence quenching (ACQ) dilemma and serious dye leakage behavior, which impedes the long-term monitoring of transplanted cells in vivo. In the present work, a novel strategy of sandwich-type encapsulation of the conjugated polymer interlayer in the crystalline SiO2 core + shell (SSiO2@SPFTBT@CSiO2) is developed, which works well to avoid the ACQ problem by homogeneously dispersing poly((9,9-dioctylfluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5',5″-diyl) (PFTBT) and suppressing intermolecular π-π stacking. Furthermore, the unparalleled nanostructure efficiently stabilizes nanoparticles and successfully achieves long-term biocompatibility without interfering the biological characteristics of stem cells, indicating the potential of SSiO2@SPFTBT@CSiO2 in cell labeling. In addition, the fate of human umbilical cord mesenchymal stem cells (hucMSCs) in a mouse model with acute liver injury was disclosed. We found that the hucMSCs mainly migrated from the lungs to the injured liver and most transplanted hucMSCs were cleared up by the liver at 8 days post-injection. Revelation of the shuttle process and period will benefit in improving the clinical efficacy of hucMSCs, and the sandwich-type encapsulation strategy could also open a new avenue to obtain bright and robust NIR-CPNs for long-term fluorescence imaging.
Collapse
Affiliation(s)
- Junhong Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yan Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yichen Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
13
|
Chen H, Yang H, Zhang C, Chen S, Zhao X, Zhu M, Wang Z, Wang Y, Wo HT, Li K, Cheng Z. Differential Responses of Transplanted Stem Cells to Diseased Environment Unveiled by a Molecular NIR-II Cell Tracker. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9798580. [PMID: 34250496 PMCID: PMC8237598 DOI: 10.34133/2021/9798580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/08/2021] [Indexed: 01/15/2023]
Abstract
Stem cell therapy holds high promises in regenerative medicine. The major challenge of clinical translation is to precisely and quantitatively evaluate the in vivo cell distribution, migration, and engraftment, which cannot be easily achieved by current techniques. To address this issue, for the first time, we have developed a molecular cell tracker with a strong fluorescence signal in the second near-infrared (NIR-II) window (1,000-1,700 nm) for real-time monitoring of in vivo cell behaviors in both healthy and diseased animal models. The NIR-II tracker (CelTrac1000) has shown complete cell labeling with low cytotoxicity and profound long-term tracking ability for 30 days in high spatiotemporal resolution for semiquantification of the biodistribution of transplanted stem cells. Taking advantage of the unique merits of CelTrac1000, the responses of transplanted stem cells to different diseased environments have been discriminated and unveiled. Furthermore, we also demonstrate CelTrac1000 as a universal and effective technique for ultrafast real-time tracking of the cellular migration and distribution in a 100 μm single-cell cluster spatial resolution, along with the lung contraction and heart beating. As such, this NIR-II tracker will shift the optical cell tracking into a single-cell cluster and millisecond temporal resolution for better evaluating and understanding stem cell therapy, affording optimal doses and efficacy.
Collapse
Affiliation(s)
- Hao Chen
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5344, USA
| | - Huaxiao Yang
- University of North Texas, Biomedical Engineering, Denton, TX 76207, USA
| | - Chen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Si Chen
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5344, USA
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha, Hunan 410008, China
| | - Xin Zhao
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
| | - Mark Zhu
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5344, USA
| | - Zhiming Wang
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuebing Wang
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5344, USA
| | - Hung-Ta Wo
- Stanford Cardiovascular Institute, Stanford, CA 94305, USA
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan, 33305, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Cheng
- Center for Molecular Imaging Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Molecular Imaging Program at Stanford (MIPS), Bio-X Program, and Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA 94305-5344, USA
| |
Collapse
|
14
|
Cai W, Sun J, Sun Y, Zhao X, Guo C, Dong J, Peng X, Zhang R. NIR-II FL/PA dual-modal imaging long-term tracking of human umbilical cord-derived mesenchymal stem cells labeled with melanin nanoparticles and visible HUMSC-based liver regeneration for acute liver failure. Biomater Sci 2020; 8:6592-6602. [PMID: 33231594 DOI: 10.1039/d0bm01221a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acetaminophen (APAP) has been widely used for relieving pain and fever, whilst overdose would lead to the occurrence of acute liver failure (ALF). Currently, few effective treatments are available for ALF in clinic, especially for severe, advanced- or end-stage patients who need liver transplantation. Human umbilical cord-derived mesenchymal stem cells (hUMSCs), as one of the mesenchymal stem cells, not only contribute to relieving hepatotoxicity and promoting hepatocyte regeneration due to their self-renewing, multi-differentiation potential, anti-inflammatory, immunomodulatory and paracrine properties, but possess lower immunomodulatory effects, faster self-renewal properties and noncontroversial ethical concerns, which may play a better role in the treatment of ALF. In this work, hUMSCs were rapidly labeled with near-infrared II fluorescent dye-modified melanin nanoparticles (MNP-PEG-H2), which could realize long-term tracking of hUMSCs by NIR-II fluorescent (FL)/photoacoustic (PA) dual-modal imaging and could visualize hUMSC-based liver regeneration in ALF. The nanoparticles exhibited good dispersibility and biocompatibility, high labeling efficiency for hUMSCs and excellent NIR-II FL/PA imaging performance. Moreover, the MNP-PEG-H2 labeled hUMSCs could be continuously traced in vivo for up to 21 days. After intravenous delivery, the NIR-II FL and PA images revealed that labeled hUMSCs were able to engraft in the injured liver and repair damaged tissue in ALF mice. Therefore, the hUMSCs labeled with endogenous melanin nanoparticles solve the key tracing problem of MSC-based regenerative medicine and realize the visualization of the treatment process, which may provide an efficient, safe and potential choice for ALF.
Collapse
Affiliation(s)
- Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Michalik M, Gładyś A, Czekaj P. Differentiation of Cells Isolated from Afterbirth Tissues into Hepatocyte-Like Cells and Their Potential Clinical Application in Liver Regeneration. Stem Cell Rev Rep 2020; 17:581-603. [PMID: 32974851 PMCID: PMC8036182 DOI: 10.1007/s12015-020-10045-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Toxic, viral and surgical injuries can pose medical indications for liver transplantation. The number of patients waiting for a liver transplant still increases, but the number of organ donors is insufficient. Hepatocyte transplantation was suggested as a promising alternative to liver transplantation, however, this method has some significant limitations. Currently, afterbirth tissues seem to be an interesting source of cells for the regenerative medicine, because of their unique biological and immunological properties. It has been proven in experimental animal models, that the native stem cells, and to a greater extent, hepatocyte-like cells derived from them and transplanted, can accelerate regenerative processes and restore organ functioning. The effective protocol for obtaining functional mature hepatocytes in vitro is still not defined, but some studies resulted in obtaining functionally active hepatocyte-like cells. In this review, we focused on human stem cells isolated from placenta and umbilical cord, as potent precursors of hepatocyte-like cells for regenerative medicine. We summarized the results of preclinical and clinical studies dealing with the introduction of epithelial and mesenchymal stem cells of the afterbirth origin to the liver failure therapy. It was concluded that the use of native afterbirth epithelial and mesenchymal cells in the treatment of liver failure could support liver function and regeneration. This effect would be enhanced by the use of hepatocyte-like cells obtained from placental and/or umbilical stem cells. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marcin Michalik
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksandra Gładyś
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland.
| |
Collapse
|
16
|
Thesika K, Vadivel Murugan A. Microwave-Enhanced Chemistry at Solid-Liquid Interfaces: Synthesis of All-Inorganic CsPbX 3 Nanocrystals and Unveiling the Anion-Induced Evolution of Structural and Optical Properties. Inorg Chem 2020; 59:6161-6175. [PMID: 32286803 DOI: 10.1021/acs.inorgchem.0c00294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate how microwaves could enhance the chemistry at interfaces of heterogeneous reactions involved in the microwave-solvothermal (MW-ST) synthesis of all-inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (PNCs) within 6 min, unlike a conventional hot-injection method that requires 3 h. The enhanced MW-ST reaction rate was quantitatively analyzed by the Eyring equation, and it has been observed that the decreased activation free energy (ΔG⧧) and increased activation entropy (ΔS⧧) are caused by changes in the relative energies of reactants at their solid-liquid interfaces, leading to the formation of "hot spots", where microwave energy absorption is at its maximum. This rapid and homogeneous microwave heating could facilitate the self-assembly of uniformly distributed CsPbX3 nanocubes with precise control over the stoichiometric ratio, as confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray analyses. X-ray diffraction and Raman results indicate that lattice contraction and expansion in CsPbBr3-yXy have occurred because of an increase in the metal-halide bond length upon moving down the groups Cl → Br → I, as further ascertained by the Rietveld refinement studies. These anion-induced structural variations accordingly affected the electronic properties of MW-ST-synthesized CsPbX3 PNCs, which is apparent from the shifts in their conduction-band (CB) and valence-band (VB) positions. Consequently, the optical properties were also altered, resulting in a color-tuned emission from blue to red, with excellent photoluminescence quantum yields (up to 92%) and narrow emission line widths, as is evident from UV-vis and photoluminescence spectroscopy. The MW-ST-synthesized CsPbX3 PNCs were used as color-conversion layers for the fabrication of light-emitting diodes (LEDs) with commercial 456 nm UV-LED chips.
Collapse
Affiliation(s)
- Kabalaraj Thesika
- Advanced Functional Nanostructured Materials Research Laboratory (AFNM Lab), Centre for Nanoscience and Technology (CNST), Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India
| | - Arumugam Vadivel Murugan
- Advanced Functional Nanostructured Materials Research Laboratory (AFNM Lab), Centre for Nanoscience and Technology (CNST), Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Dr. R. Venkataraman Nagar, Kalapet, Puducherry 605014, India
| |
Collapse
|
17
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
18
|
Chetty SS, Praneetha S, Vadivel Murugan A, Govarthanan K, Verma RS. Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells Labeled with Mn 2+ and Gd 3+ Co-Doped CuInS 2-ZnS Nanocrystals for Multimodality Imaging in a Tumor Mice Model. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3415-3429. [PMID: 31875453 DOI: 10.1021/acsami.9b19054] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mesenchymal stem cell (MSCs) therapy has recently received profound interest as a targeting platform in cancer theranostics because of inherent tumor-homing abilities. However, the terminal tracking of MSCs engraftment by fluorescent in situ hybridization, immuno-histochemistry, and flow-cytometry techniques to translate into clinics is still challenging because of a dearth of inherent MSCs-specific markers and FDA approval for genetic modifications of MSCs. To address this challenge, a cost-effective noninvasive imaging technology based on multifunctional nanocrystals (NCs) with enhanced detection sensitivity, spatial-temporal resolution, and deep-tissue diagnosis is needed to be developed to track the transplanted stem cells. A hassle-free labeling of human umbilical cord Wharton's Jelly (WJ)-derived MSCs with Mn2+ and Gd3+ co-doped CuInS2-ZnS (CIS-ZMGS) NCs has been demonstrated in 2 h without requiring an electroporation process or transfection agents. It has been found that WJ-MSCs labeling did not affect their multilineage differentiation (adipocyte, osteocyte, chondrocyte), immuno-phenotypes (CD44+, CD105+, CD90+), protein (β-actin, vimentin, CD73, α-SMCA), and gene expressions. Interestingly, CIS-ZMGS-NCs-labeled WJ-MSCs exhibit near-infrared (NIR) fluorescence with a quantum yield of 84%, radiant intensity of ∼3.999 × 1011 (p/s/cm2/sr)/(μW/cm2), magnetic relaxivity (longitudinal r1 = 2.26 mM-1 s-1, transverse r2 = 16.47 mM-1 s-1), and X-ray attenuation (78 HU) potential for early noninvasive multimodality imaging of a subcutaneous melanoma in B16F10-tumor-bearing C57BL/6 mice in 6 h. The ex vivo imaging and inductively coupled plasma mass-spectroscopy analyses of excised organs along with confocal microscopy and immunofluorescence of tumor results also significantly confirmed the positive tropism of CIS-ZMGS-NCs-labeled WJ-MSCs in the tumor environment. Hence, we propose the magnetofluorescent CIS-ZMGS-NCs-labeled WJ-MSCs as a next-generation nanobioprobe of three commonly used imaging modalities for stem cell-assisted anticancer therapy and tracking tissue/organ regenerations.
Collapse
Affiliation(s)
- Shashank Shankar Chetty
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Selvarasu Praneetha
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Arumugam Vadivel Murugan
- Advanced Functional Nanostructured Materials Laboratory, Centre for Nanoscience and Technology, Madanjeet School of Green Energy Technologies , Pondicherry University (A Central University) , Puducherry 605014 , India
| | - Kavitha Govarthanan
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600036 , India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology Laboratory, Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology , Indian Institute of Technology-Madras (IIT-M) , Chennai 600036 , India
| |
Collapse
|
19
|
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13:1738-1755. [PMID: 31216380 DOI: 10.1002/term.2914] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Eryk Hakman
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Sophia Halassy
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - David Svinarich
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
- Ascension Providence Hospital, Southfield, MI, USA
| | - Robert Dodds
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| |
Collapse
|
20
|
Nguyen AH, Marsh P, Schmiess-Heine L, Burke PJ, Lee A, Lee J, Cao H. Cardiac tissue engineering: state-of-the-art methods and outlook. J Biol Eng 2019; 13:57. [PMID: 31297148 PMCID: PMC6599291 DOI: 10.1186/s13036-019-0185-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to assess the state-of-the-art fabrication methods, advances in genome editing, and the use of machine learning to shape the prospective growth in cardiac tissue engineering. Those interdisciplinary emerging innovations would move forward basic research in this field and their clinical applications. The long-entrenched challenges in this field could be addressed by novel 3-dimensional (3D) scaffold substrates for cardiomyocyte (CM) growth and maturation. Stem cell-based therapy through genome editing techniques can repair gene mutation, control better maturation of CMs or even reveal its molecular clock. Finally, machine learning and precision control for improvements of the construct fabrication process and optimization in tissue-specific clonal selections with an outlook of cardiac tissue engineering are also presented.
Collapse
Affiliation(s)
- Anh H. Nguyen
- Electrical and Computer Engineering Department, University of Alberta, Edmonton, Alberta Canada
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Paul Marsh
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Lauren Schmiess-Heine
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
| | - Peter J. Burke
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Chemical Engineering and Materials Science Department, University of California Irvine, Irvine, CA USA
| | - Abraham Lee
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Mechanical and Aerospace Engineering Department, University of California Irvine, Irvine, CA USA
| | - Juhyun Lee
- Bioengineering Department, University of Texas at Arlington, Arlington, TX USA
| | - Hung Cao
- Electrical Engineering and Computer Science Department, University of California Irvine, Irvine, CA USA
- Biomedical Engineering Department, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, USA
| |
Collapse
|