1
|
Qiu D, Tian C, Zhang H, Zhang J, Wei Z, Lu K. Correlating Aggregation Ability of Polymer Donors with Film Formation Kinetics for Organic Solar Cells with Improved Efficiency and Processability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313251. [PMID: 38702890 DOI: 10.1002/adma.202313251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/07/2024] [Indexed: 05/06/2024]
Abstract
Film formation kinetics significantly impact molecular processability and power conversion efficiency (PCE) of organic solar cells. Here, two ternary random copolymerization polymers are reported, D18─N-p and D18─N-m, to modulate the aggregation ability of D18 by introducing trifluoromethyl-substituted pyridine unit at para- and meta-positions, respectively. The introduction of pyridine unit significantly reduces material aggregation ability and adjusts the interactions with acceptor L8-BO, thereby leading to largely changed film formation kinetics with earlier phase separation and longer film formation times, which enlarge fiber sizes in blend films and improve carrier generation and transport. As a result, D18─N-p with moderate aggregation ability delivers a high PCE of 18.82% with L8-BO, which is further improved to 19.45% via interface engineering. Despite the slightly inferior small area device performances, D18─N-m shows improved solubility, which inspires to adjust the ratio of meta-trifluoromethyl pyridine carefully and obtain a polymer donor D18─N-m-10 with good solubility in nonhalogenated solvent o-xylene. High PCEs of 13.07% and 12.43% in 1 cm2 device and 43 cm2 module fabricated with slot-die coating method are achieved based on D18─N-m-10:L8-BO blends. This work emphasizes film formation kinetics optimization in device fabrication via aggregation ability modulation of polymer donors for efficient devices.
Collapse
Affiliation(s)
- Dingding Qiu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Tian
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Marus M, Mukha Y, Wong HT, Chan TL, Smirnov A, Hubarevich A, Hu H. Tsuchime-like Aluminum Film to Enhance Absorption in Ultra-Thin Photovoltaic Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2650. [PMID: 37836291 PMCID: PMC10574175 DOI: 10.3390/nano13192650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Ultra-thin solar cells enable materials to be saved, reduce deposition time, and promote carrier collection from materials with short diffusion lengths. However, light absorption efficiency in ultra-thin solar panels remains a limiting factor. Most methods to increase light absorption in ultra-thin solar cells are either technically challenging or costly, given the thinness of the functional layers involved. We propose a cost-efficient and lithography-free solution to enhance light absorption in ultra-thin solar cells-a Tsuchime-like self-forming nanocrater (T-NC) aluminum (Al) film. T-NC Al film can be produced by the electrochemical anodization of Al, followed by etching the nanoporous alumina. Theoretical studies show that T-NC film can increase the average absorbance by 80.3%, depending on the active layer's thickness. The wavelength range of increased absorption varies with the active layer thickness, with the peak of absolute absorbance increase moving from 620 nm to 950 nm as the active layer thickness increases from 500 nm to 10 µm. We have also shown that the absorbance increase is retained regardless of the active layer material. Therefore, T-NC Al film significantly boosts absorbance in ultra-thin solar cells without requiring expensive lithography, and regardless of the active layer material.
Collapse
Affiliation(s)
- Mikita Marus
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Yauhen Mukha
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Him-Ting Wong
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Tak-Lam Chan
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
| | - Aliaksandr Smirnov
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Aliaksandr Hubarevich
- Laboratory for Information Display and Processing Units, Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki, 220013 Minsk, Belarus; (Y.M.); (A.S.)
| | - Haibo Hu
- Centre for Advances in Reliability and Safety (CAiRS), Unit 1212–1213, 12/F, Building 19W, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong, China; (M.M.); (H.-T.W.); (T.-L.C.)
- Department of Electrical and Electronic Engineering, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Competition between polycrystalline morphology and microphase separation in blends based on cellulose triacetate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Schwaiger DM, Lohstroh W, Müller-Buschbaum P. The Influence of the Blend Ratio, Solvent Additive, and Post-production Treatment on the Polymer Dynamics in PTB7:PCBM Blend Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik M. Schwaiger
- Physik-Department, Technische Universität München, Lehrstuhl für Funktionelle Materialien James-Franck-Straße 1, 85748 Garching, Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Peter Müller-Buschbaum
- Physik-Department, Technische Universität München, Lehrstuhl für Funktionelle Materialien James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
5
|
Improving organic photovoltaic cells by forcing electrode work function well beyond onset of Ohmic transition. Nat Commun 2021; 12:2250. [PMID: 33854070 PMCID: PMC8047006 DOI: 10.1038/s41467-021-22358-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/23/2021] [Indexed: 12/03/2022] Open
Abstract
As electrode work function rises or falls sufficiently, the organic semiconductor/electrode contact reaches Fermi-level pinning, and then, few tenths of an electron-volt later, Ohmic transition. For organic solar cells, the resultant flattening of open-circuit voltage (Voc) and fill factor (FF) leads to a ‘plateau’ that maximizes power conversion efficiency (PCE). Here, we demonstrate this plateau in fact tilts slightly upwards. Thus, further driving of the electrode work function can continue to improve Voc and FF, albeit slowly. The first effect arises from the coercion of Fermi level up the semiconductor density-of-states in the case of ‘soft’ Fermi pinning, raising cell built-in potential. The second effect arises from the contact-induced enhancement of majority-carrier mobility. We exemplify these using PBDTTPD:PCBM solar cells, where PBDTTPD is a prototypal face-stacked semiconductor, and where work function of the hole collection layer is systematically ‘tuned’ from onset of Fermi-level pinning, through Ohmic transition, and well into the Ohmic regime. Both open-circuit voltage and fill factor of organic solar cells are affected by the metal-organic semiconductor interface. Here, the authors demonstrate that the voltage can continue to rise when the Fermi level is forced up to the semiconductor density-of-states tail.
Collapse
|
6
|
Song X, Hou L, Guo R, Wei Q, Yang L, Jiang X, Tu S, Zhang A, Kan Z, Tang W, Xing G, Müller-Buschbaum P. Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2961-2970. [PMID: 33412838 DOI: 10.1021/acsami.0c19700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asymmetric fused-ring electron acceptors (a-FREAs) have proved to be a promising type of electron acceptor for high-performance organic solar cells (OSCs). However, the relationship among molecular structures of a-FREAs and their nanoscale morphology, charge-carrier dynamics, and device performance remains unclear. In this contribution, two FREAs differing in conjugated backbone geometry with an asymmetric conformation (IPT-2F) or symmetric one (INPIC-2F) are selected to systematically explore the superiorities of the asymmetric conformation. Despite the frailer extinction coefficient and weaker crystallinity, IPT-2F shows stronger dipole interactions in the asymmetrical backbone, which would induce a closer lamellar packing than that of the symmetrical counterpart. Using PBDB-T as the electron donor, the IPT-2F-based OSCs achieve the best power conversion efficiency of 14.0%, which is ca. 67% improvement compared to the INPIC-2F-based ones (8.37%), resulting from a simultaneously increased short-circuited current density (Jsc) and fill factor. Systematical investigations on optoelectronic and morphological properties show that the asymmetric conformation-structured IPT-2F exhibits better miscibility with the polymer donor to induce a favorable blend ordering with small domain sizes and suitable phase separation compared to the INPIC-2F symmetric molecule. This facilitates an efficient charge generation and transport, inhibits charge-carrier recombination, and promotes valid charge extraction in IPT-2F-based devices.
Collapse
Affiliation(s)
- Xin Song
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China
| | - Licheng Hou
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714 Chongqing, China
| | - Renjun Guo
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Qi Wei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, 999078 Taipa, China
| | - Linqiang Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Xinyu Jiang
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Suo Tu
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ao Zhang
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, 214122 Wuxi, China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, 400714 Chongqing, China
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, 999078 Taipa, China
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
7
|
Ben Dkhil S, Perkhun P, Luo C, Müller D, Alkarsifi R, Barulina E, Avalos Quiroz YA, Margeat O, Dubas ST, Koganezawa T, Kuzuhara D, Yoshimoto N, Caddeo C, Mattoni A, Zimmermann B, Würfel U, Pfannmöller M, Bals S, Ackermann J, Videlot-Ackermann C. Direct Correlation of Nanoscale Morphology and Device Performance to Study Photocurrent Generation in Donor-Enriched Phases of Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28404-28415. [PMID: 32476409 DOI: 10.1021/acsami.0c05884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The nanoscale morphology of polymer blends is a key parameter to reach high efficiency in bulk heterojunction solar cells. Thereby, research typically focusing on optimal blend morphologies while studying nonoptimized blends may give insight into blend designs that can prove more robust against morphology defects. Here, we focus on the direct correlation of morphology and device performance of thieno[3,4-b]-thiophene-alt-benzodithiophene (PTB7):[6,6]phenyl C71 butyric acid methyl ester (PC71BM) bulk heterojunction (BHJ) blends processed without additives in different donor/acceptor weight ratios. We show that while blends of a 1:1.5 ratio are composed of large donor-enriched and fullerene domains beyond the exciton diffusion length, reducing the ratio below 1:0.5 leads to blends composed purely of polymer-enriched domains. Importantly, the photocurrent density in such blends can reach values between 45 and 60% of those reached for fully optimized blends using additives. We provide here direct visual evidence that fullerenes in the donor-enriched domains are not distributed homogeneously but fluctuate locally. To this end, we performed compositional nanoscale morphology analysis of the blend using spectroscopic imaging of low-energy-loss electrons using a transmission electron microscope. Charge transport measurement in combination with molecular dynamics simulations shows that the fullerene substructures inside the polymer phase generate efficient electron transport in the polymer-enriched phase. Furthermore, we show that the formation of densely packed regions of fullerene inside the polymer phase is driven by the PTB7:PC71BM enthalpy of mixing. The occurrence of such a nanoscale network of fullerene clusters leads to a reduction of electron trap states and thus efficient extraction of photocurrent inside the polymer domain. Suitable tuning of the polymer-acceptor interaction can thus introduce acceptor subnetworks in polymer-enriched phases, improving the tolerance for high-efficiency BHJ toward morphological defects such as donor-enriched domains exceeding the exciton diffusion length.
Collapse
Affiliation(s)
- Sadok Ben Dkhil
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
| | - Pavlo Perkhun
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
| | - Chieh Luo
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany
| | - David Müller
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany
| | - Riva Alkarsifi
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
| | - Elena Barulina
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
- Dracula Technologies, 4 Rue Georges Auric, 26000 Valence, France
| | | | - Olivier Margeat
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
| | - Stephan Thierry Dubas
- The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Bangkok 10330, Thailand
| | - Tomoyuki Koganezawa
- Industrial Application Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Daiki Kuzuhara
- Department of Physical Science and Materials Engineering, Iwate University, Ueda, Morioka 020 8551, Japan
| | - Noriyuki Yoshimoto
- Department of Physical Science and Materials Engineering, Iwate University, Ueda, Morioka 020 8551, Japan
| | - Claudia Caddeo
- Istituto Officina dei Material (CNR-IOM), UOS Cagliari SLACS, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Alessandro Mattoni
- Istituto Officina dei Material (CNR-IOM), UOS Cagliari SLACS, Cittadella Universitaria, I-09042 Monserrato, Cagliari, Italy
| | - Birger Zimmermann
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany
| | - Uli Würfel
- Fraunhofer Institute for Solar Energy Systems (ISE), Heidenhofstr. 2, 79110 Freiburg, Germany
- Materials Research Center FMF, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Martin Pfannmöller
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Jörg Ackermann
- Aix Marseille Univ., UMR CNRS 7325, CINaM, 13288 Marseille, France
| | | |
Collapse
|
8
|
Berlinghof M, Langner S, Harreiß C, Schmidt EM, Siris R, Bertram F, Shen C, Will J, Schindler T, Prihoda A, Rechberger S, Duesberg GS, Neder RB, Spiecker E, Brabec CJ, Unruh T. Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing. Z KRIST-CRYST MATER 2020. [DOI: 10.1515/zkri-2019-0055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
It is demonstrated by a detailed structural analysis that the crystallinity and the efficiency of small molecule based organic photovoltaics can be tuned by solvent vapor annealing (SVA). Blends made of the small molecule donor 2,2′-[(3,3′″,3″″,4′-tetraoctyl[2,2′:5′,2″:5″,2′″:5′″,2″″-quinquethiophene]-5,5″″-diyl)bis[(Z)-methylidyne(3-ethyl-4-oxo-5,2-thiazolidinediylidene)]]bis-propanedinitrile (DRCN5T) and the acceptor [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) were annealed using solvent vapors with either a high solubility for the donor (tetrahydrofuran), the acceptor (carbon disulfide) or both (chloroform). The samples were analyzed by grazing-incidence wide-angle X-ray scattering (GIWAXS), electron diffraction, X-ray pole figures, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). A phase separation of DRCN5T and PC71BM is induced by SVA leading to a crystallization of DRCN5T and the formation of a DRCN5T enriched layer. The DRCN5T crystallites possess the two dimensional oblique crystal system with the lattice parameters a = 19.2 Å, c = 27.1 Å, and β = 111.1° for the chloroform case. No major differences in the crystal structure for the other solvent vapors were observed. However, the solvent choice strongly influences the size of the DRCN5T enriched layer. Missing periodicity in the [010]-direction leads to the extinction of all Bragg reflections with k ≠ 0. The annealed samples are randomly orientated with respect to the normal of the substrate (fiber texture).
Collapse
Affiliation(s)
- Marvin Berlinghof
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Stefan Langner
- Institute Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7 , 91058 Erlangen , Germany
| | - Christina Harreiß
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Ella Mara Schmidt
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
| | - Rita Siris
- Institute of Physics EIT 2, Universität der Bundeswehr München , Werner-Heisenberg-Weg 39 , 85579 Neubiberg , Germany
| | - Florian Bertram
- DESY Photon Science , Notkestraße 85 , 22607 Hamburg , Germany
| | - Chen Shen
- DESY Photon Science , Notkestraße 85 , 22607 Hamburg , Germany
| | - Johannes Will
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Torben Schindler
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Annemarie Prihoda
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Stefanie Rechberger
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Georg S. Duesberg
- Institute of Physics EIT 2, Universität der Bundeswehr München , Werner-Heisenberg-Weg 39 , 85579 Neubiberg , Germany
| | - Reinhard B. Neder
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
| | - Erdmann Spiecker
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Christoph J. Brabec
- Institute Materials for Electronics and Energy Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg , Martensstraße 7 , 91058 Erlangen , Germany
- Bavarian Center for Applied Energy Research (ZAE Bayern) , Immerwahrstraße 2 , 91058 Erlangen , Germany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg , Staudtstraße 3 , 91058 Erlangen , Germany
- Interdisciplinary Center for Nanostructured Films, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
- Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| |
Collapse
|