1
|
Zhang WJ, Sun WZ, Xu JT, Ou BQ, Zhou WQ, Chen L, Ye JW, Pan M. Lanthanide Antenna Amplifier Multiplies the Optical Sensing Efficiency in Phototautomeric Metal-Organic Frameworks. J Am Chem Soc 2025; 147:17486-17496. [PMID: 40340437 DOI: 10.1021/jacs.5c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Metal-organic frameworks (MOFs) incorporating phototautomeric ligands have shown significant potential for new-generation optical sensing devices. It is challenging to enlarge the energy difference of tautomers, which is crucial for improving the sensing efficiency. Herein, we report a novel tactic to amplify the excited-state intramolecular proton transfer (ESIPT) effect via the "antenna effect" in lanthanide sensitization. Specifically, by leveraging the enol (E)-keto (K) phototautomerization process, we achieve precise manipulation of the energy gap between the lowest ligand triplet state and the Eu(III) emitting level through fine-tuning. As a result, the small wavelength shift (10 nm) between the E* and K* emissions is amplified into an approximately 65-fold intensity change in Eu(III) emission. This enhancement is accompanied by a significantly lowered limit of detection (LOD: 0.53 μg/L) and improved sensitivity (0.6955% RH-1) in real-time humidity monitoring across a broad linear detection range (0-95.0% RH). Computational simulations and single-crystal analyses demonstrate two key mechanisms: (1) the appropriate hydrophilic/hydrophobic distribution in the MOF cavity facilitates rapid hydration/dehydration and (2) H2O desorption/adsorption-dependent ESIPT switching governs the deactivation/activation of the Eu(III) 4f excited state. This work presents an optimization approach to enhance energy utilization in MOF-based optical sensing.
Collapse
Affiliation(s)
- Wei-Jie Zhang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Wen-Zhu Sun
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Ji-Tong Xu
- College of Textile Science and Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Bei-Qi Ou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Wan-Qing Zhou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
| | - Ling Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P.R. China
| | - Jia-Wen Ye
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529000, P.R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P.R. China
| | - Mei Pan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
2
|
Yao X, Zhang Y, Qiu Y, Jiang W, Chen H, Zeng T, Wei L, Jiang S, Zhao Y, Ma Y, Zhang YB. A Phototautomeric 3D Covalent Organic Framework for Ratiometric Fluorescence Humidity Sensing. J Am Chem Soc 2025; 147:9665-9675. [PMID: 40048296 DOI: 10.1021/jacs.4c17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photoinduced proton transfer is an essential photochemical process for designing photocatalysts, white light emitters, bioimaging, and fluorescence sensing materials. However, deliberate control of the excited/ground states and meticulous manipulation of the excited state intramolecular proton transfer (ESIPT) pathway constitute a significant challenge in liquids and dense solids. Here, we present the integration of a hydronaphthoquinone fluorophore into a crystalline, porous, phototautomeric dynamic 3D covalent organic framework (COF) to show guest-induced fluorescence turn-on, emission redshift enhancement, and shortened lifetimes for ratiometric fluorescence humidity sensing. Theoretical and spectroscopic studies provide mechanistic insights into the conformational dynamics, charge transfer coupled with local excitation, and ground-state uphill regulation for the multiple tautomers. We illustrate the sensitive, rapid, steady, and self-calibrated ratiometric fluorescence sensing for a wide range of humidity benefiting from the architectural and chemical robustness and crystallinity of such a phototautomeric 3D COF. These findings provide molecular insights into the design of functional porous materials that integrate host-guest mutual recognition and photoelectronic response for multiplex molecular sensing for environmental monitoring and biomedical diagnostics applications.
Collapse
Affiliation(s)
- Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Youchang Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Qiu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lei Wei
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Saha K, Bhunia S, Sahoo D, Jana NC, Sepay N, Saha G, Sinha C. Mixed-Bridging 2D Luminescent Coordination Polymer: Structure, Selective Sensing of Pollutants in Water, and Fabrication of Photoresponsive Electronic Device. Inorg Chem 2025; 64:2348-2359. [PMID: 39873110 DOI: 10.1021/acs.inorgchem.4c04584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Pyrazine (tppz) and 5-sulfosalicylic acid (H3SSA) mixed-bridging Cd(II)-CP, {[Cd2(HSSA)2(tppz)2]}n (1), is highly luminescent, and the emission has been quenched selectively by Al3+ in the presence of other cations, with a limit of detection (LOD) of 43.9 nM (1.18 ppb). The emission of 1 is also quenched by 4-nitroaniline (4-NA) (LOD, 49 nM) and dicloran (2,6-dichloro-4-nitroaniline, DCN), a pesticide (LOD, 42.8 nM), in an aqueous medium in the existence of 11 other nitroaromatic compounds (NACs). The structure of the probe, 1, shows the diverse bridging by pyridyl-N of tppz and carboxylate-O of HSSA2- to architect a 2D CP with a 16-member metallo-macrocycle, followed by S═O···Cd(II) (2.291(2) Å), π···π (3.892 Å), and C-H···π noncovalent interactions to form a 3D supramolecular structure and cavity. The phenolic-OH of HSSA2- remains uncoordinated in the cavity network. Upon interaction of Al3+/4-NA/DCN with Cd(II)-CP (1), the free phenolic-OH may induce easy dissociation, which may assist in energy transfer for quenching. The interaction has been explained through various experiments and theoretical calculations. The DFT computation determines the band gap as 3.42 eV (experimentally, 3.18 eV), which is motivated to measure the electrical conductivity. The conductivity, 3.53 × 10-5 S m-1 (dark), has been enhanced upon light irradiation to 7.66 × 10-5 S m-1.
Collapse
Affiliation(s)
- Koushik Saha
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Suprava Bhunia
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Dipankar Sahoo
- Department of Physics, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura, RS 721152, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata 700017, India
| | - Gunomoni Saha
- Department of Chemistry, Barrackpore R S College, Kolkata 700120, India
| | - Chittaranjan Sinha
- Department of Chemistry, Jadavpur University, Kolkata, West Bengal 700032, India
| |
Collapse
|
4
|
Hassan HQ, Tofiq DI, Abdalkarim KA, Kayani KF, Hamarawf RF. Synthesis, Characterization and Application of Iron (III) Complex of Schiff Base Ligand as a Novel Enhancement Fluorescent Sensor for Al 3+ Ion Detection. J Fluoresc 2025:10.1007/s10895-024-04086-w. [PMID: 39760911 DOI: 10.1007/s10895-024-04086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions. Conductivity data showed the electrolytic nature of the complex. Its fluorescence properties were thoroughly investigated by introducing aluminium ions in deionized water, which increased fluorescence intensity at 460 nm. The detection limit for Al3+ was optimized and found to be 1.5 µM. Notably, the fluorescent sensor successfully monitored Al³⁺ in pharmaceutical formulations. This fluorescence-based analytical method is an alternative to other methods due to its high selectivity, sensitivity, and speed. These results suggest the high potential of this system for pharmaceutical monitoring applications.
Collapse
Affiliation(s)
- Hanar Q Hassan
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq.
| | - Diary I Tofiq
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq
| | - Karzan A Abdalkarim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq
- Pharmacy Department, College of Medicine, Komar University of Science and Technology, Qularaise, Sulaymaniyah, Kurdistan Region, 46002, Iraq
| | - Kawan F Kayani
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq
- Department of Chemistry, College of Science, Charmo University, Peshawa Street, Chamchamal, Sulaymaniyah, 46023, Iraq
| | - Rebaz F Hamarawf
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq
| |
Collapse
|
5
|
Zhang K, Tian X, Xu P, Zhu Y, Guang S, Xu H. Multi-ion detection chemosensor based on rhodamine for turn-on fluorescence sensing and bioimaging of Fe 3+, Al 3+, Cr 3+, and Hg 2+ under different channels. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124484. [PMID: 38788504 DOI: 10.1016/j.saa.2024.124484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
A novel rhodamine-based multi-ion fluorescent sensor, RGN, was designed and synthesized for the highly selective detection of mercury ions (Hg2+) in ethanol and water systems, as well as trivalent cations (Fe3+, Al3+, and Cr3+) in acetonitrile and water systems using a two-step Schiff base reaction method. Nuclear magnetic titration experiments and theoretical calculations demonstrated that the sensor achieved the detection of the aforementioned metal ions through the fluorescence turn-on phenomenon induced by lactam ring-opening. Density functional theory (DFT) calculation results showed decreased HOMO-LUMO energy gaps and increased dipole moments, indicating the effective coordination of the sensor with the corresponding metal ions to form more stable complexes, thereby achieving detection objectives. Furthermore, the fluorescence turn-on sensor RGN exhibited relatively low detection limits, with limits of detection (LOD) for Fe3+, Al3+, Cr3+, and Hg2+ being 10.20 nM, 14.66 nM, 58.78 nM, and 73.33 nM, respectively. Finally, practical applications of sensor RGN in environmental water samples, L929 cells, and zebrafish were demonstrated, indicating its potential for detecting and tracking Fe3+, Al3+, Cr3+, and Hg2+ in environmental samples and biological systems, with prospects for biomedical applications in the diagnosis and treatment of heavy metal ion-induced diseases.
Collapse
Affiliation(s)
- Kezhen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoyong Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peipei Xu
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yan Zhu
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Shanyi Guang
- School of Chemistry, and Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Hongyao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Genc HN, Guctekin Yasar O, Boran T, Karuk Elmas SN, Arslan FN, Yilmaz I, Sirit A. Selective Chromo-Fluorogenic Chemoprobe for nM Al 3+ Recognition: Experimental and Living-Cell Applications. J Fluoresc 2024:10.1007/s10895-024-03904-5. [PMID: 39158625 DOI: 10.1007/s10895-024-03904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
A rhodamine based chemoprobe BESN was engineered and employed as a selective ''OFF-ON'' chromo-fluorogenic sensor for Al3+ in H2O:MeOH (1:9, v:v). Notable changes in the absorption and emission spectra of BESN were clearly detectable upon the addition of Al3+. Sensitivity and binding mechanism studies demonstrated a good sensing performance of BESN with nanomolar detection limit (130 nM), and it was found to be highly selective towards interfering metal ions. Besides, the binding constant between BESN and Al3+ was found to be 3.19 × 103 M-1. Then, the validation study of BESN for Al3+ was performed based on significant analytical parameters and statistical tests. The binding of Al3+ with BESN (1:1) was probed via infrared, high-resolution mass and emission (Job's plot) spectroscopy measurements. The sensing performance of BESN could make it ideal chemosensor for real applications including vegetable, tuna fish and water samples, also for Smartphone and test-kit applications. The recovery values of the BESN to Al3+ were estimated within a range from 95.13% to 105.30% for water, 94.63% to 109.62% for tuna fish and 94.80% to 109.80% for vegetable samples. Additionally, the BESN has very low cytotoxicity and was triumphantly utilized for the recognition of Al3+ in living-cells.
Collapse
Affiliation(s)
- Hayriye Nevin Genc
- A. K. Faculty of Education, Department of Science Education, University of Necmettin Erbakan, 42090, Konya, Türkiye.
| | - Ozlem Guctekin Yasar
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Tugce Boran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye
| | - Sukriye Nihan Karuk Elmas
- Faculty of Pharmacy, Department of Analytical Chemistry, Istanbul University-Cerrahpaşa, 34500, Istanbul, Türkiye.
| | - Fatma Nur Arslan
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
| | - Ibrahim Yilmaz
- K. O. Faculty of Science, Department of Chemistry, University of Karamanoglu Mehmetbey, 70100, Karaman, Türkiye
- Faculty of Education, Department of Mathematics and Science Education, University of Bolu Abant İzzet Baysal, 14030, Bolu, Türkiye
| | - Abdulkadir Sirit
- A. K. Faculty of Education, Department of Chemistry, University of Necmettin Erbakan, 42090, Konya, Türkiye
| |
Collapse
|
7
|
Zou YL, Liu YT. A novel isophorone-based NIR fluorescent and colormetric probe for Al 3+ sensing and its application for living cells and plants imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124040. [PMID: 38428211 DOI: 10.1016/j.saa.2024.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/03/2024]
Abstract
In this paper, an isophorone-based NIR fluorescent and colormetric probe BDDH for Al3+ was synthesized and characterized, it showed highly selectivity and sensitivity through significant fluorescence enhancement and visible color change towards Al3+. The job plot confirmed that the binding ratio of BDDH with Al3+ was 1:1. Furthermore, the limit of detection (LOD) of Al3+ was determined to be 4.01 × 10-8 M. Moreover, BDDH was successfully applicated in identification of Al3+ in the different water samples, cell imaging in alive MCF-7 cells and plant imaging in soybean roots.
Collapse
Affiliation(s)
- Yue-Li Zou
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Tong Liu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Cui Y, Fan S, Zhai Y, Liu Y, Li J, Hu J, Wang L. "Turn-on" and pinhole-free ultrathin core-shell Au@SiO 2 nanoparticle-based metal-enhanced fluorescent (MEF) chemodosimeter for Hg 2. NANOSCALE ADVANCES 2024; 6:2319-2327. [PMID: 38694453 PMCID: PMC11059484 DOI: 10.1039/d3na00746d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/16/2023] [Indexed: 05/04/2024]
Abstract
This study reports a metal-enhanced fluorescence chemodosimeter for highly sensitive detection of Hg2+ ions. Silica-coated Au nanoparticles (Au@SiO2 NPs) with a pinhole-free 4-5 nm shell were synthesized and functionalized with a monolayer of turn-on fluorescent probes. Compared to other organic fluorescent probes suffering from poor biocompatibility and detection limits, this design of a monolayer of turn-on fluorescent probes immobilized on the Au@SiO2 NPs with a pinhole-free 4-5 nm shell avoids fluorescence quenching and allows the fluorescent probe within the field of the inner Au NPs to experience metal-enhanced fluorescence. With this design, the chemodosimeter permits fluorescence emission in the presence of Hg2+ ions, because they trigger the ring-opening reaction of the fluorescent probe immobilized on the Au@SiO2 NPs. Additionally, the fluorescent probe is distanced by the thin SiO2 shell from directly attaching to the metallic Au NPs, which not only avoids fluorescence quenching but allows the fluorescent probe within the long-ranged field of the inner Au NPs to experience metal-enhanced fluorescence. As a result, the detection limit for the chemodosimeter can reach up to 5.0 × 10-11 M, nearly two orders of magnitude higher than that achieved for the free fluorescent probe. We also demonstrate the acquisition of images of Hg2+ in HTC116 cells and zebrafish using a simple fluorescence confocal imaging technique. The fluorescence response results for HTC116 cells and zebrafish show that the probes can permeate into cells and organisms. Considering the availability of the many organic fluorescent probes that have been designed, the current designed metal-enhanced fluorescence chemodosimeter holds great potential for fluorescence detection of diverse species and fluorescence imaging.
Collapse
Affiliation(s)
- Ying Cui
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University Hengyang 421001 PR China
| | - Shanji Fan
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421000 China
| | - Yunran Zhai
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Yingjie Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China Hengyang 421000 China
| | - Junhua Li
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University Hengyang 421001 PR China
| | - Jiawen Hu
- Hunan Key Laboratory of Two-Dimensional Materials, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Lijia Wang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center Hangzhou Zhejiang 310052 China
| |
Collapse
|
9
|
Lal S, Singh P, Singhal A, Kumar S, Singh Gahlot AP, Gandhi N, Kumari P. Advances in metal-organic frameworks for water remediation applications. RSC Adv 2024; 14:3413-3446. [PMID: 38259988 PMCID: PMC10801355 DOI: 10.1039/d3ra07982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal-organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.
Collapse
Affiliation(s)
- Seema Lal
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College Bengaluru Karnataka India
| | - Sanjay Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | | | - Namita Gandhi
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| |
Collapse
|
10
|
Wang MM, Xiong TZ, Chen BC, Hu JJ, Wen HR, Liu SJ. Solvent- and pH-Stable Eu(III)-Based Metal-Organic Framework with Phosphate-Ratio Fluorescence Sensing and Significant Proton Conduction. Inorg Chem 2023; 62:21322-21328. [PMID: 38071665 DOI: 10.1021/acs.inorgchem.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Lanthanide-based metal-organic frameworks show good potential for applications due to their unique structures and functional properties. A highly thermally and acid-base stable Eu-MOF was synthesized by a solvothermal method with the molecular formula {[(CH3)2NH2]2[Eu2(NDDP)2(H2O)2]·H2O}n (Eu-MOF, H4NDDP = 5,5'-(naphthalene-2,6-diyl)diisophthalic acid). Eu-MOF takes a three-dimensional (4,4,8)-connected topology. The water molecules involved in the coordination, free water molecules, and [(CH3)2NH2]+ cations in the pore can be used as proton carriers. The proton conductivity attains 1.25 × 10-4 S cm-1 at room temperature and 2.42 × 10-3 S cm-1 at 70 °C and 98% relative humidity. Combined with the dual-emission properties from the ligands and Eu(III) ions enables Eu-MOF to be used as a ratiometric fluorescent sensor for phosphate efficiently and rapidly, with a limit of detection of 0.12 μM in the Tris-HCl buffer solution. These results provide a new approach for the construction of MOFs with high proton conductivity and a ratiometric fluorescence response.
Collapse
Affiliation(s)
- Miao-Miao Wang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Tian-Zheng Xiong
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Bo-Chen Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jun-Jie Hu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
11
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
12
|
Liu X, Wang X, Jiang Y. Construction and Application of Multipurpose metal-organic frameworks -based Hydrogen Sulfide Probe. J Fluoresc 2023; 33:2193-2200. [PMID: 37000364 DOI: 10.1007/s10895-023-03225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Hydrogen sulfide (H2S) is a toxic gas derived from the sulfur industry and trace H2S in the environment can cause serious ecological damage while inhalation can cause serious damage and lead to disease. Therefore, the real-time and accurate detection of trace sulfur ions is of great significance for environmental protection and early disease detection. Considering the shortcoming of current H2S probes in terms of stability and sensitivity, the development of novel probes is necessary. Herein, a novel metal-organic frameworks (MOF)-based material, UiO-66-NH2@BDC, was designed and prepared for the visual detection of H2S with rapid response (< 6 s) and low detection limit of S2- (0.13 µM) by hydrogen bonding. Based on its good optical performance, the UiO-66-NH2@BDC probe can detect S2- in various water environments. More importantly, UiO-66-NH2@BDC probe realize imaging S2- in cells and live zebrafish.
Collapse
Affiliation(s)
- Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Xiaosong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P R China
| |
Collapse
|
13
|
Yeh CH, Tsai MJ, Lee PC, Wu JY. Zinc(II)-Based Ring-and-Rod Coordination Layer as an Excitation-Wavelength-dependent Dual-Emissive Chemosensor for Discriminating Fe 3+, Cr 3+, and Al 3+ in Water. Inorg Chem 2023; 62:13453-13466. [PMID: 37557097 DOI: 10.1021/acs.inorgchem.3c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The reactions of Zn(NO3)2, 3,6-bis(pyridin-3-yl)-9H-carbazole (bpycz), and 2,5-dihydroxyterephthalic acid (H4dhbdc) or 2-bromoterephthalic acid (Br-1,4-H2bdc) under hydro(solvo)thermal conditions yielded corresponding coordination polymers (CPs) {[Zn(H2dhbdc)(bpycz)]•0.5H2O}n (1) and [Zn(Br-1,4-bdc)(bpycz)]•2DMAc•H2O (2), respectively, with high thermal stability approaching 350 °C. CP 1 adopts a ring-and-rod layer structure, which is topologically described as a 4-connected net with the point symbol of 2•65. Two layers are interpenetrated in parallel interlocking mode to form a double 2D → 2D polyrotaxane entanglement with extra-framework void space of 19.6%. CP 2 has a non-interpenetrating ring-and-rod layer structure of 4-connected 2•65 net topology, with extra-framework void space of 16.6%. Thermally activated 1 and 2 revealed CO2 uptakes of 101.1 and 98.6 cm3 g-1, respectively, at P/P0 = 1 and 195 K. X-ray powder diffraction (XRPD) patterns confirmed that 1 and 2 both possessed high chemical stability in H2O, CH3OH, acetone, and DMF, and framework stability during gas adsorption-desorption. The H2O suspension of 1 displayed excitation-dependent dual-emissive properties, appearing at 432 nm upon excitation at 300 nm and at 528 nm upon excitation at 365 nm. Of note, 1 was capable of detection of Fe3+, Cr3+, and Al3+ ions in H2O, showing good anti-interference ability, excellent selectivity, and high sensitivity. More interesting, the dual-emissive properties make 1 to be an excellent luminescence chemosensor to screen Fe3+, Cr3+, and Al3+ from a pool of metal ions in H2O upon excitation at 300 nm via luminescence quenching effect and then discriminate Fe3+, Cr3+, and Al3+ upon excitation at 365 nm via luminescence quenching, unaltered, and enhancement responses, respectively. On the other hand, the H2O suspension of 2 demonstrated an excitation-independent emission appearing at around 430 nm, which could be utilized to sensitively detect Fe3+ and Cr3+ ions with good anti-interference ability and excellent selectivity via luminescence quenching effect. Further, 1 and 2 were recyclability and possessed cycling stability. The plausible sensing mechanisms for 1 and 2 toward Fe3+, Cr3+, and Al3+ were also explored in detail.
Collapse
Affiliation(s)
- Chuan-Heng Yeh
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Pei-Chin Lee
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Jing-Yun Wu
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| |
Collapse
|
14
|
Sheng TP, Sun CZ, Dai FR. Triphenylamine-Functionalized Coordination Cage as a Supramolecular Fluorescence Sensor for Sequential Detection of Aluminum Ions and Nitrofurantoin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294737 DOI: 10.1021/acsami.3c01422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coordination cages with a well-defined nanocavity are a class of promising supramolecular materials for molecular recognition and sensing. However, their applications in sequential sensing of multiple types of pollutants are highly desirable yet extremely limiting and challenging. Herein, we demonstrate a convenient strategy to develop a supramolecular fluorescence sensor for sequentially detecting environmental pollutants of aluminum ions and nitrofurantoin. A coordination cage (Ni-NTB), adopting an octahedral structure with triphenylamine chromophores occupying on the faces, is weakly emissive in solution due to the intramolecular rotations of the phenyl rings. Ni-NTB exhibits sensitive and selective fluorescence "off-on-off" processes during consecutive sensing of Al3+ and nitrofurantoin, an antibacterial drug. These sequential detection processes are highly interference-tolerant and visually observable with the naked eye. Mechanism studies reveal that the fluorescence switch is controllable by tuning the degree of intramolecular rotations of the phenyl rings and the pathway of intermolecular charge transfer, which is associated with the host-guest interaction. Moreover, the fabrication of Ni-NTB on test strips enabled a quick naked-eye sequential sensing of Al3+ and nitrofurantoin in seconds. Hence, this novel supramolecular fluorescence "off-on-off" sensing platform provides a new approach to developing supramolecular functional materials for monitoring environmental pollution.
Collapse
Affiliation(s)
- Tian-Pu Sheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng-Zhe Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Feng-Rong Dai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Guctekin Yasar O, Bostanci A, Karuk Elmas SN, Aydin D, Arslan FN, Sadi G, Yilmaz I. A cyanobiphenyl-based fluorescent ''lighting-up'' sensor for highly selective and sensitive recognition of Al 3+: Theoretical, practical and bioimaging studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122556. [PMID: 36878135 DOI: 10.1016/j.saa.2023.122556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The recognition of toxic Al3+ in foods and biosystems has of great interest to researchers. Herein, a novel cyanobiphenyl-based chemosensor CATH (E)-N'-((4'-cyano-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)thiophene-2-carbohydrazide was fabricated and shown to recognize Al3+ in HEPES buffer:EtOH (90:10, v:v, pH = 7.4) by ''lighting-up'' fluorescence sensing. The CATH evidenced high sensitivity (LOD = 13.1 nM) and excellent selectivity to Al3+ over competing cations. The Job's plot, TOF-MS and theoretical computation studies were performed to probe the binding mechanism of Al3+ to CATH. Additionally; CATH was successfully utilized to practical applications and employed to recover of Al3+ from different food samples. More importantly, it was employed to intracellular Al3+ detection in living cells including THLE2 and HepG2.
Collapse
Affiliation(s)
- Ozlem Guctekin Yasar
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Aykut Bostanci
- Biology Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Sukriye Nihan Karuk Elmas
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye; Analytical Chemistry Department, Pharmacy Faculty, Istanbul University-Cerrahpaşa, 34500 Istanbul, Turkiye.
| | - Duygu Aydin
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye.
| | - Fatma Nur Arslan
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye.
| | - Gokhan Sadi
- Biology Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| | - Ibrahim Yilmaz
- Chemistry Department, Kamil Ozdag Science Faculty, Karamanoglu Mehmetbey University, 70100 Karaman, Turkiye
| |
Collapse
|
16
|
Ji P, Li J, Wang W, Song Z, Zhang Z, Wang B, Feng G. A novel fluorescent molecule based on 1,2,3-triazole for determination of palladium (II) and hydrazine hydrate in aqueous system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122492. [PMID: 36801740 DOI: 10.1016/j.saa.2023.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In recent years, hydrazine hydrate has been widely used in various fields as fuel and chemical raw materials, etc. However, hydrazine hydrate is also a potential threat to living body and natural environment. The effective method is urgently needed to detect hydrazine hydrate in our living environment. Secondly, as a precious metal, palladium has attracted more and more attention because of its excellent properties in industrial manufacturing and chemical catalysis. However, its potential danger is also slowly approaching, so it is necessary to find an excellent way to detect palladium, too. Herein, a fluorescent molecule, 4,4',4'',4'''-(1,4-phenylenebis(2H-1,2,3-triazole-2,4,5-triyl)) tetrabenzoic acid (NAT), was synthesized. Firstly, NAT has very high selectivity and sensitivity for determination of Pd2+, because Pd2+ can coordinate well with carboxyl oxygen of NAT. The detection performance of Pd2+ is that the linear range is from 0.06 to 4.50 μM and the detection limit is 16.4 nM. Furthermore, the chelate (NAT-Pd2+) can continue to be used for quantitative determination of hydrazine hydrate with a linear range of 0.05-6.00 μM and the detection limit is 19.1 nM. The interaction time of NAT-Pd2+ and hydrazine hydrate is about 10 min. Of course, it also has good selectivity and strong anti-interference ability for many common metal ions, anions and amine like compounds. At last, the ability of NAT to quantitatively detect Pd2+ and hydrazine hydrate in actual samples has also been verified and the results are very satisfactory.
Collapse
Affiliation(s)
- Peng Ji
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Jingyang Li
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Weisi Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Bo Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
17
|
Mei D, Yan B. Numerical Recognition System and Ultrasensitive Fluorescence Sensing Platform for Al 3+ and UO 22+ Based on Ln (III)-Functionalized MOF-808 via Thiodiglycolic Acid Intermediates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16882-16894. [PMID: 36943811 DOI: 10.1021/acsami.3c00685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Continuous accumulation of Al3+ in the human body and unintended leakage of UO22+ have posed a great threat to human health and the global environment; thus searching an efficient probe for the detection of Al3+ and UO22+ is of great importance. Herein, we designed and synthesized two hydrolytically stable Eu3+- and Tb3+-functionalized MOF materials Eu@MOF-808-TDA and Tb@MOF-808-TDA via thiodiglycolic acid (TDA) intermediates by the postsynthetic modification method. Among them, Tb@MOF-808-TDA was applied to construct numerical recognition systems of multiples of three and four by the combination of fluorescent signals, hierarchical cluster analysis, and logical gates. In addition, Tb@MOF-808-TDA exhibits good selectivity and sensitivity for the detection of Al3+ and UO22+. The detection limit is calculated to be 0.085 ppm for Al3+ and 0.082 ppm for UO22+ in aqueous solutions, which is lower than or close to that of latest reported Ln-MOFs. Moreover, the probe shows excellent hydrolytic stability and luminescence stability in the pH range of 4-11, further providing solid evidence for the practical application of Tb@MOF-808-TDA. More importantly, a mixed matrix hydrogel PVA-Tb@MOF-808-TDA was prepared to achieve the visual detection of Al3+, which broadens the potential in real-world sensing applications.
Collapse
Affiliation(s)
- Douchao Mei
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
18
|
Zhang Z, Zhou J, Chen X, Fang F, Wang S, Zhang S, Du L, Zhao Q. SCSC Transformation and Post-Synthesis Modification of MOFs with Proton Conduction and Ratiometric Fluorescence-Sensing Properties. Inorg Chem 2023; 62:5972-5983. [PMID: 37015890 DOI: 10.1021/acs.inorgchem.2c04400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The modification of metal-organic framework (MOF) materials to facilitate their practical applications is an extremely challenging and meaningful topic. In this work, two stepwise modification strategies for MOFs were conducted. First, we have demonstrated a single-crystal-to-single-crystal (SCSC) transformation from a microporous three-dimensional (3D) MOF to a two-dimensional (2D) coordination polymer (CP). The centrosymmetric [Cd(3-bpdb)(MeO-ip)]n (1) transforms into a chiral [Cd2(3-bpdb)(MeO-ip)2(CH3OH)2]n (2), which is triggered by the reaction time with methanol that acts as a structure-directing agent. The conversion relationship of 1 to 2 at different reaction times was studied in detail. Density functional theory (DFT) calculations clearly state that the irreversible formation of 2 is thermodynamically favorable. Intriguingly, 2 exhibits good proton conduction of 1.34 × 10-3 S cm-1 under 363 K and 98% relative humidity (RH) due to unique H-bond network characteristics. To the best of our knowledge, there are very few cases of 3D to 2D SCSC transformation stimulated by reaction time. The results have important implications for understanding the SCSC transformation mechanism and synthetic chemistry. On the other hand, the lanthanide3+-functionalized hybrids (Ln3+-MOF), Ln3+@1, were continuously prepared by incorporating luminescent Ln3+ ions into the structure of 1 through encapsulating post-synthesis modification (PSM). Tb3+@1 exhibits double emission in water and shows visual ratiometric fluorescence behavior for sensing glutamic acid (Glu), tryptophan (Trp), and Al3+, which is more reliable and accurate than single emission. Our work may not only provide new insights into the multiple modification of MOF materials but also promote the practical application of such materials.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Xue Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Suoshu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Qihua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
19
|
A Ratiometric, Turn-on Chromo-fluorogenic Sensor for Sequential Detection of Aluminium Ions and Picric acid. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
20
|
Xie YQ, Han MM, Zhang YM, Chen H, Zhang HB, Ren CY, Li L, Wu R, Yao H, Shi XN, Lin Q, Wei TB. A novel fluorescent probe with high sensitivity for sequential detection of CN− and Al3+ in highly aqueous medium and its applications in living cell bioimaging. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Liu LJ, Liu Y, Cui GH, Fu L. Two chemically robust coordination polymers as fluorescent probes for effective sensing of sulfadiazine/ornidazole and Cd2+ ions. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
22
|
An BH, Lee TG, Khan TT, Seo HW, Hwang HJ, Jun YS. Optical and quantitative detection of cobalt ion using graphitic carbon nitride-based chemosensor for hydrometallurgy of waste lithium-ion batteries. CHEMOSPHERE 2023; 315:137789. [PMID: 36626953 DOI: 10.1016/j.chemosphere.2023.137789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
A hydrometallurgy is one of the most important techniques for recycling waste LIBs, where identifying the exact composition of the metal-leached solution is critical in controlling the metal extraction efficiency and the stoichiometry of the regenerated product. In this study, we report a simple and selective optical detection of high-concentrated Co2+ using a graphitic carbon nitride (g-CN)-based fluorescent chemosensor. g-CN is prepared by molten salt synthesis using dicyandiamide (DCDA) and LiI/KI. The mass ratio of LiI/KI to DCDA modifies the resulting g-CN (CNI) in terms of in-plane molecular distances of base sites including cyano functional groups (─CN) and fluorescent emission wavelength via nucleophilic substitution. The fluorescent sensing performance of CNIs is evaluated through photoluminescence (PL) emission spectroscopy in a broad Co2+ concentration range (10-4-100 M). The correlation between the surface exposure of hidden nitrogen pots (base sites) and PL intensity change is achieved where the linear relationship between the PL quenching and the logarithm of Co2+ concentration in the analyte solution is well established with the regression of 0.9959. This study will provide the design principle of the chemosensor suitable for the fast and accurate optical detection of Co2+ present in a broad concentration range for hydrometallurgy for the recycling of waste LIBs.
Collapse
Affiliation(s)
- Byeong-Hyeon An
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Gyu Lee
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tamal Tahsin Khan
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hye-Won Seo
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyun Jin Hwang
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Si Jun
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
23
|
Li D, Jia Y, Li Z, Liu L, Wu N, Hu M. Identification of folic acid and sulfaquinoxaline using a heterometallic Zn-Eu MOF as a sensor. Dalton Trans 2023; 52:696-702. [PMID: 36545891 DOI: 10.1039/d2dt03446h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A d-f heterometallic MOF using the 2,2'-bipyridine-4,4'-dicarboxylic acid ligand (H2LZ) was obtained by solvothermal synthesis, namely [EuZn(LZ)2(HCOO)(H2O)3]n (1). The structure analysis shows that compound 1 comprises heterometallic Zn2+ and Eu3+ ions, which are connected by LZ2- and HCOO- anions to form a three-dimensional framework. MOF 1 exhibited high stability of fluorescence intensity in the scope of pH 2-11 in an aqueous solution. Furthermore, MOF 1 served as an excellent selective sensing material for the detection of folic acid in the presence of some imitating materials of the human body and discerned sulfaquinoxaline in sulfonamide drugs with high sensitivity, selectivity, and reusability. Moreover, we designed and manufactured a sensor paper based on MOF 1 as a portable device for the visual detection of folic acid and sulfaquinoxaline. More crucially, this is the first example in which luminescent MOF is used to identify sulfaquinoxaline molecules in an aqueous solution. In addition, the luminescence sensing mechanisms of MOF 1 for the detection of the above analytes were explored in detail.
Collapse
Affiliation(s)
- Dechao Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Yuejiao Jia
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Zhang Li
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Lu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Nan Wu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| | - Ming Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials; School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
24
|
Li X, Qu H, Wang Y, Zhang X, Bai L, Wang Z. Fluorescent probe for detection of formaldehyde based on UiO-66-NH2. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
A novel multi-purpose convenient Al3+ ion fluorescent probe based on phenolphthalein. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Jiang QJ, Chuang PM, Wu JY. Fluorescence-Responsive Detection of Ag(I), Al(III), and Cr(III) Ions Using Cd(II) Based Pillared-Layer Frameworks. Int J Mol Sci 2022; 24:ijms24010369. [PMID: 36613812 PMCID: PMC9820227 DOI: 10.3390/ijms24010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Two Cd(II) based coordination polymers, {Cd3(btc)2(BTD-bpy)2]∙1.5MeOH∙4H2O}n (1) and [Cd2(1,4-ndc)2(BTD-bpy)2]n (2), where BTD-bpy = bis(pyridin-4-yl)benzothiadiazole, btc = benzene-1,3,5-tricarboxylate, and 1,4-ndc = naphthalene-1,4-dicarboxylate, were hydro(solvo)thermally synthesized. Compound 1 has a three-dimensional non-interpenetrating pillared-bilayer open framework with sufficient free voids of 25.1%, which is simplified to show a topological (4,6,8)-connected net with the point symbol of (324256)(344454628)(3442619728). Compound 2 has a three-dimensional two-fold interpenetrating bipillared-layer condense framework regarded as a 6-connected primitive cubic (pcu) net topology. Compounds 1 and 2 both exhibited good water stability and high thermal stability approaching 350 °C. Upon excitation, compounds 1 and 2 both emitted blue light fluorescence at 471 and 479 nm, respectively, in solid state and at 457 and 446 nm, respectively, in the suspension phase of H2O. Moreover, compounds 1 and 2 in the suspension phase of H2O both exhibited a fluorescence quenching effect in sensing Ag+, attributed to framework collapse, and a fluorescence enhancement response in sensing Al3+ and Cr3+, ascribed to weak ion-framework interactions, with high selectivity and sensitivity and low detection limit.
Collapse
|
28
|
Li SY, Yan X, Lei J, Ji WJ, Fan SC, Zhang P, Zhai QG. High-Performance Turn-On Fluorescent Metal-Organic Framework for Detecting Trace Water in Organic Solvents Based on the Excited-State Intramolecular Proton Transfer Mechanism. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55997-56006. [PMID: 36507798 DOI: 10.1021/acsami.2c19916] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Simple, fast, and sensitive detection of trace water in organic solvents is an urgent requirement for chemical industries. Herein, combining the unusual excited-state intramolecular proton transfer (ESIPT) mechanism with the effective strategy of pore space partition, for the first time, we construct a powerful fluorescent metal-organic framework (SNNU-301) probe with excellent water stability. The SNNU-301 probe shows a remarkable performance for turn-on ESIPT-based fluorescence response to water in nine common organic solvents, exhibiting wide linear ranges, low limit of detection values, and ultrafast response, especially in dimethyl sulfoxide (0-5.2%; 0.011%, v/v; 110 s). The typical ESIPT-sensitive linker 2,5-dihydroxyterephthalate (DHBDC) imparts it with discriminative detection properties via enol-keto tautomerism, and light-responsive triangular tri(pyridin-4-yl)-amine (TPA) realizes pore space partition. The theoretical calculation gives an in-depth explanation about the proton transfer mechanism. Comparative experiments and GCMC simulation provide evidence that the synergy of the ESIPT process and TPA of the framework further boosts its performance effectively. Definitely, this work not only offers a promising candidate with fast detection speed, high sensitivity, excellent universality, and visual observation for the determination of water in organic solvents but also provides valuable guidance for the design of high-performance fluorescent probes.
Collapse
Affiliation(s)
- Shu-Yi Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xin Yan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Jiao Lei
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Wen-Juan Ji
- School of Chemistry & Material Science, Shanxi Normal University, Linfen 041004, Shanxi, China
| | - Shu-Cong Fan
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Quan-Guo Zhai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
29
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
30
|
Si J, Xia HL, Zhou K, Li J, Xing K, Miao J, Zhang J, Wang H, Qu LL, Liu XY, Li J. Reticular Chemistry with Art: A Case Study of Olympic Rings-Inspired Metal-Organic Frameworks. J Am Chem Soc 2022; 144:22170-22177. [PMID: 36416791 DOI: 10.1021/jacs.2c09832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Herein, we demonstrate the successful utilization of reticular chemistry as an excellent designing strategy for the deliberate construction of a zirconium-tetracarboxylate metal-organic framework (MOF) inspired by the Olympic rings. HIAM-4017, with an unprecedented (4,8)-c underlying net topology termed jcs, was developed via insightful reconstruction of the rings and judicious design of a nonsymmetric organic linker. HIAM-4017 exhibits high porosity and excellent chemical and thermal stability. Furthermore, excited-state intramolecular proton transfer (ESIPT) was achieved in an isoreticular MOF, HIAM-4018, with a large Stokes shift of 155 nm as a result of introducing the hydroxyl group to the linker skeleton to induce OH···N interactions. Such interactions were analyzed thoroughly by employing the time-dependent density functional theory (TD-DFT). Because of their good thermal and chemical stability, and strong luminescence, nanosized HIAM-4017 and HIAM-4018 were fabricated and used for Cr2O72- detection. Both MOFs demonstrate excellent sensitivity and selectivity. This work represents a neat example of building structure- and property-specific MOFs guided by reticular chemistry.
Collapse
Affiliation(s)
- Jincheng Si
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P.R. China.,Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Kai Xing
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Jiafeng Miao
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P.R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, P.R. China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
31
|
Zhang Z, Li C, Bian Y, Han Y, Wang G. A new NCDs@ZIF-90-based sensor: fluorescent "turn-on" detection of Al 3+ ions with high selectivity and sensitivity. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:2193-2203. [PMID: 35999439 DOI: 10.1007/s43630-022-00288-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
Abstract
A new NCDs@ZIF-90 composite as fluorescence sensor was designed and prepared by encapsulation of N-doped carbon dots (NCDs) in metal-organic framework (MOF) ZIF-90 in one-pot synthesis. NCDs@ZIF-90 retained the crystal structure and high thermal stability of ZIF-90; meanwhile, it also displayed the good chemical stability. NCDs@ZIF-90 dispersion in ethanol exhibited selective "turn-on" fluorescence response towards Al3+. The other coexisting competing metal ions had no obvious influence on the sensing performance of NCDs@ZIF-90 for Al3+. The fluorescence intensity at 447 nm of NCDs@ZIF-90 dispersion in ethanol had good linear relation with the concentrations of Al3+ with a low detection limit of 3.196 μM. The fluorescence enhancement after the addition of Al3+ was attributed to the release of NCDs from the inside of ZIF-90 to ethanol solution. In addition, NCDs@ZIF-90 displayed good recovery in detection of Al3+ in water samples indicating its practical application capability. The high selectivity and sensitivity indicate that NCDs@ZIF-90 is a good candidate as a "turn-on" fluorescence chemosensor to identify and detect Al3+.
Collapse
Affiliation(s)
- Zhuo Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chen Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yuying Bian
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yuxin Han
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Guang Wang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
32
|
Metal-organic frameworks having hydroxy group: Nanoarchitectonics, preparation, and applications in adsorption, catalysis, and sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Rubina SR, Stalin PR, Meenatchi CS, Murugesan S, Kumar RR. Synthesis of epiminocyclohepta[b]pyrazolo[4,3-e]pyridines from tropinone: Fluorescent “Turn on–off” chemosensors for the sequential detection of Al3+, Cd2+ and Pb2+ in nanomolar concentration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Huang S, Han X, Liu Y, Huang P, Deng KY, Wu FY. A Reversible Fluorescent Probe Based on a Redox-Switchable Excited-State Intramolecular Proton-Transfer Active Metal-Organic Framework for Detection and Imaging of Highly Reactive Oxygen Species in Live Cells. ACS APPLIED BIO MATERIALS 2022; 5:5165-5173. [PMID: 36239223 DOI: 10.1021/acsabm.2c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Detection and imaging of highly reactive oxygen species (hROS) in biological systems using fluorescent probes are critical for the study of physiological and pathological processes induced by hROS. Herein, we report a redox-active luminescent metal-organic framework (MOF), which incorporates a hydroquinone moiety that can undergo a reversible transformation from the hydroquinone to the quinone by hROS like •OH and ClO-. Moreover, the intrinsic fluorescence originating from the excited-state intramolecular proton transfer (ESIPT) property of the organic linker can be finely regulated during this redox-switchable process. A reversible fluorescent probe for hROS is thus developed. The presented probe shows a sensitive, selective, and reversible response to hROS due to the integration of excellent structural characteristics and unique spectral properties of the MOF. The detection limits of •OH and ClO- are 0.22 and 0.18 μM, respectively. Furthermore, with good photostability and super biocompatibility, this simple yet efficient fluorescent probe has been successfully applied to dynamic monitoring of endogenous and exogenous •OH and ClO- in live cells.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xinhao Han
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Pengcheng Huang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Fang-Ying Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
35
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
36
|
Liaquat H, Imran M, Latif S, Hussain N, Bilal M. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants. ENVIRONMENTAL RESEARCH 2022; 214:113795. [PMID: 35803339 DOI: 10.1016/j.envres.2022.113795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/25/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The applications of conventional sensors are limited by the long response time, high cost, large detection limit, low sensitivity, complicated usage and low selectivity. These sensors are nowadays replaced by Nanocomposite-based modalities and nanomaterials which are known for their high selectivity and physical and chemical properties. These nanosensors effectively detect heavy metal contaminants in the environment as the discharge of heavy metals into natural water as a result of human activity has become a global epidemic. Exposure to these toxic metals might induce many health-related complications, including kidney failure, brain injury, immune disorders, muscle paleness, cardiac damage, nervous system impairment and limb paralysis. Therefore, designing and developing novel sensing systems for the detection and recognition of these harmful metals in various environmental matrices, particularly water, is of extremely important. Emerging nanotechnological approaches in the past two decades have played a key role in overcoming environmentally-related problems. Nanomaterial-based fabrication of chemical nanosensors has widely been applied as a powerful analytical tool for sensing heavy metals. Portability, high sensitivity, on-site detection capability, better device performance and selectivity are all advantages of these nanosensors. The detection and selectivity have been improved using molecular recognition probes for selective binding on different nanostructures. This study aims to evaluate the sensing properties of various nanomaterials such as metal-organic frameworks, fluorescent materials, metal-based nanoparticles, carbon-based nanomaterials and quantum dots and graphene-based nanomaterials and quantum dots for heavy metal ions recognition. All these nano-architectures are frequently served as effective fluorescence probes to directly (or by modification with some large or small biomolecules) sense heavy metal ions for improved selectivity. However, efforts are still needed for the simultaneous designing of multiple metal ion-based detection systems, exclusively in colorimetric or optical fluorescence nanosensors for heavy metal cations.
Collapse
Affiliation(s)
- Hina Liaquat
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
37
|
Li Q, Xu S, He L, Huang K, Zhang X, Qin D. A new zinc-organic framework with 1D channel for constructing a ratiometric Al 3+-selective sensor and four inputs INHIBIT logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121461. [PMID: 35691163 DOI: 10.1016/j.saa.2022.121461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
To develop Al3+ fluorescent sensor is significant because the abnormal levels of Al3+ in environment may pose great threat to human body. Herein, a novel metal-organic framework {Zn(Dpada)(Imdba)·H2O}n (Dpada = 3, 6-di(1H-imidazol-1-yl) pyridazine and Imdba = 2, 2'-iminodibenzoic acid), named Zn-MOF, has been architected with one-dimensional channel under hydrothermal conditions. Zn-MOF exhibits good thermal and solvent stability and can also keep structural integrity over the pH range of 5.0 - 9.0. Fluorescent experiments show that Zn-MOF has high selectivity and sensitivity towards Al3+ via ratiometric fluorescence signal changes (F470 nm/F390 nm) and the detection limit is evaluated to be 0.69 μM. In addition, Zn-MOF performs good recyclability in sensing of Al3+ with at least 5 cycles. Besides, an INHIBIT logic gate has been constructed with chemical ions (Al3+, Cr3+, Fe3+ and Hg2+) as input signals and emission ratio (F470 nm/F390 nm) as output signal. Significantly, Zn-MOF can be applied to tracing Al3+ using real water samples, presenting great potential in water quality monitoring application.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Siji Xu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Liangyu He
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Xiangyu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Dabin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
38
|
Wang X, Li L, Li L, Bu T, Yang K, Xia J, Sun X, Jiang H, Wang L. Tris(bipyridine)ruthenium(II)-functionalized metal-organic frameworks for the ratiometric fluorescence determination of aluminum ions. Mikrochim Acta 2022; 189:402. [PMID: 36190561 DOI: 10.1007/s00604-022-05504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 10/10/2022]
Abstract
A novel ratiometric fluorescence probe was designed for the determination of Al3+ by self-assembling of NH2-MIL-101(Fe) and [Ru(bpy)3]2+. Under the excitation wavelength of 360 nm, the NH2-MIL-101(Fe)@[Ru(bpy)3]2+ presented a dual-emitting luminescent property at 440 and 605 nm, respectively. In the presence of Al3+, the blue fluorescence of NH2-MIL-101(Fe)@[Ru(bpy)3]2+ at 440 nm was enhanced remarkably, while the red emission at 605 nm was almost not influenced. Therefore, taking the fluorescence at 440 nm as the report signal and 605 nm as the reference signal, quantitative determination was achieved for Al3+ concentration in the ranges 0.2-25 μM and 25-250 μM. The limit of detection (LOD) and limit of quantification (LOQ) were calculated to be 73 nM and 244 nM, respectively. The sensing mechanisms were studied by theoretical calculation and optical spectra. The analysis of real food samples confirmed the suitability of the proposed method. More importantly, portable fluorescent test papers were successfully manufactured to provide a strategy for visual, rapid, and on-site detection of Al3+.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Longwen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Kairong Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Junfang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Hong Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
39
|
Sánchez F, Gutiérrez M, Douhal A. Novel Approach for Detecting Vapors of Acids and Bases with Proton-Transfer Luminescent Dyes Encapsulated within Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42656-42670. [PMID: 36067454 DOI: 10.1021/acsami.2c10573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Luminescent metal-organic frameworks (LMOFs) are one of the most promising materials for being implemented as active layers in the fabrication of photonic devices such as luminescent sensors of harmful chemicals. It is highly desirable that these materials undergo quantifiable spectroscopic (absorption or emission) changes in the presence of vapors of those analytes, as in many industrial processes, these toxic compounds are in the gas phase. Although great progresses have been achieved in the field, in most of the examples reported hitherto, the detection of chemicals by LMOFs is attained in solution. Herein, we present a novel approach consisting of the encapsulation of proton transfer dyes (8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt, HPTS, and 3-hydroxyflavone, 3-HF) within the pores of two distinct MOFs. The trapped proton transfer dyes (PT-dyes) may exist as different structures (enol, anion, or zwitterion), each of these exhibiting unique optical properties. Indeed, our findings reveal that the dyes can be encapsulated as anionic or enol species. Remarkably, the PT-dye@MOF composites exhibit a high luminescence quantum yield (up to 30%), which is sensitive (showing shifting in the emission wavelengths with a concomitant quenching/enhancement of the intensity) in the presence of vapors of an acid (HCl) and a base (triethylamine). These results open a novel avenue for the development of smarter vapoluminescent MOF-based materials.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, Toledo 45071, Spain
| |
Collapse
|
40
|
Shekhovtsov NA, Nikolaenkova EB, Berezin AS, Plyusnin VF, Vinogradova KA, Naumov DY, Pervukhina NV, Tikhonov AY, Bushuev MB. Tuning ESIPT-coupled luminescence by expanding π-conjugation of a proton acceptor moiety in ESIPT-capable zinc(II) complexes with 1-hydroxy-1 H-imidazole-based ligands. Dalton Trans 2022; 51:15166-15188. [PMID: 36129344 DOI: 10.1039/d2dt02460h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emission of ESIPT-fluorophores is known to be sensitive to various external and internal stimuli and can be fine-tuned through substitution in the proton-donating and proton-accepting groups. The incorporation of metal ions in the molecules of ESIPT fluorophores without their deprotonation is an emerging area of research in coordination chemistry which provides chemists with a new factor affecting the ESIPT reaction and ESIPT-coupled luminescence. In this paper we present 1-hydroxy-5-methyl-4-(pyridin-2-yl)-2-(quinolin-2-yl)-1H-imidazole (HLq) as a new ESIPT-capable ligand. Due to the spatial separation of metal binding and ESIPT sites this ligand can coordinate metal ions without being deprotonated. The reactions of ZnHal2 with HLq afford ESIPT-capable [Zn(HLq)Hal2] (Hal = Cl, Br, I) complexes. In the solid state HLq and [Zn(HLq)Hal2] luminesce in the orange region (λmax = 600-650 nm). The coordination of HLq by Zn2+ ions leads to the increase in the photoluminescence quantum yield due to the chelation-enhanced fluorescence effect. The ESIPT process is barrierless in the S1 state, leading to the only possible fluorescence channel in the tautomeric form (T), S1T → S0T. The emission of [Zn(HLq)Hal2] in the solid state is blue-shifted as compared with HLq due to the stabilization of the ground state and destabilization of the excited state. In CH2Cl2 solutions, the compounds demonstrate dual emission in the UV (λmax = 358 nm) and green (λmax = 530 nm) regions. This dual emission is associated with two radiative deactivation channels in the normal (N) and tautomeric (T) forms, S1N → S0N and S1T → S0T, originating from two minima on the excited state potential energy surfaces. High energy barriers for the GSIPT process allow the trapping of molecules in the minimum of the tautomeric form, S0T, resulting in the possibility of the S0T → S1T photoexcitation and extraordinarily small Stokes shifts in the solid state. Finally, the π-system of quinolin-2-yl group facilitates the delocalization of the positive charge in the proton-accepting part of the molecule and promotes the ESIPT reaction.
Collapse
Affiliation(s)
- Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Victor F Plyusnin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia
| | - Katerina A Vinogradova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Dmitry Yu Naumov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Natalia V Pervukhina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Alexsei Ya Tikhonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| |
Collapse
|
41
|
Lo HY, Chuang PM, Liu YL, Wu JY. Structures, luminescent properties, and volatile iodine detection of Zn(II) based zigzag coordination chains. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Zhang Y, Zhang L. Smartphone-assisted paper-based multifunctional assay for on-site tandem detection of inorganic phosphate, neutral red and heparin. Talanta 2022; 247:123606. [DOI: 10.1016/j.talanta.2022.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
|
43
|
Li P, Li R, Wang K, Liu Q, Ren B, Ding Y, Guan R, Cao D. A julolidine-chalcone-based fluorescent probe for detection of Al 3+ in real water sample and cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121213. [PMID: 35398807 DOI: 10.1016/j.saa.2022.121213] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/19/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
A fluorescent probe 1 based on julolidine-chalcone derivative, which can specifically recognize aluminum ion with high selectivity and anti-interference, was developed. Probe 1 has good fluorescence stability and can detect Al3+ with turn-on fluorescence in a wide pH range of 4.0-9.0. The probe has good repeatability for the detection of Al3+ and fluorescence turn-on and off can be repeated with the alternate Al3+ and EDTA. The sensing mechanism is speculated that Al3+ will coordinate with hydroxyl oxygen and carbonyl oxygen on the probe through in situ 1H NMR and HRMS combing with Job's plot. The probe can also detect Al3+ in actual water samples and applied to monitor Al3+ in biological system.
Collapse
Affiliation(s)
- Panpan Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Runsen Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kangnan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baosheng Ren
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyu Ding
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Ruifang Guan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, Shandong, China.
| |
Collapse
|
44
|
Turn-on fluorescent detection of nickel and zinc ions by two related chemosensors containing naphthalimide ring(s). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Anomalous emission of an ESIPT-capable zinc(II) complex: an interplay of TADF, TICT and anti-Kasha behaviour. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Pal SC, Mukherjee D, Das MC. pH-Stable Luminescent Metal-Organic Frameworks for the Selective Detection of Aqueous-Phase Fe III and Cr VI Ions. Inorg Chem 2022; 61:12396-12405. [PMID: 35895324 DOI: 10.1021/acs.inorgchem.2c01793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 μM for Zn-MOF-1; 125.2 and 114.2/83.5 μM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
47
|
Shekhovtsov NA, Vinogradova KA, Vorobyova SN, Berezin AS, Plyusnin VF, Naumov DY, Pervukhina NV, Nikolaenkova EB, Tikhonov AY, Bushuev MB. N-Hydroxy- N-oxide photoinduced tautomerization and excitation wavelength dependent luminescence of ESIPT-capable zinc(II) complexes with a rationally designed 1-hydroxy-2,4-di(pyridin-2-yl)-1 H-imidazole ESIPT-ligand. Dalton Trans 2022; 51:9818-9835. [PMID: 35708132 DOI: 10.1039/d2dt01232d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of 1-hydroxy-1H-imidazoles to undergo proton transfer processes and to exist in N-hydroxy and N-oxide tautomeric forms can be used in coordination chemistry for the design of ESIPT-capable complexes. A series of ESIPT-capable zinc(II) complexes [Zn(HL)Hal2] (Hal = Cl, Br, I) with a rationally designed ESIPT-ligand 1-hydroxy-5-methyl-2,4-di(pyridin-2-yl)-1H-imidazole (HL) featuring spatially separated metal binding and ESIPT sites have been synthesized and characterized. Crystals of these compounds consist of a mixture of two isomers of [Zn(HL)Hal2]. Only a major isomer has a short intramolecular hydrogen bond O-H⋯N as a pre-requisite for ESIPT. In the solid state, the complexes [Zn(HL)Hal2] demonstrate temperature- and excitation wavelength dependent fluorescence in the cyan region due to the interplay of two intraligand fluorescence channels with excited state lifetimes spanning from 0.2 to 4.3 ns. The coordination of HL by Zn2+ ions results in an increase in the photoluminescence efficiency, and the photoluminescence quantum yields (PLQYs) of the complexes reach 12% at λex = 300 nm and 27% at λex = 400 nm in comparison with the PLQY of free HL of ca. 2%. Quantum chemical calculations indicate that N-hydroxy-N-oxide phototautomerization is both thermodynamically and kinetically favourable in the S1 state for [Zn(HL)Hal2]. The proton transfer induces considerable geometrical reorganizations and therefore results in large Stokes shifts of ca. 230 nm. In contrast, auxiliary ESIPT-incapable complexes [ZnL2][Zn(OAc)2]2·2H2O and [ZnL2][ZnCl2]2·4H2O with the deprotonated ligand exhibit excitation wavelength independent emission in the violet region with the Stokes shift reduced to ca. 130 nm.
Collapse
Affiliation(s)
- Nikita A Shekhovtsov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Katerina A Vinogradova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Sofia N Vorobyova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Alexey S Berezin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Victor F Plyusnin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of Russian Academy of Sciences, 3, Institutskaya str., Novosibirsk, 630090, Russia
| | - Dmitry Yu Naumov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Natalia V Pervukhina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| | - Elena B Nikolaenkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Alexsei Ya Tikhonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia
| | - Mark B Bushuev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russia.
| |
Collapse
|
48
|
Gutiérrez M, Zhang Y, Tan JC. Confinement of Luminescent Guests in Metal-Organic Frameworks: Understanding Pathways from Synthesis and Multimodal Characterization to Potential Applications of LG@MOF Systems. Chem Rev 2022; 122:10438-10483. [PMID: 35427119 PMCID: PMC9185685 DOI: 10.1021/acs.chemrev.1c00980] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/27/2022]
Abstract
This review gives an authoritative, critical, and accessible overview of an emergent class of fluorescent materials termed "LG@MOF", engineered from the nanoscale confinement of luminescent guests (LG) in a metal-organic framework (MOF) host, realizing a myriad of unconventional materials with fascinating photophysical and photochemical properties. We begin by summarizing the synthetic methodologies and design guidelines for representative LG@MOF systems, where the major types of fluorescent guest encompass organic dyes, metal ions, metal complexes, metal nanoclusters, quantum dots, and hybrid perovskites. Subsequently, we discuss the methods for characterizing the resultant guest-host structures, guest loading, photophysical properties, and review local-scale techniques recently employed to elucidate guest positions. A special emphasis is paid to the pros and cons of the various methods in the context of LG@MOF. In the following section, we provide a brief tutorial on the basic guest-host phenomena, focusing on the excited state events and nanoscale confinement effects underpinning the exceptional behavior of LG@MOF systems. The review finally culminates in the most striking applications of LG@MOF materials, particularly the "turn-on" type fluorochromic chemo- and mechano-sensors, noninvasive thermometry and optical pH sensors, electroluminescence, and innovative security devices. This review offers a comprehensive coverage of general interest to the multidisciplinary materials community to stimulate frontier research in the vibrant sector of light-emitting MOF composite systems.
Collapse
Affiliation(s)
- Mario Gutiérrez
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
- Departamento
de Química Física, Facultad de Ciencias Ambientales
y Bioquímica, INAMOL, Universidad
de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Yang Zhang
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| | - Jin-Chong Tan
- Multifunctional
Materials & Composites (MMC) Laboratory, Department of Engineering
Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United
Kingdom
| |
Collapse
|
49
|
Zhang M, Liang R, Li K, Chen T, Li S, Zhang Y, Zhang D, Chen X. Dual-emitting metal-organic frameworks for ratiometric fluorescence detection of fluoride and Al 3+ in sequence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120896. [PMID: 35121473 DOI: 10.1016/j.saa.2022.120896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Fluoride (F-) and Al3+ are two common ions existing in drinking water and natural water bodies. Excessive intake of F- can lead to serious health issues such as fluorosis and bone diseases while accumulated consumption of Al3+ may cause neurotoxicity-based diseases. Developing a fast, reliable, and sensitive sensor for visually detecting both F- and Al3+ is of great significance. In the present work, a ratiometric fluorescence sensor was constructed by incorporating rhodamine B (RhB) in situ into a zirconium-based metal-organic framework, UiO-66-NH2. The obtained nanocomposite UiO-66-NH2@RhB exhibited similar octahedral structure to UiO-66-NH2 with high BET surface area, and showed two emission peaks at 450 nm and 585 nm. The blue fluorescence from UiO-66-NH2 was enhanced by the addition of F- while subsequent Al3+ addition diminished the increased fluorescence intensity, and the red emission from RhB as the reference remained unchangeable to improve the detection precision. Under optimal conditions, detection of limits as low as 1.55 μM for F- and 0.54 μM for Al3+ in aqueous solution were achieved with good selectivity. High recoveries in drinking water samples were also acquired, showing potential applications of this ratiometric fluorescence sensor for practical evaluation of F- and Al3+.
Collapse
Affiliation(s)
- Min Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Rui Liang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Ke Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ting Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shuangjun Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yongming Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dieqing Zhang
- Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
50
|
Gogia A, Mandal SK. Subtle Ligand Spacer Change in 2D Metal-Organic Framework Sheets for Dual Turn-On/Turn-Off Sensing of Acetylacetone and Turn-On Sensing of Water in Organic Solvents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16357-16368. [PMID: 35348313 DOI: 10.1021/acsami.2c02798] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic framework (MOF)-based sensors for the detection of various analyte molecules has been a subject of absolute importance. However, most of these sensors rely on the turn-off (quenching) transduction response, while those reporting turn-on response are very rare. In this article, we have synthesized two new MOF-based sensors, {[Zn2(oxdz)2(tpbn)]·14H2O}n (1) and {[Zn2(oxdz)2(tpxn)]·10H2O·2C2H5OH}n (2), via the self-assembly of Zn(II) metal ions, a fluorogenic oxdz2- linker, and bis(tridentate) ligands (tpbn and tpxn) under ambient conditions. Their formation from such a self-assembly process has been evaluated on the basis of the geometry around the five-coordinated Zn(II), preferential meridional binding of the bis(tridentate) ligands, and diverse binding of the carboxylate groups in oxdz2-. Although 1 and 2 are isostructural, a difference in the transduction mechanism for the sensing of acetylacetone in organic solvents (turn-on for 1 and turn-off for 2) is observed and can be attributed to the spacer in the bis(tridentate) ligands. We have demonstrated the competing effect of the nonradiative interactions and photoinduced electron transfer toward the sensing mechanism. The results are well-supported by the Fourier transform infrared spectroscopy study, intensity versus concentration plots, spectral overlap measurements, time-resolved fluorescence studies, and MM2 and density functional theory calculations. Furthermore, we have showcased the utilization of 1 for the sensing of trace amounts of water in organic solvents.
Collapse
Affiliation(s)
- Alisha Gogia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli Post Office, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli Post Office, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|