1
|
Yan J, Cai Y, Zhang H, Han M, Liu X, Chen H, Cheng C, Lei T, Wang L, Wang H, Xiong S. Rapid Thermochromic and Highly Thermally Conductive Nanocomposite Based on Silicone Rubber for Temperature Visualization Thermal Management in Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7883-7893. [PMID: 38299449 DOI: 10.1021/acsami.3c17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.
Collapse
Affiliation(s)
- Junbao Yan
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Yuhan Cai
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hanwen Zhang
- Department of Mechanical Engineering, Faculty of Engineering, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Mingyue Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueyang Liu
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Haojie Chen
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Cui Cheng
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Tong Lei
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Luoxin Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Hua Wang
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| | - Siwei Xiong
- College of Materials Science and Engineering, Hubei Provincial Engineering Center of Industrial Fiber Preparation and Application, Wuhan Textile University, Wuhan 430200, Hubei China
| |
Collapse
|
2
|
Yi Z, Wang Z, Li Y, Wu D, Xue Y. Improving the Energy Storage Performance of All-Polymer Composites By Blending PVDF and P(VDF-CTFE). Macromol Rapid Commun 2023; 44:e2200728. [PMID: 36153830 DOI: 10.1002/marc.202200728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Organic film capacitors have incredibly high power density and have an irreplaceable position in pulsed power systems, high-voltage power transmission networks and other fields. At present, the energy storage density and energy storage efficiency of organic film capacitors are relatively low, resulting in excessive equipment volume. The performance of organic film capacitors is determined by polymer materials, so it is crucial to develop a polymer composite with high energy storage density and high charge-discharge efficiency. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) is incorporated into the polyvinylidene fluoride (PVDF) matrix by solution blending. The successful preparation of the all-polymer composite material solves the problems of low breakdown electric field strength, low discharge energy density, and low charge-discharge efficiency of high-dielectric ferroelectric materials. The discharge energy density of the PVDF/P(VDF-CTFE) (70/30) film is more than twice that of pure PVDF due to the increase of phases α and γ and the decrease of crystallinity. Under the breakdown electric field (380 kV mm-1 ), PVDF/P(VDF-CTFE) (70/30) film also has an ultrahigh energy storage efficiency of 64%. The relationship between the structure and properties of composite materials is investigated in this study, which has important implications for the development of capacitors with high energy storage density.
Collapse
Affiliation(s)
- Zhihui Yi
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Zhuo Wang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yanxin Li
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Dan Wu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Ying Xue
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
3
|
Long Y, Shi L, Wang Q, Qu H, Hao C, Lei Q. Effect of branched alumina on thermal conductivity of epoxy resin. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Dhumal U, Erigi U, Tripathy M. Polymer-mediated self-assembly, dispersion, and phase separation of Janus nanorods. Phys Chem Chem Phys 2022; 24:23634-23650. [PMID: 36134618 DOI: 10.1039/d2cp01743a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The challenge of stabilizing polymer nanocomposites lies in the fact that nanoparticles tend to phase separate from the polymer melt due to an entropic 'depletion attraction' between nanoparticles. Additionally, composites of polymer and nanorods show a decrease in miscibility with increasing nanorod aspect ratio [U. K. Sankar and M. Tripathy, Macromolecules, 2015, 48, 432-442; U. Erigi, U. Dhumal and M. Tripathy, J. Chem. Phys., 2021, 154, 124903]. In this work, we have studied the structure and phase behaviour of polymer-Janus nanorod mixtures using Polymer Reference Interaction Site Model (PRISM) theory and molecular dynamics simulations. The composite system of polymer and Janus nanorods of two different thicknesses, at various Janus nanorod densities, and for different interaction strengths between polymer and attractive sites of Janus nanorods (εpa), is investigated for their miscibility and self-assembly. At low Janus nanorod density, PRISM theory predicts transitions from the entropic depletion-driven contact aggregation of Janus nanorods to a well-dispersed phase to the bridging-driven phase separation of Janus nanorods, with increasing εpa. This behaviour is similar to earlier predictions for homogeneous nanorods. However, molecular dynamics simulations do not confirm the bridging-driven phase separation at high εpa predicted by PRISM theory. We find that both PRISM theory and molecular dynamics simulations are in agreement in the intermediate and high Janus nanorod density regimes. PRISM theory predicts, and simulations confirm, that at high Janus nanorod densities, the system undergoes a transition from depletion-driven macrophase separation to dispersion to chemical anisotropy-driven self-assembly with increasing εpa. The self-assembly at high εpa is mediated by the polymer. At intermediate Janus nanorod densities, the usual transition from an entropic depletion-driven macrophase separation to dispersion is predicted at low εpa. At high εpa, both PRISM theory and molecular dynamics simulations show transition to a state that is simultaneously macrophase separated and microphase separated (self-assembled).
Collapse
Affiliation(s)
- Umesh Dhumal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Umashankar Erigi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Mukta Tripathy
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
5
|
El‐Nemr KF, Ali MA, Gad YH, Gabr EM. Newsprint microcrystalline fibers reinforced styrene butadiene rubber as a low thermal conducting material: Effect of electron beam irradiation and fiber content. POLYM ENG SCI 2022; 62:1907-1917. [DOI: 10.1002/pen.25974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Abstract
AbstractThe present study focuses on utilizing polystyrene emulsion treated newsprint microcrystalline fibers (NPMCF). These treated fibers were then added to styrene‐butadiene rubber (SBR) at different concentrations, namely, 3, 6, 9, and 12 phr (part per hundred part of rubber). Mixing of ingredients was carried out on a rubber roll mill and afterward molded as a thin film on a hot press, then, exposed to electron beam irradiation doses up to 200 kGy so as to enhance the treatment of the composites. Mechanical properties of the composites, such as tensile strength, elongation at break, tensile modulus, and cross‐link density were enhanced by adding the treated fiber to SBR and by irradiation, and this enhancement was obtained at 6 phr fiber at 100 kGy. Measurements of scanning electron microscopy (SEM) proved the adhesion of the treated fibers to SBR. The thermal conductivity was measured for the prepared composites as a function of electron beam irradiation and fiber content. It was found that the thermal conductivity decreases according to fiber loading (up to 6 phr fiber) and irradiation dose.
Collapse
Affiliation(s)
- Khaled F. El‐Nemr
- Radiation Chemistry Department National Center for Radiation Research and Technology, Atomic Energy Authority Cairo Egypt
| | - Magdy A. Ali
- Radiation Chemistry Department National Center for Radiation Research and Technology, Atomic Energy Authority Cairo Egypt
| | - Yasser H. Gad
- Polymer Chemistry Department National Center for Radiation Research and Technology, Atomic Energy Authority Cairo Egypt
| | - Eman M. Gabr
- Processes Development Department Egyptian Petroleum Research Institute Cairo Egypt
| |
Collapse
|
6
|
Ruan M, Guo D, Zhu D, Liu Z. Bioinspired modification strategy to improve thermal conductivity and dielectric constant of natural rubber composite for thermal management applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.51949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengnan Ruan
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
- Tianjin Key Laboratory of Building Green Functional Materials Tianjin Chengjian University Tianjin China
| | - Dandan Guo
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
| | - Defu Zhu
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
| | - Zhifeng Liu
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
- Tianjin Key Laboratory of Building Green Functional Materials Tianjin Chengjian University Tianjin China
| |
Collapse
|
7
|
Sun DX, Gu T, Mao YT, Huang CH, Qi XD, Yang JH, Wang Y. Fabricating High-Thermal-Conductivity, High-Strength, and High-Toughness Polylactic Acid-Based Blend Composites via Constructing Multioriented Microstructures. Biomacromolecules 2022; 23:1789-1802. [PMID: 35344361 DOI: 10.1021/acs.biomac.2c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The massive accumulation of plastic waste has caused a serious negative impact on the human living environment. Replacing traditional petroleum-based polymers with biobased and biodegradable poly(l-lactic acid) (PLLA) is considered an effective way to solve this problem. However, it is still a great challenge to manufacture PLLA-based composites with high thermal conductivity and excellent mechanical properties via tailoring the microstructures of the blend composites. In the present work, a melt extrusion-stretching method is utilized to fabricate biodegradable PLLA/poly(butylene adipate-co-butylene terephthalate)/carbon nanofiber (PLLA/PBAT/CNF) blend composites. It is found that the incorporation of the extensional flow field induces the formation of multioriented microstructures in the composites, including the oriented PLLA molecular chains, elongated PBAT dispersed phase, and oriented CNFs, which synergistically improve the thermal conductivity and mechanical properties of the blend composites. At a CNF content of 10 wt %, the in-plane thermal conductivity, tensile strength, and elongation at break of the blend composite reach 1.53 Wm-1 K-1, 66.8 MPa, and 56.5%, respectively, which increased by 31.9, 73.5, and 874.1% compared with those of the conventionally hot-compressed sample (1.16 Wm-1 K-1, 38.5 MPa, and 5.8%, respectively). The main mechanism for the improved thermal conductivity is that the multioriented structure promotes the formation of a CNF thermal conductive network in the composites. The strengthening mechanism is attributed to the orientation of both PLLA molecular chains and CNFs in the stretching direction, restricting the movement of PLLA molecular segments around CNFs, and the toughening mechanism is due to the transformation of PLLA molecular chains from low-energy gt conformers to high-energy gg conformers induced by extensional flow field. More interestingly, after the extrusion-stretched samples are annealed, the oriented PLLA molecular chains form oriented crystal structures such as extended-chain lamellae, common "Shish-kebabs," and hybrid Shish-kebabs, which further enhance the thermal conductivity and heat resistance of the samples. This work reveals the effects of the orientation of the matrix molecular chains and crystallites on the thermal conductivity and mechanical properties of composites and provides a new way to prepare high-performance PLLA-based composites with high thermal conductivity, excellent mechanical properties, and high heat resistance.
Collapse
Affiliation(s)
- De-Xiang Sun
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Gu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Tong Mao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Chen-Hui Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiao-Dong Qi
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing-Hui Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
8
|
Yang Z, Yue D, Yao Y, Li J, Chi Q, Chen Q, Min D, Feng Y. Energy Storage Application of All-Organic Polymer Dielectrics: A Review. Polymers (Basel) 2022; 14:1160. [PMID: 35335491 PMCID: PMC8951409 DOI: 10.3390/polym14061160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 01/28/2023] Open
Abstract
With the wide application of energy storage equipment in modern electronic and electrical systems, developing polymer-based dielectric capacitors with high-power density and rapid charge and discharge capabilities has become important. However, there are significant challenges in synergistic optimization of conventional polymer-based composites, specifically in terms of their breakdown and dielectric properties. As the basis of dielectrics, all-organic polymers have become a research hotspot in recent years, showing broad development prospects in the fields of dielectric and energy storage. This paper reviews the research progress of all-organic polymer dielectrics from the perspective of material preparation methods, with emphasis on strategies that enhance both dielectric and energy storage performance. By dividing all-organic polymer dielectrics into linear polymer dielectrics and nonlinear polymer dielectrics, the paper describes the effects of three structures (blending, filling, and multilayer) on the dielectric and energy storage properties of all-organic polymer dielectrics. Based on the above research progress, the energy storage applications of all-organic dielectrics are summarized and their prospects discussed.
Collapse
Affiliation(s)
- Zhijie Yang
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Dong Yue
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Yuanhang Yao
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Jialong Li
- School of Material Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Qingguo Chi
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| | - Daomin Min
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yu Feng
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China; (Z.Y.); (Y.Y.); (Q.C.); (Q.C.)
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China
| |
Collapse
|
9
|
Yu H, Zheng Z, Hu B, Ye Z, Zhu X, Zhao Y, Wang H. Facile and scalable synthesis of functional Janus nanosheets - A polyethoxysiloxane assisted surfactant-free high internal phase emulsion approach. J Colloid Interface Sci 2022; 606:1554-1562. [PMID: 34500158 DOI: 10.1016/j.jcis.2021.08.128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/27/2021] [Accepted: 08/20/2021] [Indexed: 01/18/2023]
Abstract
HYPOTHESIS Janus nanosheets, which have two surfaces of different functionalities, exhibit unique interfacial properties. In this work, we propose a facile and scalable technique for preparation of silica-based Janus nanosheets, which is based on formation of high internal phase water-in-oil emulsions stabilized solely by alkyl-substituted polyethoxysiloxanes due to their hydrolysis-induced interfacial activity. EXPERIMENTS Janus nanosheets are then obtained by crushing the silica foams converted from such emulsions. The morphology of Janus nanosheets is investigated by field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The chemical structure of functional silica materials is characterized by Fourier transform infrared spectroscopy (FT-IR). The asymmetric structure of silica nanosheets is observed by confocal laser scanning microscopy. FINDINGS The resulting nanosheets have a rough hydrophobic surface and a smooth hydrophilic one, and are capable of stabilizing Pickering oil-in-water emulsions. Remarkably, pH-responsiveness of emulsions can be attained using the nanosheets whose hydrophilic surface is substituted with amino groups. Fast oil-water separation is achieved by the Janus nanosheets, which has been demonstrated by the nanosheets with a polystyrene-coated hydrophobic surface. This work paves a new avenue for large-scale production of functional silica-based Janus nanosheets suitable for numerous promising applications.
Collapse
Affiliation(s)
- Heng Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zheng Zheng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bintao Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhangfan Ye
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiaomin Zhu
- DWI-Leibniz-Institute for Interactive Materials e.V. and Institute for Technical and Macromolecular Chemistry of RWTH Aachen University, Aachen 52056, Germany.
| | - Yongliang Zhao
- Shanghai Dilato Materials Co., Ltd, Shanghai 200433, China
| | - Haitao Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Chen Y, Liang Y, Wang L, Guan M, Zhu Y, Yue X, Huang X, Lu G. Preparation and applications of freestanding Janus nanosheets. NANOSCALE 2021; 13:15151-15176. [PMID: 34486634 DOI: 10.1039/d1nr04284j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the family of Janus nanomaterials, Janus nanosheets possess not only the advantages of Janus nanomaterials, but also the advantages of two-dimensional nanosheets, endowing them with many extraordinary properties. Therefore, Janus nanosheets have great potential in the fields of interfacial engineering, catalysis, and molecular recognition. This review summarizes and discusses the recent advances in both the preparation and applications of freestanding Janus nanosheets. After a short introduction to different types of Janus nanosheets, a variety of methods for preparing freestanding Janus nanosheets are introduced, including the surface reaction, interface reaction, emulsion reaction, self-assembly, and stripping of non-Janus nanosheets, as well as selective grafting of existing Janus nanosheets. Then, the wide applications of Janus nanosheets in the fields of emulsification, catalysis, polymer reinforcement, nanomotors, and molecular recognition are summarized in detail. Finally, a discussion on the remaining challenges and future perspectives in this field is included. This review will not only deepen the understanding of Janus nanosheets, but also benefit the designs and fabrications of extraordinary and multi-functional Janus nanosheets.
Collapse
Affiliation(s)
- Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
11
|
Shang Z, Ding D, Wang X, Liu B, Chen Y, Gong L, Liu Z, Zhang Q. High thermal conductivity of self‐healing polydimethylsiloxane elastomer composites by the orientation of boron nitride nano sheets. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhihui Shang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| | - Dongliang Ding
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| | - Xu Wang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| | - Bingru Liu
- Queen Mary University of London Engineering School Northwestern Polytechnical University Xi'an China
| | - Yanhui Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| | - Lei Gong
- Ningbo Institute of Northwestern Polytechnical University Ningbo China
- Institute of Flexible Electronics Northwestern Polytechnical University Xi'an China
| | - Zhenguo Liu
- Ningbo Institute of Northwestern Polytechnical University Ningbo China
- Institute of Flexible Electronics Northwestern Polytechnical University Xi'an China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology Northwestern Polytechnical University Xi'an China
| |
Collapse
|
12
|
Li J, Cheng R, Cheng Z, Duan C, Wang B, Zeng J, Xu J, Tian X, Chen H, Gao W, Chen K. Silver-Nanoparticle-Embedded Hybrid Nanopaper with Significant Thermal Conductivity Enhancement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36171-36181. [PMID: 34275277 DOI: 10.1021/acsami.1c08894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopapers derived from nanofibrillated cellulose (NFC) are urgently required as attractive substrates for thermal management applications of electronic devices because of their lightweight, easy cutting, cost efficiency, and sustainability. In this paper, we provided a facile fabrication strategy to construct hybrid nanopapers composed of dialdehyde nanofibrillated cellulose (DANFC) and silver nanoparticles (AgNPs), which exhibited a favorable thermal conductivity property. AgNPs were in situ proceeded on the surface of DANFC by the silver mirror reaction inspired by the aldehyde groups. Owing to the intermolecular hydrogen bonds inside the hybrid nanopapers, the DANFC enables the uniform dispersion of AgNPs as well as promotes the formation of the hierarchical structure. It was found that the AgNPs-coated DANFC (DANFC/Ag) hybrid nanopapers could easily form an effective thermally conductive pathway for phonon transfer. As a result, the thermal conductivity (TC) of the obtained DANFC/Ag hybrid nanopapers containing only 1.9 vol % of Ag was 5.35 times higher than that of the pure NFC nanopapers along with a significantly TC enhancement per vol % Ag of 230.0%, which was supposed to benefit from the continuous heat transfer pathway constructed by the connection of AgNPs decorated on the cellulose nanofibers. The DANFC/Ag hybrid nanopapers possess potential applications as thermal management materials in the next-generation portable electronic devices.
Collapse
Affiliation(s)
- Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Rui Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Zheng Cheng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Xiaojun Tian
- SDIC Biotech Investment Co., Ltd., No. 147, Xizhimen Street, Xicheng District, Beijing 100034, China
| | - Haoying Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
13
|
Su HL, Xu L, Hu XJ, Chen FF, Li G, Yang ZK, Wang LP, Li HL. Polymer grafted mesoporous SBA-15 material synthesized via metal-free ATRP as pH-sensitive drug carrier for quercetin. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Wolska JM, Błażejewska A, Tupikowska M, Pociecha D, Górecka E. Gold nanoparticles grafted with chemically incompatible ligands. RSC Adv 2021; 11:9568-9571. [PMID: 35423469 PMCID: PMC8695456 DOI: 10.1039/d1ra00547b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/05/2021] [Accepted: 02/22/2021] [Indexed: 01/25/2023] Open
Abstract
Janus-type structures were obtained from gold nanoparticles grafted with two types of chemically incompatible mesogenic ligands with a strong tendency for nano-segregation. A lamellar arrangement, in which metallic nanoparticle-rich sublayers are separated by organic ligand-rich sublayers of various composition, was formed due to the ligand segregation process. The layers could be easily aligned by mechanical shearing; for most materials the layer normal was parallel to the shearing direction but perpendicular to the shearing gradient, such transverse mode is only rarely observed for lamellar materials. Reversible changes of layer thickness under UV light were observed due to the presence of an azo-moiety in the organic ligand molecules.
Collapse
Affiliation(s)
- Joanna M Wolska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Aleksandra Błażejewska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Martyna Tupikowska
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Damian Pociecha
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| | - Ewa Górecka
- Department of Chemistry, Warsaw University Pasteura 1 02-093 Warsaw Poland +48 22 822 0211
| |
Collapse
|
15
|
Incorporating MXene into Boron Nitride/Poly(Vinyl Alcohol) Composite Films to Enhance Thermal and Mechanical Properties. Polymers (Basel) 2021; 13:polym13030379. [PMID: 33530459 PMCID: PMC7865660 DOI: 10.3390/polym13030379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 11/16/2022] Open
Abstract
Aggregated boron nitride (ABN) is advantageous for increasing the packing and thermal conductivity of the matrix in composite materials, but can deteriorate the mechanical properties by breaking during processing. In addition, there are few studies on the use of Ti3C2 MXene as thermally conductive fillers. Herein, the development of a novel composite film is described. It incorporates MXene and ABN into poly(vinyl alcohol) (PVA) to achieve a high thermal conductivity. Polysilazane (PSZ)-coated ABN formed a heat conduction path in the composite film, and MXene supported it to further improve the thermal conductivity. The prepared polymer composite film is shown to provide through-plane and in-plane thermal conductivities of 1.51 and 4.28 W/mK at total filler contents of 44 wt.%. The composite film is also shown to exhibit a tensile strength of 11.96 MPa, which is much greater than that without MXene. Thus, it demonstrates that incorporating MXene as a thermally conductive filler can enhance the thermal and mechanical properties of composite films.
Collapse
|
16
|
Yin S, Xie Y, Li R, Zhang J, Zhou T. Polymer–Metal Hybrid Material with an Ultra-High Interface Strength Based on Mechanical Interlocking via Nanopores Produced by Electrochemistry. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shuya Yin
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Ruilong Li
- Coal Chemical Industry Technology Research Institute, Ningxia Coal Industry Co., Ltd., China Energy Group, Yinchuan 750411, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Chen X, Lim JSK, Yan W, Guo F, Liang YN, Chen H, Lambourne A, Hu X. Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16987-16996. [PMID: 32196306 DOI: 10.1021/acsami.0c04882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With the trend of device miniaturization and higher integration, polymer composites with high thermal conductivity are highly desirable for efficient removal of accumulated heat to maintain high performance of electronics. In this work, epoxy composites embedded with three-dimensional hexagonal boron nitride (BN) scaffold were fabricated. The BN-poly(vinylidene difluoride) (PVDF) scaffold was prepared by the salt template method using PVDF as the adhesive, while the corresponding epoxy composite was manufactured with vacuum-assisted impregnation. The epoxy/BN-PVDF composite exhibits high thermal conductivity with low loading of BN. The thermal conductivity of epoxy/BN-PVDF composite achieved 1.227 W/(m K) with 21 wt % BN, contributed by the constructed BN pathway held together by PVDF adhesive. In addition, PVDF could be further converted into carbon by thermal treatment, further enhancing the thermal conductivity of epoxy/BN-C composites through alleviating the phonon scattering at the interfaces, eventually obtaining thermal conductivity of 1.466 W/(m K). This type of epoxy-based composite with high thermal conductivity is promising to be used as thermal management materials in advanced electronic devices.
Collapse
Affiliation(s)
- Xuelong Chen
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Jacob Song Kiat Lim
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Weili Yan
- Rolls-Royce@NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Fang Guo
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
| | - Yen Nan Liang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141
| | - Hui Chen
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Alexis Lambourne
- Rolls-Royce plc. Central Technology Group, Moor Lane A2 (ML-118), Moor Lane, Derby, U.K
| | - Xiao Hu
- Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- School of Material Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141
| |
Collapse
|
18
|
Lin C, Zeng C, Wen Y, Gong F, He G, Li Y, Yang Z, Ding L, Li J, Guo S. Litchi-like Core-Shell HMX@HPW@PDA Microparticles for Polymer-Bonded Energetic Composites with Low Sensitivity and High Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4002-4013. [PMID: 31874021 DOI: 10.1021/acsami.9b20323] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reduction of interfacial interaction and the deterioration of mechanical properties by the introduction of the paraffin wax is a long-standing problem. To address it, a novel litchi-like core-shell 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX)@paraffin wax@polydopamine (PDA) structure was constructed with a new high melting point paraffin wax (HPW, 101.9 °C) as the inner shell and the bioinspired strong adhesive PDA as the exterior shell. The evolution of element states on the surface of energetic microcapsules conducted by X-ray photoelectron spectroscopy indicated the successful introduction of paraffin wax and PDA to form the core@double shell structure. Compared with the core@double shell particles based on the conventional low melting point paraffin wax (69.8 °C), the HMX@HPW@PDA particles demonstrated a 117% increase of impact energy EBAM from 6 J to 13 J by the Bundesanstalt für Materialprüfung (BAM) method. Attributed to the stronger interfacial interaction, the litchi-like core-shell HMX@paraffin wax@PDA-based energetic composites also exhibited much superior mechanical properties than that of the corresponding HMX@paraffin wax-based ones and could be equal to or even higher than that of the raw HMX-based ones. In addition, the β-δ phase transition temperature of HMX in HMX@HPW@PDA crystals was improved by 11.3 °C than that of raw HMX. The simplicity and scalability of the described approach provided a creative opportunity for design and fabrication of energetic composites with high safety performance and mechanical properties.
Collapse
Affiliation(s)
- Congmei Lin
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
- The State Key Laboratory of Polymer Materials Engineering , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Chengcheng Zeng
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Yushi Wen
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Feiyan Gong
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Guansong He
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Yubin Li
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Zhijian Yang
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Ling Ding
- Institute of Chemical Material , China Academy of Engineering Physics , Mianyang 621900 , China
| | - Jiang Li
- The State Key Laboratory of Polymer Materials Engineering , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering , Polymer Research Institute of Sichuan University , Chengdu 610065 , China
| |
Collapse
|
19
|
Han X, Liang X, Cai L, He A, Nie H. Amphiphilic Janus nanosheets by grafting reactive rubber brushes for reinforced rubber materials. Polym Chem 2019. [DOI: 10.1039/c9py00863b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An amphiphilic Janus nanosheet with different reactive rubber brushes on two opposite sides can simultaneously strengthen and toughen rubber blends.
Collapse
Affiliation(s)
- Xiao Han
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xincheng Liang
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Lei Cai
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Aihua He
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Huarong Nie
- Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization
- Key Laboratory of Rubber-Plastics (Ministry of Education)
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|