1
|
Otaegui J, Sultan D, Heo GS, Liu Y. Positron Emission Tomography Imaging of the Adaptive Immune System in Cardiovascular Diseases. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:209-224. [PMID: 40313531 PMCID: PMC12042138 DOI: 10.1021/cbmi.4c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
Cardiovascular diseases are the leading cause of death around the globe. In recent years, a crucial role of the immune system has been acknowledged in cardiac disease progression, opening the door for immunomodulatory therapies. To this ongoing change of paradigm, positron emission tomography (PET) imaging of the immune system has become a remarkable tool to reveal immune cell trafficking and monitor disease progression and treatment response. Currently, PET imaging of the immune system in cardiovascular disease mainly focuses on the innate immune system such as macrophages, while the immune cells of the adaptive immune system including B and T cells are less studied. This can be ascribed to the lack of radiotracers specifically binding to B and T cell biomarkers compatible with PET imaging within the cardiovascular system. In this review, we summarize current knowledge about the role of the adaptive immune system (e.g., B and T cells) in major cardiovascular diseases and introduce key biomarkers for specific targeting of these immune cells and their subpopulations. Finally, we present available radiotracers for these biomarkers and propose a pathway for developing probes or optimizing those already used in other fields (e.g., oncology) to make them compatible with the cardiovascular system.
Collapse
Affiliation(s)
- Jaume
Ramon Otaegui
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of
Radiology, Washington University, St. Louis, Missouri 63110, United States
| |
Collapse
|
2
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
3
|
Misra R, Sivaranjani A, Saleem S, Dash BR. Copper Nanoclusters as Novel Podium for Cancer Detection, Imaging, and Therapy Applications. Crit Rev Ther Drug Carrier Syst 2024; 41:51-80. [PMID: 37938190 DOI: 10.1615/critrevtherdrugcarriersyst.2023044994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Nanoclusters (NCs) are meticulously small, kinetically stable, crystalline materials which hold immense potential as multifaceted catalysts for a broad range of biomedical applications. Metal NCs are atomically precise and exist within the range of Fermi wavelength of electrons. They are highly advantageous as functional materials as their physicochemical properties can be customized to meet specific requirements. Copper NCs (CuNCs) are emerging as an efficient substitute to the other existing metal NCs. The synthesis of CuNCs is highly methodical, fast, cost effective and does not involve any complicated manipulation. On the contrary to gold and silver NCs, copper is a vital trace element for humans that can be excreted easily out the body. Further, the relatively inexpensiveness and easy availability of copper aids in potential nanotechnological applications in large quantity. As such, CuNCs have attracted great interest among the research community recently. The modern developments in the strategy, synthesis, surface modifications, and use of CuNCs in diagnosis of disease, imaging and treatment have been discussed in the present review. Approaches to regulate and augment the emission of CuNCs, challenges and drawbacks have also been considered. This review brings to light the multifarious applications of CuNCs and their potential as emerging theranostic agents. It is anticipated that the visions and directions for translating existing developments in CuNCs from the laboratory to the clinic can be further improved and enhanced.
Collapse
Affiliation(s)
- Ranjita Misra
- Department of Biotechnology, School of Sciences, Jain University, Bangalore, Karnataka, India
| | - A Sivaranjani
- Advanced Institute for Wildlife Conservation, Chennai, Tamil Nadu, India
| | - Suraiya Saleem
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| | - Bignya Rani Dash
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Xu H, Guo Z, Li M, Chaves HV, Pinto VDPT, Filho GC, Du M, Bezerra MM. Copper-Based Nanomaterials for Image-Guided Cancer Therapy. BIO INTEGRATION 2024; 5. [DOI: 10.15212/bioi-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Abstract
Cancer is a significant disease that poses a major threat to human health. Image-guided cancer therapy refers to a series of medical procedures that use imaging technology to precisely locate and treat cancer. Combining the dual characteristics of medical images and functional nanomaterial (NM) drug carriers, various integrated diagnosis and treatment probes have been developed for in vivo dynamic monitoring and therapeutic effect evaluation of drugs based on medical imaging. Copper (Cu)-based NMs have emerged as valuable products of nanotechnology due to their unique physicochemical properties, which are influenced by factors, such as size, shape, and surface properties. In the field of imaging, Cu-based NMs offer a combination of desirable characteristics, including fluorescence emission, contrast enhancement, and radiolabeling stability. These properties form the foundation for a wide range of imaging modalities. In addition, Cu-based NMs can be used as a carrier for diagnostic or therapeutic drugs and the synergistic effect of multiple therapeutic modalities can be realized by doping multiple transition metals into the heterostructures. These properties have become an important basis for imaging-guided therapy with Cu-based NMs. In this review we introduce biocompatible Cu-based NMs for image-guided cancer therapy and provide an overview of the promising outcomes in biomedical research.
Collapse
|
5
|
Zhao Q, Yu M, Du X, Li Y, Lv J, Jiang X, Chen X, Wang A, Yang X. The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer. Curr Pharm Biotechnol 2024; 26:132-142. [PMID: 38918976 DOI: 10.2174/0113892010301997240527162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype. METHODS Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity in vivo by the xenograft model. RESULTS FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment. CONCLUSION FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.
Collapse
Affiliation(s)
- Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, 1160 Shengli Street Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Miao Yu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Phase Ⅰ Clinical & Research Ward, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, China
| | - Xueqin Du
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yuan Li
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Juantao Lv
- Department of Pharmacy, Gansu Provincial Hospital, 204 West Donggang Road,Lanzhou 730000, Gansu, China
| | - Xianglai Jiang
- School of Basic Medicine Sciences and Life Sciences Hainan Medical University, 3 College Road, Haikou 571199, Hainan, China
| | - Xiaomei Chen
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Anqi Wang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Xiaojun Yang
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- The First Clinical Medical College of Lanzhou University, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment, National Health and Wellness Commission, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
6
|
Sadhu VA, Jha S, Park TJ, Kailasa SK. Synthesis of copper nanoclusters from Bacopa monnieri leaves for fluorescence sensing of dichlorvos. LUMINESCENCE 2023; 38:1872-1882. [PMID: 37555766 DOI: 10.1002/bio.4575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
In this work, a facile one-step green synthesis was developed for the fabrication of blue fluorescent copper nanocluster (Brahmi-CuNCs) from the extract of Bacopa monnieri (common name is Brahmi) via a microwave method. The as-prepared Brahmi-CuNCs emitted blue fluorescence at 452 nm when excited at 352 nm and showed a quantum yield of 31.32%. Brahmi-derived blue fluorescent CuNCs acted as a probe for fluorescence sensing of dichlorvos. Upon the addition of dichlorvos, the blue emission for Brahmi-CuNCs was gradually turned off, favouring establishment of a calibration graph in the range 0.5-100 μM with a detection limit of 0.23 μM. The as-synthesized Brahmi-CuNCs exhibited marked sensitivity and selectivity towards dichlorvos, favourable for assaying dichlorvos in various samples (cabbage, apple juice, and rice).
Collapse
Affiliation(s)
- Vibhuti Atulbhai Sadhu
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
7
|
Busi KB, Das S, Palanivel M, Ghosh KK, Gulyás B, Padmanabhan P, Chakrabortty S. Surface Ligand Influences the Cu Nanoclusters as a Dual Sensing Optical Probe for Localized pH Environment and Fluoride Ion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:529. [PMID: 36770489 PMCID: PMC9919789 DOI: 10.3390/nano13030529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Functional metal nanomaterials, especially in the nanocluster (NC) size regime, with strong fluorescence, aqueous colloidal stability, and low toxicity, necessitate their application potential in biology and environmental science. Here, we successfully report a simple cost-effective method for red-/green-color-emitting protein/amino-acid-mediated Cu NCs in an aqueous medium. As-synthesized Cu NCs were characterized through UV-Vis absorption spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence, dynamic light scattering, zeta potential, transmission electron microscopy and X-ray photoelectron spectroscopy. The optical properties of both Cu NCs responded linearly to the variation in pH in the neutral and alkaline ranges, and a robust pH reversible nature (between pH 7 and 11) was observed that could be extended to rapid, localized pH sensor development. However, a contrasting pH response nature between protein-Cu NCs and amino acid-Cu NCs was recorded. The alteration in protein secondary structure and strong binding nature of the surfactants were suggested to explain this behavior. Furthermore, we investigated their use as an efficient optical probe for fluoride ion detection. The limit of detection for protein-Cu NCs is 6.74 µM, whereas the limit of detection for amino acid-Cu NCs is 4.67 µM. Thus, it is anticipated that ultrasmall Cu NCs will exhibit promise in biological and environmental sensing applications.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, SRM University, Guntur 522240, Andhra Pradesh, India
| | - Subhalaxmi Das
- Department of Chemistry, SRM University, Guntur 522240, Andhra Pradesh, India
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore
- Cognitive Neuroimaging Centre, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | | |
Collapse
|
8
|
Choksi AU, Khan AI, Lokeshwar SD, Segal D, Weiss RM, Martin DT. Functionalized nanoparticles targeting biomarkers for prostate cancer imaging and therapy. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:142-153. [PMID: 35874285 PMCID: PMC9301064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Nanomedicine is an evolving field of scientific research with unique advantages and challenges for the detection and treatment of medical diseases. Since 1995, the FDA has approved the administration of nanoparticle-based therapies. The initial generation of nanoparticles relied on an enhanced permeability and retention effect, associated with an increased penetrability of tumor related blood vessels. With increasing knowledge of biomarkers and molecular targets, active targeting of circulating tumor cells by nanoparticles provides an exciting area for application. The selective targeting of prostate cancer cells using a nanotechnology-based mechanism has the potential to optimize the delivery of therapeutic payloads directly to prostate cancer cells while minimizing systemic toxicities. The molecular targets that have been studied include prostate specific membrane antigen, gastrin-releasing peptide protein, glucose related protein, CD44, claudin, C-X-C chemokine receptor type 4 (CXCR-4), and adenosine. The clinical potential for nanoparticle-based therapies is supported by several studies that have progressed past the preclinical stage into clinical trials. In this review, we present the molecular biomarkers that have been targeted by ligands conjugated to the surface of nanoparticles for prostate cancer imaging and therapy.
Collapse
Affiliation(s)
- Ankur U Choksi
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Amir I Khan
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Soum D Lokeshwar
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Daniel Segal
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Robert M Weiss
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| | - Darryl T Martin
- Department of Urology, Yale School of Medicine New Haven, CT, USA
| |
Collapse
|
9
|
Silver nanoclusters show advantages in macrophage tracing in vivo and modulation of anti-tumor immuno-microenvironment. J Control Release 2022; 348:470-482. [PMID: 35691499 DOI: 10.1016/j.jconrel.2022.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/16/2022]
Abstract
Macrophage-based nanomedicine represents an emerging powerful strategy for cancer therapy. Unfortunately, some obstacles and challenges limit the translational applications of macrophage-mediated nanodrug delivery system. For instance, tracking and effective cell delivery for targeted tumor sites remain to be overcome, and controlling the states of macrophages is still rather difficult due to their plastic nature in response to external stimuli. To address these critical issues, here, we reported a novel type of silver nanoclusters (AgNCs) with excellent fluorescent intensity, especially long-lasting cell labeling stability after endocytosis by macrophages, indicating promising applications in tracking macrophage-based nanomedicine delivery. Our mechanistic investigations uncovered that these merits originate from the escape of AgNCs from lysosomal degradation within macrophages. In addition, the AgNCs would prime the M1-like polarization of macrophages (at least in part) through the toll-like receptor 4 signaling pathway. The engineered macrophages laden with AgNCs could be employed for lung metastasis breast cancer treatment, showing the effective targeting propensity to metastatic tumors, remarkable regulation of tumor immune microenvironment and inhibition of tumor growth. Collectively, AgNC-trained macrophages appear to be a promising strategy for tumor immune-microenvironment regulation, which might be generalized to a wider spectrum of cancer therapeutics.
Collapse
|
10
|
Busi KB, Kotha J, Bandaru S, Ghantasala JP, Haseena S, Bhamidipati K, Puvvada N, Ravva MK, Thondamal M, Chakrabortty S. Engineering colloidally stable, highly fluorescent and nontoxic Cu nanoclusters via reaction parameter optimization. RSC Adv 2022; 12:17585-17595. [PMID: 35765449 PMCID: PMC9194929 DOI: 10.1039/d2ra02819k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/27/2022] [Indexed: 12/29/2022] Open
Abstract
Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Jyothi Kotha
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Shamili Bandaru
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | | - Sheik Haseena
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Keerti Bhamidipati
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
| | - Nagaprasad Puvvada
- Applied Biology Division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 Telangana India
- Department of Chemistry, Indrashil University Rajpur Mehsana-382740 Gujarat India
| | - Mahesh Kumar Ravva
- Department of Chemistry, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | - Manjunatha Thondamal
- Department of Biological Sciences, SRM University AP Andhra Pradesh Andhra Pradesh 522240 India
| | | |
Collapse
|
11
|
Najdian A, Amanlou M, Beiki D, Bitarafan-Rajabi A, Mirzaei M, Shafiee Ardestani M. Amino-Modified-Silica-Coated Gadolinium-Copper Nanoclusters, Conjugated to AS1411 aptamer and Radiolabeled with Technetium-99m as a Novel Multimodal Imaging Agent. Bioorg Chem 2022; 125:105827. [DOI: 10.1016/j.bioorg.2022.105827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
|
12
|
Chen X, Niu W, Du Z, Zhang Y, Su D, Gao X. 64Cu radiolabeled nanomaterials for positron emission tomography (PET) imaging. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Babu Busi K, Palanivel M, Kanta Ghosh K, Basu Ball W, Gulyás B, Padmanabhan P, Chakrabortty S. The Multifarious Applications of Copper Nanoclusters in Biosensing and Bioimaging and Their Translational Role in Early Disease Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:301. [PMID: 35159648 PMCID: PMC8839130 DOI: 10.3390/nano12030301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/14/2022] [Indexed: 02/04/2023]
Abstract
Nanoclusters possess an ultrasmall size, amongst other favorable attributes, such as a high fluorescence and long-term colloidal stability, and consequently, they carry several advantages when applied in biological systems for use in diagnosis and therapy. Particularly, the early diagnosis of diseases may be facilitated by the right combination of bioimaging modalities and suitable probes. Amongst several metallic nanoclusters, copper nanoclusters (Cu NCs) present advantages over gold or silver NCs, owing to their several advantages, such as high yield, raw abundance, low cost, and presence as an important trace element in biological systems. Additionally, their usage in diagnostics and therapeutic modalities is emerging. As a result, the fluorescent properties of Cu NCs are exploited for use in optical imaging technology, which is the most commonly used research tool in the field of biomedicine. Optical imaging technology presents a myriad of advantages over other bioimaging technologies, which are discussed in this review, and has a promising future, particularly in early cancer diagnosis and imaging-guided treatment. Furthermore, we have consolidated, to the best of our knowledge, the recent trends and applications of copper nanoclusters (Cu NCs), a class of metal nanoclusters that have been gaining much traction as ideal bioimaging probes, in this review. The potential modes in which the Cu NCs are used for bioimaging purposes (e.g., as a fluorescence, magnetic resonance imaging (MRI), two-photon imaging probe) are firstly delineated, followed by their applications as biosensors and bioimaging probes, with a focus on disease detection.
Collapse
Affiliation(s)
- Kumar Babu Busi
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| | - Mathangi Palanivel
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (M.P.); (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Gunntur, Andhra Pradesh 522502, India;
| |
Collapse
|
14
|
Zhang X, Detering L, Sultan D, Heo GS, Luehmann H, Taylor S, Choksi A, Rubin JB, Liu Y. C-X-C Chemokine Receptor Type 4-Targeted Imaging in Glioblastoma Multiforme Using 64Cu-Radiolabeled Ultrasmall Gold Nanoclusters. ACS APPLIED BIO MATERIALS 2022; 5:235-242. [PMID: 35014818 DOI: 10.1021/acsabm.1c01056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary malignant brain cancer in adults, and it carries a poor prognosis. Despite the current multimodality treatment, including surgery, radiation, and chemotherapy, the overall survival is still poor. Neurooncological imaging plays an important role in the initial diagnosis and prediction of the treatment response of GBM. Positron emission tomography (PET) imaging using radiotracers that target disease-specific hallmarks, which are both noninvasive and specific, has drawn much attention. C-X-C chemokine receptor 4 (CXCR4) plays an important role in neoangiogenesis and vasculogenesis, and, moreover, it is reported to be overexpressed in GBM, which is associated with poor patient survival; thus, CXCR4 can be an ideal candidate for PET imaging of GBM. Nanomaterials, which possess multifunctional capabilities, effective drug delivery, and favorable pharmacokinetics, are now being applied to improve the diagnosis and therapy of the most difficult-to-treat cancers. Herein, we engineered an ultrasmall, renal-clearable gold nanoclusters intrinsically radiolabeled with 64Cu (64Cu-AuNCs-FC131) for targeted PET imaging of CXCR4 in a U87 intracranial GBM mouse model. These targeted nanoclusters demonstrated specific binding to U87 cells with minimal cytotoxicity. The in vivo biodistribution showed favorable pharmacokinetics and efficient renal clearance. PET/computed tomography imaging of the U87 model revealed the effective delivery of 64Cu-AuNCs-FC131 into the tumors. In vivo toxicity studies demonstrated insignificant safety concerns at various dosages, indicating its potential as a useful platform for GBM imaging and drug delivery.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, Maryland 21201, United States
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
15
|
Chakravarty R, Chakraborty S. A review of advances in the last decade on targeted cancer therapy using 177Lu: focusing on 177Lu produced by the direct neutron activation route. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:443-475. [PMID: 35003885 PMCID: PMC8727880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Lutetium-177 [T½ = 6.76 d; Eβ (max) = 0.497 MeV; maximum tissue range ~2.5 mm; 208 keV γ-ray] is one of the most important theranostic radioisotope used for the management of various oncological and non-oncological disorders. The present review chronicles the advancement in the last decade in 177Lu-radiopharmacy with a focus on 177Lu produced via direct 176Lu (n, γ) 177Lu nuclear reaction in medium flux research reactors. The specific nuances of 177Lu production by various routes are described and their pros and cons are discussed. Lutetium, is the last element in the lanthanide series. Its chemistry plays a vital role in the preparation of a wide variety of radiopharmaceuticals which demonstrate appreciable in vivo stability. Traditional bifunctional chelators (BFCs) that are used for 177Lu-labeling are discussed and the upcoming ones are highlighted. Research efforts that resulted in the growth of various 177Lu-based radiopharmaceuticals in preclinical and clinical settings are provided. This review also summarizes the results of clinical studies with potent 177Lu-based radiopharmaceuticals that have been prepared using medium specific activity 177Lu produced by direct neutron activation route in research reactors. Overall, the review amply demonstrates the practicality of the medium specific activity 177Lu towards formulation of various clinically useful radiopharmaceuticals, especially for the benefit of millions of cancer patients in developing countries with limited reactor facilities.
Collapse
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Trombay, Mumbai 400085, India
- Homi Bhabha National Institute Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
16
|
Mu J, Peng Y, Shi Z, Zhang D, Jia Q. Copper nanocluster composites for analytical (bio)-sensing and imaging: a review. Mikrochim Acta 2021; 188:384. [PMID: 34664135 DOI: 10.1007/s00604-021-05011-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022]
Abstract
As an ideal substitute for traditional organic fluorescent dyes or up-conversion nanomaterials, copper nanoclusters (CuNCs) have developed rapidly and have been involved in exciting achievements in versatile applications. The emergence of novel CuNCs composites improves the poor stability and fluorescence intensity of CuNCs. With this in mind, great efforts have been made to develop a wide variety of CuNCs composites, and impressive progress has been made in the past few years. In this review, we systematically summarize absorption, fluorescence, electrochemiluminescence, and catalytic properties and focus on the multiple factors that affect the fluorescence properties of CuNCs. The fluorescence properties of CuNCs are discussed from the point of view of core size, surface ligands, self-assembly, metal defects, pH, solvent, ions, metal doping, and confinement effect. Especially, we illustrate the research progress and representative applications of CuNCs composites in bio-related fields, which have received considerable interests in the past years. Additionally, the sensing mechanism of CuNCs composites is highlighted. Finally, we summarize current challenges and look forward to the future development of CuNCs composites. Schematic diagram of the categories, possible sensing mechanisms, and bio-related applications of copper nanoclusters composites.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Peng
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dawei Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
17
|
Peng YJ, Huang H, Wang CJ. DFT investigation on electronic structure, chemical bonds and optical properties of Cu6(SR)6 nanocluster. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Huang QQ, Hu MY, Li YL, Chen NN, Li Y, Wei QH, Fu F. Novel ultrabright luminescent copper nanoclusters and application in light-emitting devices. Chem Commun (Camb) 2021; 57:9890-9893. [PMID: 34494033 DOI: 10.1039/d1cc03799d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two newly synthesized ultra-small copper nanoclusters, [Cu3(μ3-H)(μ2-dppy)4](ClO4)2 (1) and [Cu4(μ4-H)(μ2-dppy)4(μ2-Cl)2](ClO4) (2) (dppy = diphenyl-2-pyridylphosphine), have been shown to exhibit ultrabright yellow and yellow-green room-temperature phosphorescence (RTP) emission, with high quantum yields of 71.8% and 63.5%, respectively. Therefore, nanocluster 1 has been applied for the first time as a single component phosphor for yellow and white light-emitting diodes (LEDs) with favourable characteristics.
Collapse
Affiliation(s)
- Qiu-Qin Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Mei-Yue Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Li Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Nan-Nan Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Qiao-Hua Wei
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - FengFu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
19
|
Han B, Yan Q, Xin Z, Yan Q, Jiang J. Ionic
Liquids‐Assisted
Highly Luminescent Copper Nanoclusters with Triangle Supramolecular Nanostructures. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bingyan Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qin Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Ze Xin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Qifang Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| | - Jingmei Jiang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116023 China
- School of Chemical Engineering, Dalian University of Technology Panjin Liaoning 124221 China
| |
Collapse
|
20
|
Sultan D, Li W, Detering L, Heo GS, Luehmann HP, Kreisel D, Liu Y. Assessment of ultrasmall nanocluster for early and accurate detection of atherosclerosis using positron emission tomography/computed tomography. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102416. [PMID: 34147662 DOI: 10.1016/j.nano.2021.102416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022]
Abstract
The development of atherosclerosis therapy is hampered by the lack of molecular imaging tools to identify the relevant biomarkers and determine the dynamic variation in vivo. Here, we show that a chemokine receptor 2 (CCR2) targeted gold nanocluster conjugated with extracellular loop 1 inverso peptide (AuNC-ECL1i) determines the initiation, progression and regression of atherosclerosis in apolipoprotein E knock-out (ApoE-/-) mouse models. The CCR2 targeted 64Cu-AuNC-ECL1i reveals sensitive detection of early atherosclerotic lesions and progression of plaques in ApoE-/- mice. CCR2 targeting specificity was confirmed by the competitive receptor blocking studies. In a mouse model of aortic arch transplantation, 64Cu-AuNC-ECL1i accurately detects the regression of plaques. Human atherosclerotic tissues show high expression of CCR2 related to the status of the disease. This study confirms CCR2 as a useful marker for atherosclerosis and points to the potential of 64Cu-AuNC-ECL1i as a targeted molecular imaging probe for future clinical translation.
Collapse
Affiliation(s)
- Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Hannah P Luehmann
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University, St. Louis, MO, USA.
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA.
| |
Collapse
|
21
|
Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. NANOSCALE 2021; 13:6283-6340. [PMID: 33885518 DOI: 10.1039/d0nr08489a] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Atomically precise metal nanoclusters (MNCs) have gained tremendous research interest in recent years due to their extraordinary properties. The molecular-like properties that originate from the quantized electronic states provide novel opportunities for the construction of unique nanomaterials possessing rich molecular-like absorption, luminescence, and magnetic properties. The field of monolayer-protected metal nanoclusters, especially copper, with well-defined molecular structures and compositions, is relatively new, about two to three decades old. Nevertheless, the massive progress in the field illustrates the importance of such nanoobjects as promising materials for various applications. In this respect, nanocluster-based catalysts have become very popular, showing high efficiencies and activities for the catalytic conversion of chemical compounds. Biomedical applications of clusters are an active research field aimed at finding better fluorescent contrast agents, therapeutic pharmaceuticals for the treatment and prevention of diseases, the early diagnosis of cancers and other potent diseases, especially at early stages. A huge library of structures and the compositions of copper nanoclusters (CuNCs) with atomic precisions have already been discovered during last few decades; however, there are many concerns to be addressed and questions to be answered. Hopefully, in future, with the combined efforts of material scientists, inorganic chemists, and computational scientists, a thorough understanding of the unique molecular-like properties of metal nanoclusters will be achieved. This, on the other hand, will allow the interdisciplinary researchers to design novel catalysts, biosensors, or therapeutic agents using highly structured, atomically precise, and stable CuNCs. Thus, we hope this review will guide the reader through the field of CuNCs, while discussing the main achievements and improvements, along with challenges and drawbacks that one needs to face and overcome.
Collapse
Affiliation(s)
- Ani Baghdasaryan
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
22
|
Zhang X, Detering L, Sultan D, Luehmann H, Li L, Heo GS, Zhang X, Lou L, Grierson PM, Greco S, Ruzinova M, Laforest R, Dehdashti F, Lim KH, Liu Y. CC Chemokine Receptor 2-Targeting Copper Nanoparticles for Positron Emission Tomography-Guided Delivery of Gemcitabine for Pancreatic Ductal Adenocarcinoma. ACS NANO 2021; 15:1186-1198. [PMID: 33406361 PMCID: PMC7846978 DOI: 10.1021/acsnano.0c08185] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy with dire prognosis due to aggressive biology, lack of effective tools for diagnosis at an early stage, and limited treatment options. Detection of PDAC using conventional radiographic imaging is limited by the dense, hypovascular stromal component and relatively scarce neoplastic cells within the tumor microenvironment (TME). The CC motif chemokine 2 (CCL2) and its cognate receptor CCR2 (CCL2/CCR2) axis are critical in fostering and maintaining this kind of TME by recruiting immunosuppressive myeloid cells such as the tumor-associated macrophages, thereby presenting an opportunity to exploit this axis for both diagnostic and therapeutic purposes. We engineered CCR2-targeting ultrasmall copper nanoparticles (Cu@CuOx) as nanovehicles not only for targeted positron emission tomography imaging by intrinsic radiolabeling with 64Cu but also for loading and delivery of the chemotherapy drug gemcitabine to PDAC. This 64Cu-radiolabeled nanovehicle allowed sensitive and accurate detection of PDAC malignancy in autochthonous genetically engineered mouse models. The ultrasmall Cu@CuOx showed efficient renal clearance, favorable pharmacokinetics, and minimal in vivo toxicity. Systemic administration of gemcitabine-loaded Cu@CuOx effectively suppressed the progression of PDAC tumors in a syngeneic xenograft mouse model and prolonged survival. These CCR2-targeted ultrasmall nanoparticles offer a promising image-guided therapeutic agent and show great potential for translation.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lin Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiuli Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Lanlan Lou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Patrick M. Grierson
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suellen Greco
- Division of Comparative Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Marianna Ruzinova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
23
|
Zhang X, Ye D, Yang L, Yue Y, Sultan D, Pacia CP, Pang H, Detering L, Heo GS, Luehmann H, Choksi A, Sethi A, Limbrick DD, Becher OJ, Tai YC, Rubin JB, Chen H, Liu Y. Magnetic Resonance Imaging-Guided Focused Ultrasound-Based Delivery of Radiolabeled Copper Nanoclusters to Diffuse Intrinsic Pontine Glioma. ACS APPLIED NANO MATERIALS 2020; 3:11129-11134. [PMID: 34337344 PMCID: PMC8320805 DOI: 10.1021/acsanm.0c02297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an invasive pediatric brainstem malignancy exclusively in children without effective treatment due to the often-intact blood-brain tumor barrier (BBTB), an impediment to the delivery of therapeutics. Herein, we used focused ultrasound (FUS) to transiently open BBTB and delivered radiolabeled nanoclusters (64Cu-CuNCs) to tumors for positron emission tomography (PET) imaging and quantification in a mouse DIPG model. First, we optimized FUS acoustic pressure to open the blood-brain barrier (BBB) for effective delivery of 64Cu-CuNCs to pons in wildtype mice. Then the optimized FUS pressure was used to deliver radiolabeled agents in DIPG mouse. Magnetic resonance imaging (MRI)-guided FUS-induced BBTB opening was demonstrated using a low molecular weight, short-lived 68Ga-DOTA-ECL1i radiotracer and PET/CT before and after treatment. We then compared the delivery efficiency of 64Cu-CuNCs to DIPG tumor with and without FUS treatment and demonstrated the FUS-enhanced delivery and time-dependent diffusion of 64Cu-CuNCs within the tumor.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Dezhuang Ye
- Department of Mechanical Engineering and Material Science, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher Pham Pacia
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Hannah Pang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hannah Luehmann
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ankur Choksi
- School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Abhishek Sethi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University in St. Louis, Saint Louis, MO 63110, USA
| | - Oren J Becher
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yuan-Chuan Tai
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Abstract
Melanoma is an aggressive form of skin cancer with a very high mortality rate. Early diagnosis of the disease, the utilization of more potent pharmacological agents, and more effective drug delivery systems are essential to achieve an optimal treatment plan. The applications of nanotechnology to improve therapeutic efficacy and early diagnosis for melanoma treatment have received great interest among researchers and clinicians. In this review, we summarize the recent progress of utilizing various nanomaterials for theranostics of melanoma. The key importance of using nanomaterials for theranostics of melanoma is to improve efficacy and reduce side effects, ensuring safe implementation in clinical use. As opposed to conventional in vitro diagnostic methods, in vivo medical imaging technologies have the advantages of being a type of non-invasive, real-time monitoring. Several common nanoparticles, including ultrasmall superparamagnetic iron oxide nanoparticles, silica nanoparticles, and carbon-based nanoparticles, have been applied to deliver chemotherapeutic agents for the theranostics of melanoma. The application of nanomaterials for theranostics in molecular imaging (MRI, PET, US, OI, etc.) plays an important role in targeting drug delivery of melanoma, by monitoring the distribution site of the molecular imaging probe and the therapeutic drug in the body in real-time. Hence, it is worthwhile to anticipate the approval of these nanomaterials for theranostics in molecular imaging by the US Food and Drug Administration in clinical trials.
Collapse
|
25
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Facile Synthesis of Ultrastable Fluorescent Copper Nanoclusters and Their Cellular Imaging Application. NANOMATERIALS 2020; 10:nano10091678. [PMID: 32859115 PMCID: PMC7558839 DOI: 10.3390/nano10091678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Copper nanoclusters (Cu NCs) are generally formed by several to dozens of atoms. Because of wide range of raw materials and cheap prices, Cu NCs have attracted scientists’ special attention. However, Cu NCs tend to undergo oxidation easily. Thus, there is a dire need to develop a synthetic protocol for preparing fluorescent Cu NCs with high QY and better stability. Herein, we report a one-step method for preparing stable blue-green fluorescent copper nanoclusters using glutathione (GSH) as both a reducing agent and a stabilizing agent. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrospray ionization mass spectrometer (ESI-MS) were used to characterize the resulting Cu NCs. The as-prepared Cu NCs@GSH possess an ultrasmall size (2.3 ± 0.4 nm), blue-green fluorescence with decent quantum yield (6.2%) and good stability. MTT results clearly suggest that the Cu NCs@GSH are biocompatible. After incubated with EB-labeled HEK293T cells, the Cu NCs mainly accumulated in nuclei of the cells, suggesting that the as-prepared Cu NCs could potentially be used as the fluorescent probe for applications in cellular imaging.
Collapse
|
27
|
Zhao Z, Li Y. Developing fluorescent copper nanoclusters: Synthesis, properties, and applications. Colloids Surf B Biointerfaces 2020; 195:111244. [PMID: 32682274 DOI: 10.1016/j.colsurfb.2020.111244] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
Metal nanoclusters exhibit strong fluorescence emission, providing immense potential for developments in biological labeling and imaging. Copper nanoclusters in particular, due to their unique optical properties such as molecular-like absorption and strong luminescence, represent a novel fluorescent nanomaterial for sensing and bioimaging applications. This review describes research progress on Cu nanoclusters in recent years, investigating the synthesis techniques, their properties, and their promising applications. A concluding summary provides an outlook on the future research challenges for Cu nanoclusters and their corresponding synthesis techniques.
Collapse
Affiliation(s)
- Zhiyuan Zhao
- Institute of New Energy on Chemical Storage and Power Sources, College of Applied Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224000, China.
| | - Yitong Li
- Meteorological Station of Jilin Province, Changchun, 130062, China
| |
Collapse
|
28
|
An Y, Ren Y, Bick M, Dudek A, Hong-Wang Waworuntu E, Tang J, Chen J, Chang B. Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosens Bioelectron 2020; 154:112078. [DOI: 10.1016/j.bios.2020.112078] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
|
29
|
A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters. Mikrochim Acta 2020; 187:240. [DOI: 10.1007/s00604-020-4186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
|
30
|
English SJ, Sastriques SE, Detering L, Sultan D, Luehmann H, Arif B, Heo GS, Zhang X, Laforest R, Zheng J, Lin CY, Gropler RJ, Liu Y. CCR2 Positron Emission Tomography for the Assessment of Abdominal Aortic Aneurysm Inflammation and Rupture Prediction. Circ Cardiovasc Imaging 2020; 13:e009889. [PMID: 32164451 PMCID: PMC7101060 DOI: 10.1161/circimaging.119.009889] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The monocyte chemoattractant protein-1/CCR2 (chemokine receptor 2) axis plays an important role in abdominal aortic aneurysm (AAA) pathogenesis, with effects on disease progression and anatomic stability. We assessed the expression of CCR2 in a rodent model and human tissues, using a targeted positron emission tomography radiotracer (64Cu-DOTA-ECL1i). METHODS AAAs were generated in Sprague-Dawley rats by exposing the infrarenal, intraluminal aorta to PPE (porcine pancreatic elastase) under pressure to induce aneurysmal degeneration. Heat-inactivated PPE was used to generate a sham operative control. Rat AAA rupture was stimulated by the administration of β-aminopropionitrile, a lysyl oxidase inhibitor. Biodistribution was performed in wild-type rats at 1 hour post tail vein injection of 64Cu-DOTA-ECL1i. Dynamic positron emission tomography/computed tomography imaging was performed in rats to determine the in vivo distribution of radiotracer. RESULTS Biodistribution showed fast renal clearance. The localization of radiotracer uptake in AAA was verified with high-resolution computed tomography. At day 7 post-AAA induction, the radiotracer uptake (standardized uptake value [SUV]=0.91±0.25) was approximately twice that of sham-controls (SUV=0.47±0.10; P<0.01). At 14 days post-AAA induction, radiotracer uptake by either group did not significantly change (AAA SUV=0.86±0.17 and sham-control SUV=0.46±0.10), independent of variations in aortic diameter. Competitive CCR2 receptor blocking significantly decreased AAA uptake (SUV=0.42±0.09). Tracer uptake in AAAs that subsequently ruptured (SUV=1.31±0.14; P<0.005) demonstrated uptake nearly twice that of nonruptured AAAs (SUV=0.73±0.11). Histopathologic characterization of rat and human AAA tissues obtained from surgery revealed increased expression of CCR2 that was co-localized with CD68+ macrophages. Ex vivo autoradiography demonstrated specific binding of 64Cu-DOTA-ECL1i to CCR2 in both rat and human aortic tissues. CONCLUSIONS CCR2 positron emission tomography is a promising new biomarker for the noninvasive assessment of AAA inflammation that may aid in associated rupture prediction.
Collapse
MESH Headings
- Aneurysm, Ruptured/diagnosis
- Aneurysm, Ruptured/genetics
- Aneurysm, Ruptured/metabolism
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/diagnosis
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Biomarkers/metabolism
- Fluorodeoxyglucose F18/pharmacology
- Gene Expression Regulation
- Male
- Positron-Emission Tomography/methods
- Prognosis
- RNA/genetics
- Radiopharmaceuticals/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, CCR2/biosynthesis
- Receptors, CCR2/genetics
Collapse
Affiliation(s)
- Sean J. English
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Sergio E. Sastriques
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Lisa Detering
- Department of Radiology, Washington University, St. Louis, MO
| | - Deborah Sultan
- Department of Radiology, Washington University, St. Louis, MO
| | - Hannah Luehmann
- Department of Radiology, Washington University, St. Louis, MO
| | - Batool Arif
- Department of Surgery, Section of Vascular Surgery, Washington University, St. Louis, MO
| | - Gyu Seong Heo
- Department of Radiology, Washington University, St. Louis, MO
| | - Xiaohui Zhang
- Department of Radiology, Washington University, St. Louis, MO
| | | | - Jie Zheng
- Department of Radiology, Washington University, St. Louis, MO
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | | | - Yongjian Liu
- Department of Radiology, Washington University, St. Louis, MO
| |
Collapse
|
31
|
Lai WF, Wong WT, Rogach AL. Development of Copper Nanoclusters for In Vitro and In Vivo Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906872. [PMID: 31975469 DOI: 10.1002/adma.201906872] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Indexed: 05/24/2023]
Abstract
Theranostics refers to the incorporation of therapeutic and diagnostic functions into one material system. An important class of nanomaterials exploited for theranostics is metal nanoclusters (NCs). In contrast to gold and silver NCs, copper is an essential trace element for humans. It can be more easily removed from the body. This, along with the low cost of copper that offers potential large-scale nanotechnology applications, means that copper NCs have attracted great interest in recent years. The latest advances in the design, synthesis, surface engineering, and applications of copper NCs in disease diagnosis, monitoring, and treatment are reviewed. Strategies to control and enhance the emission of copper NCs are considered. With this synopsis of the up-to-date development of copper NCs as theranostic agents, it is hoped that insights and directions for translating current advances from the laboratory to the clinic can be further advanced and accelerated.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, P. R. China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, P. R. China
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
32
|
Li D, Kumari B, Zhang X, Wang C, Mei X, Rotello VM. Purification and separation of ultra-small metal nanoclusters. Adv Colloid Interface Sci 2020; 276:102090. [PMID: 31895988 PMCID: PMC6961975 DOI: 10.1016/j.cis.2019.102090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Metal nanoclusters (NCs) are ultra-small nanoparticles intermediate in size between small molecule complexes and nanoparticles. NCs with tunable surface functionality feature unique physical and chemical properties, however these properties are frequently compromised by the presence of undesired components such as excess ligands or mixtures of NCs. In a typical synthesis process, different NCs can be formed with varying numbers of metal atoms and/or ligands, and even NCs with the same number of metal atoms and ligands can have different spatial structures. The separation of pure NCs is important because different species have distinct optical and catalytic behavior. However, NCs can be difficult to purify or separate for a range of reasons. In this review, we discuss established and emerging approaches for NC purification/separation, with a focus on choosing the appropriate method depending on NC and application.
Collapse
Affiliation(s)
- Dan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Beena Kumari
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA; Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA
| | - Cuiping Wang
- Key Laboratory for Functional Material, University of Science and Technology Liaoning, Anshan 114051, China
| | - Xifan Mei
- Department of Basic Science, Jinzhou Medical University, Jinzhou 121001, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst 01002, USA.
| |
Collapse
|
33
|
Kawawaki T, Negishi Y, Kawasaki H. Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. NANOSCALE ADVANCES 2020; 2:17-36. [PMID: 36133985 PMCID: PMC9417545 DOI: 10.1039/c9na00583h] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/17/2019] [Indexed: 05/06/2023]
Abstract
Owing to the rapidly increasing demand for sustainable technologies in fields such as energy, environmental science, and medicine, nanomaterial-based photo/electrocatalysis has received increasing attention. Recently, synthetic innovations have allowed the fabrication of atomically precise metal nanoclusters (NCs). These NCs show potential for green energy and medical applications. The present article primarily focuses on evaluation of the recent developments in the photo/electrocatalytic and photosensitizing characteristics of metal and alloy NCs. The review comprises two sections: (i) photo/electrocatalysis for green energy and (ii) photosensitization for biomedical therapy applications. Finally, the challenges associated with the use of metal NCs are presented on the basis of current developments.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku Tokyo 162-8601 Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University Suita-shi Osaka 564-8680 Japan
| |
Collapse
|
34
|
Heo GS, Cho S, Wooley KL. Preparation of Degradable Polymeric Nanoparticles with Various Sizes and Surface Charges from Polycarbonate Block Copolymers. Macromol Res 2019. [DOI: 10.1007/s13233-020-8044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Recent progress in copper nanocluster-based fluorescent probing: a review. Mikrochim Acta 2019; 186:670. [PMID: 31489488 DOI: 10.1007/s00604-019-3747-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Copper nanoclusters (CuNCs) are an attractive alternative to other metal nanoclusters. The synthesis of CuNCs is highly efficient and fast, with low-cost and without any complicated manipulation. Because of their tunable fluorescence and low toxicity, CuNCs have been highly exploited for biochemical sensing. This review (with 172 refs.) summarizes the progress that has been made in the field in the past years. Following an introduction into the fundamentals of CuNCs, the review first focuses on synthetic methods and the fluorescence properties of CuNCs (with subsections on the use of proteins, peptides, DNA and other molecules as templates). This is followed by a section on the use of CuNCs in fluorometric assays, with subsections on the detection of small molecules, proteins, nucleic acids, various other biomolecules including drugs, and of pH values. A further large chapter summarizes the work related to environmental analyses, specifically on determination of metal ions, anions and pollutants. Graphical abstract Schematic representation of the synthesis and potential applications of copper nanocluster (CuNCs) in biochemical analysis, emphatically reflected in some vital areas such as small molecule analysis, biomacromolecule monitoring, cell imaging, ions detection, toxic pollutant, etc.
Collapse
|