1
|
Zhang S, Zhang S, Zhu P, Li J, Li Y, Zhou C, Qiu Q, Jing X, Paik KW, He P. Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding. Adv Colloid Interface Sci 2024; 335:103336. [PMID: 39547126 DOI: 10.1016/j.cis.2024.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Due to the swift advancement of the electronic industry and information technology, electromagnetic wave absorption materials are gaining significance in the field of intelligent equipment and weaponry. Nanomaterials were developed to investigate wave absorbing materials that can achieve both impedance matching and attenuation balance. Nanomaterials possess the properties of being thin, lightweight, and capable of absorbing microwave radiation across a wide range of frequencies. This work aims to present a systematic overview of the recent advancements in core-shell materials, specifically carbon, oxide, and sulfide nanomaterials, with regards to their applications in electromagnetic absorption and electromagnetic shielding. This review intends to emphasize the core principles of electromagnetic interference (EMI) shielding and microwave absorption in different systems documented in the literature, along with diverse methods of synthesis and fabrication for creating effective wideband electromagnetic absorbers/shields. Lastly, we also endeavor to offer a comprehensive view and insight into the areas where future research will thrive. This study provides a comprehensive assessment of the current advancements in the field of microwave absorption and electromagnetic shielding of nanomaterials.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Shuye Zhang
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| | - Pengyu Zhu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayi Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Yifei Li
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Chenglong Zhou
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Qingyang Qiu
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyi Jing
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Kyung-Wook Paik
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - Peng He
- State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute, Harbin Institute of Technology, Chongqing 401135, China.
| |
Collapse
|
2
|
Sun C, Lan D, Jia Z, Gao Z, Wu G. Kirkendall Effect-Induced Ternary Heterointerfaces Engineering for High Polarization Loss MOF-LDH-MXene Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405874. [PMID: 39206598 DOI: 10.1002/smll.202405874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Heterogeneous interfacial engineering has garnered widespread attention for optimizing polarization loss and enhancing the performance of electromagnetic wave absorption. A novel Kirkendall effect-assisted electrostatic self-assembly method is employed to construct a metal-organic framework (MOF, MIL-88A) decorated with Ni-Fe layered double hydroxide (LDH), forming a multilayer nano-cage coated with Ti3C2Tx. By modulating the surface adsorption of Ti3C2Tx on LDH, the heterointerfaces in MOF-LDH-MXene ternary composites exhibit excellent interfacial polarization loss. Additionally, the Ni-Fe LDH@Ti3C2Tx nano-cage exhibits a large specific surface area, abundant defects, and a large number of heterojunction structures, resulting in excellent electromagnetic wave absorption performance. The MIL-88A@Ni-Fe LDH@Ti3C2Tx-1.0 nano-cage achieves a reflection loss value of -46.7 dB at a thickness of 1.4 mm and an effective absorption bandwidth of 5.12 GHz at a thickness of 1.8 mm. The heterojunction interface composed of Ni-Fe LDH and Ti3C2Tx helps to enhance polarization loss. Additionally, Ti3C2Tx forms a conductive network on the surface, while the cavity between the MIL-88A core and the Ni-Fe LDH shell facilitates multiple attenuations by increasing the transmission path of internal incident waves. This work may reveal a new structural design of multi-component composites by heterointerfaces engineering for electromagnetic wave absorption.
Collapse
Affiliation(s)
- Chunhua Sun
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenguo Gao
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Base of New Fiber Materials and Modern Textile, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
3
|
Ning Y, Lv J, Li Y, Ming S, Li S, Zhen S, Yin G, Jia H, Zhang J, Lu M. Pressure-Induced Molding of Black Phosphorus@Ti 3C 2T x Composite Electrode and Its Implications on the Lithium Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54017-54027. [PMID: 39327257 DOI: 10.1021/acsami.4c13036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
For the first time, an innovative pressure quenching technique is used to create the integrated electrode of the black phosphorus (BP) @Ti3C2Tx composite material, doing away with the requirement for adhesive additives and simplifying time-consuming processes. Through the formation of Ti-O-P bonds with BP, Ti3C2Tx MXenes can function as conductive additives and affect the interlayer gap. Additionally, we have found that there is a critical synthetic pressure threshold (300 kN) at which the performance of BP@Ti3C2Tx-integrated electrodes can be improved: too high of a pressure prevents lithium-ion transport because of mesopore reduction; too low of a pressure prevents Ti-O-P chemical bond formation between the two components; and suboptimal pressure does not allow for density enhancement for better electron conduction. The integrated electrode produced at 300 kN shows a discharge capacity of about 724.9 mA h/g at 0.1 A/g current density after 100 cycles, which is much larger than that obtained at 50 kN (270.2 mA h/g). Furthermore, the capacity can remain steady at 560.74 mA h/g even after 500 lengthy cycles at the high current density of 0.5 A/g. Significantly lower resistance (1.10 × 102 Ω at 300 kN; 2.02 × 103 Ω at 50 kN) and faster reaction kinetics are responsible for this improvement. This study offers a new, straightforward, and broadly useful technique for creating integrated electrodes and BP-based composite materials.
Collapse
Affiliation(s)
- Yunyu Ning
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- The Joint Laboratory of MXene Materials, Jilin Normal University & Jilin 11 Technology Co., Ltd., Changchun 130103, China
| | - Juncheng Lv
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- The Joint Laboratory of MXene Materials, Jilin Normal University & Jilin 11 Technology Co., Ltd., Changchun 130103, China
| | - Yuqing Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Shuoyang Ming
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Siqi Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Siqi Zhen
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Guangchao Yin
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Hongsheng Jia
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Junkai Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- The Joint Laboratory of MXene Materials, Jilin Normal University & Jilin 11 Technology Co., Ltd., Changchun 130103, China
| | - Ming Lu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- The Joint Laboratory of MXene Materials, Jilin Normal University & Jilin 11 Technology Co., Ltd., Changchun 130103, China
| |
Collapse
|
4
|
Huan X, Li H, Song Y, Luo J, Liu C, Xu K, Geng H, Guo X, Chen C, Zu L, Jia X, Zhou J, Zhang H, Yang X. Charge Dynamics Engineering Sparks Hetero-Interfacial Polarization for an Ultra-Efficient Microwave Absorber with Mechanical Robustness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306104. [PMID: 37775948 DOI: 10.1002/smll.202306104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/13/2023] [Indexed: 10/01/2023]
Abstract
Microwave absorbers with high efficiency and mechanical robustness are urgently desired to cope with more complex and harsh application scenarios. However, manipulating the trade-off between microwave absorption performance and mechanical properties is seldom realized in microwave absorbers. Here, a chemistry-tailored charge dynamic engineering strategy is proposed for sparking hetero-interfacial polarization and thus coordinating microwave attenuation ability with the interfacial bonding, endowing polymer-based composites with microwave absorption efficiency and mechanical toughness. The absorber designed by this new conceptual approach exhibits remarkable Ku-band microwave absorption efficiency (-55.3 dB at a thickness of 1.5 mm) and satisfactory effective absorption bandwidth (5.0 GHz) as well as desirable interfacial shear strength (97.5 MPa). The calculated differential charge density depicts the uneven distribution of space charge and the intense hetero-interfacial polarization, clarifying the structure-performance relationship from a theoretical perspective. This work breaks through traditional single performance-oriented design methods and ushers a new direction for next-generation microwave absorbers.
Collapse
Affiliation(s)
- Xianhua Huan
- School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hefeng Li
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxiao Song
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jintao Luo
- Beijing Spacecraft Manufacturing Factory Co. Ltd., Beijing, 100094, P. R. China
| | - Cong Liu
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ke Xu
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Hongbo Geng
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Xiaodong Guo
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Chen Chen
- Xi'an Institute of Aerospace Propulsion Technology, Xi'an, 710025, P. R. China
- The 41st Institute of the Fourth Academy of CSAC National Key Lab of Combustion, Flow and Thermo-structure, Xi'an, 710025, P. R. China
| | - Lei Zu
- School of Mechanical Engineering, Hefei University of Technology, Hefei, 230000, P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jisheng Zhou
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haobin Zhang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Yan H, Guo Y, Bai X, Qi J, Lu H. Facile constructing Ti 3C 2T x/TiO 2@C heterostructures for excellent microwave absorption properties. J Colloid Interface Sci 2024; 654:1483-1491. [PMID: 37867074 DOI: 10.1016/j.jcis.2023.10.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Optimizing and enhancing the performance of electromagnetic wave (EMW) absorption materials relies on the modification of their composition and structure through heterogeneous interface engineering. Ti3C2Tx's high conductivity results in an impedance mismatch, which hinders efficient EMW absorption. Herein, a one-step catalytic chemical vapor deposition (CCVD) method is used to construct the Ti3C2Tx/TiO2@C heterogeneous structure. Upon annealing at 500 °C, amorphous carbon is uniformly deposited on the Ti3C2Tx surface, thereby incorporating the scale-like TiO2 generated during the process. The inclusion of the amorphous carbon layer and TiO2 reduces the substrate's conductivity, achieving optimized impedance matching. Additionally, building heterogeneous interfaces between Ti3C2Tx, TiO2, and C enriches multiple loss mechanisms involving dipole and interfacial polarization, ultimately enabling optimal EMW absorption performance. The minimum reflection loss (RLmin) value of Ti3C2Tx/TiO2@C-500 is -53.12 dB when its thickness and frequency are 1.15 mm and 13.80 GHz, respectively. Moreover, thermal infrared imaging confirms that coatings fabricated using Ti3C2Tx/TiO2@C-500 demonstrate a favorable heat dissipation rate, validating its effectiveness in addressing the challenge of efficient heat dissipation in electronic devices. This study significantly contributes to the progress of two-dimensional (2D) materials, enabling high-performance EMW absorption and expanding their applications in complex scenarios.
Collapse
Affiliation(s)
- Huying Yan
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Guo
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Electrical and Information Engineering, University of Panzhihua, Panzhihua 617000, China.
| | - Xingzhi Bai
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jiawei Qi
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Haipeng Lu
- National Engineering Research Center of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
6
|
Zhao Z, Qing Y, Kong L, Xu H, Fan X, Yun J, Zhang L, Wu H. Advancements in Microwave Absorption Motivated by Interdisciplinary Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304182. [PMID: 37870274 DOI: 10.1002/adma.202304182] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/22/2023] [Indexed: 10/24/2023]
Abstract
Microwave absorption materials (MAMs) are originally developed for military purposes, but have since evolved into versatile materials with promising applications in modern technologies, including household use. Despite significant progress in bench-side research over the past decade, MAMs remain limited in their scope and have yet to be widely adopted. This review explores the history of MAMs from first-generation coatings to second-generation functional absorbers, identifies bottlenecks hindering their maturation. It also presents potential solutions such as exploring broader spatial scales, advanced characterization, introducing liquid media, utilizing novel toolbox (machine learning, ML), and proximity of lab to end-user. Additionally, it meticulously presents compelling applications of MAMs in medicine, mechanics, energy, optics, and sensing, which go beyond absorption efficiency, along with their current development status and prospects. This interdisciplinary research direction differs from previous research which primarily focused on meeting traditional requirements (i.e., thin, lightweight, wide, and strong), and can be defined as the next generation of smart absorbers. Ultimately, the effective utilization of ubiquitous electromagnetic (EM) waves, aided by third-generation MAMs, should be better aligned with future expectations.
Collapse
Affiliation(s)
- Zehao Zhao
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuchang Qing
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Luo Kong
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hailong Xu
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaomeng Fan
- School of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jijun Yun
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Xu X, Xing Y, Liu L. Construction of MoS 2-ReS 2 Hybrid on Ti 3C 2T x MXene for Enhanced Microwave Absorption. MICROMACHINES 2023; 14:1996. [PMID: 38004853 PMCID: PMC10673285 DOI: 10.3390/mi14111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
Utilizing interface engineering to construct abundant heterogeneous interfaces is an important means to improve the absorbing performance of microwave absorbers. Here, we have prepared the MXene/MoS2-ReS2 (MMR) composite with rich heterogeneous interfaces composed of two-dimensional Ti3C2Tx MXene and two-dimensional transition metal disulfides through a facile hydrothermal process. The surface of MXene is completely covered by nanosheets of MoS2 and ReS2, forming a hybrid structure. MRR exhibits excellent absorption performance, with its strongest reflection loss reaching -51.15 dB at 2.0 mm when the filling ratio is only 10 wt%. Meanwhile, the effective absorption bandwidth covers the range of 5.5-18 GHz. Compared to MXene/MoS2 composites, MRR with a MoS2-ReS2 heterogeneous interface exhibits stronger polarization loss ability and superior absorption efficiency at the same thickness. This study provides a reference for the design of transition metal disulfides-based absorbing materials.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- School of Business and Trade, Nanjing Vocational University of Industry Technology, Nanjing 210023, China;
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Wang MQ, Shu JC, Wan X, Cao WQ, Cao MS. Thermally Derived Hierarchical Nanoplates for Electromagnetic Protection and Waste Energy Recovery Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303186. [PMID: 37365955 DOI: 10.1002/smll.202303186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/13/2023] [Indexed: 06/28/2023]
Abstract
With the advent of intelligent society and the popularity of electronic equipment, the protection and treatment of electromagnetic (EM) radiation have become hot research topics all over the world. Herein, novel 2D carbon-based nanoplates with uniformly embedded Co nanoparticles are prepared, with unique hierarchical structure and integrated magnetic-dielectric components. The obtained hierarchical nanoplates exhibit a wide range of tunable EM properties (ε' for 3.38 to 34.67 and ε″ for 0.13 to 31.45) by manipulating the dispersed states inside wax system, which can achieve an effective switch from microwave absorption to EM interference shielding performance. The optimal reflection loss reaches -55.6 dB, and the shielding efficiency is 93.5%. Meanwhile, the hierarchical nanoplates also exhibit impressive capacitive performance, with a specific capacitance of 1654 F g-1 at 1 A g-1 . Based on this, a creative device is constructed with the nanoplates, which can convert harmful EM radiation to useful electric energy for recycling. This work offers a new idea for the development of EM materials and functional devices, powerfully promoting the advance of energy and environmental fields.
Collapse
Affiliation(s)
- Meng-Qi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jin-Cheng Shu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiao Wan
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Zhang Q, Wang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Structural design and preparation of Ti 3C 2T x MXene/polymer composites for absorption-dominated electromagnetic interference shielding. NANOSCALE ADVANCES 2023; 5:3549-3574. [PMID: 37441247 PMCID: PMC10334419 DOI: 10.1039/d3na00130j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Electromagnetic interference (EMI) is a pervasive and harmful phenomenon in modern society that affects the functionality and reliability of electronic devices and poses a threat to human health. To address this issue, EMI-shielding materials with high absorption performance have attracted considerable attention. Among various candidates, two-dimensional MXenes are promising materials for EMI shielding due to their high conductivity and tunable surface chemistry. Moreover, by incorporating magnetic and conductive fillers into MXene/polymer composites, the EMI shielding performance can be further improved through structural design and impedance matching. Herein, we provide a comprehensive review of the recent progress in MXene/polymer composites for absorption-dominated EMI shielding applications. We summarize the fabrication methods and EMI shielding mechanisms of different composite structures, such as homogeneous, multilayer, segregated, porous, and hybrid structures. We also analyze the advantages and disadvantages of these structures in terms of EMI shielding effectiveness and the absorption ratio. Furthermore, we discuss the roles of magnetic and conductive fillers in modulating the electrical properties and EMI shielding performance of the composites. We also introduce the methods for evaluating the EMI shielding performance of the materials and emphasize the electromagnetic parameters and challenges. Finally, we provide insights and suggestions for the future development of MXene/polymer composites for EMI shielding applications.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
- School of Materials and Environmental Engineering, Chizhou University Chizhou 247000 China
| | - Qi Wang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Jian Cui
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuai Zhao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Guangfa Zhang
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Ailin Gao
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Yehai Yan
- Key Lab of Rubber-Plastics, Ministry of Education, Shandong Provincial Key Lab of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
10
|
Lv Y, Chen C, Jin L, Zheng Y, Wu S, Zhang Y, Li Z, Zhu S, Jiang H, Cui Z, Liu X. Microwave-Excited, Antibacterial Core-Shell BaSO 4/BaTi 5O 11@PPy Heterostructures for Rapid Treatment of S. aureus-Infected Osteomyelitis. Acta Biomater 2023:S1742-7061(23)00311-2. [PMID: 37271246 DOI: 10.1016/j.actbio.2023.05.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Owing to its deep penetration capability, microwave (MW) therapy has emerged as a promising method to eradicate deep-seated acute bone infection diseases such as osteomyelitis. However, the MW thermal effect still needs to be enhanced to achieve rapid and efficient treatment of deep focal infected areas. In this work, the multi-interfacial core-shell structure barium sulfate/barium polytitanates@polypyrrole (BaSO4/BaTi5O11@PPy) was prepared, which exhibited enhanced MW thermal response via the well-designed multi-interfacial structure. To be specific, BaSO4/BaTi5O11@PPy achieved rapid temperature increases in a short period and efficient clearance of Staphylococcus aureus (S. aureus) infections under MW irradiation. After 15 min MW irradiation, the antibacterial efficacy of BaSO4/BaTi5O11@PPy can reach up to 99.61 ± 0.22%. Their desirable thermal production capabilities originated from enhanced dielectric loss including multiple interfacial polarization and conductivity loss. Additionally, in vitro analysis illuminated that the underlying antimicrobial mechanism was attributed to the noticeable MW thermal effect and changes in energy metabolic pathways on bacterial membrane instigated by BaSO4/BaTi5O11@PPy under MW irradiation. Considering remarkable antibacterial efficiency and acceptable biosafety, we envision that it has significant value in broadening the pool of desirable candidates to fight against S. aureus-infected osteomyelitis. STATEMENT OF SIGNIFICANCE: : The treatment of deep bacterial infection remains challenging due to the ineffectiveness of antibiotic treatment and the susceptibility to bacterial resistance. Microwave (MW) thermal therapy (MTT) is a promising approach with remarkable penetration to centrally heat up the infected area. This study proposes to utilize the core-shell structure BaSO4/BaTi5O11@PPy as an MW absorber to achieve localized heating under MW radiation for MTT. In vitro experiments demonstrated that the disrupted bacterial membrane is primarily due to the localized high temperature and interrupted electron transfer chain. As a consequence, its antibacterial rate is as high as 99.61% under MW irradiation. It is shown that the BaSO4/BaTi5O11@PPy is a promising candidate for eliminating bacterial infection in deep-seated tissues.
Collapse
Affiliation(s)
- Yuelin Lv
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China
| | - Liguo Jin
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, China; School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China; School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Zhongshan 2nd Road 106#, Guangzhou, 510080, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China.
| |
Collapse
|
11
|
Zhu M, Lu C, Liu L. Progress and challenges of emerging MXene based materials for thermoelectric applications. iScience 2023; 26:106718. [PMID: 37234091 PMCID: PMC10206441 DOI: 10.1016/j.isci.2023.106718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
To realize sustainable development, more and more countries forwarded carbon neutrality goal. Accordingly, improving the utilization efficiency of traditional fossil fuel is an effective strategy for this great goal. Keeping this in mind, developing thermoelectric devices to recover waste heat energy resulted in the consumption process of fuel is demonstrated to be promising. High performance thermoelectric devices require advanced materials. MXenes are a kind of 2D materials with a layered structure, which demonstrate excellent thermoelectric performance owing to their unique physical, mechanical, and chemical properties. Also, substantial achievement has been gained during the past few years in synthesizing MXene based materials for thermoelectric devices. In this review, the mainstream synthetic routes of MXene from etching MAX were summarized. Significantly, the current state and challenges of research on improving the performance of MXene based thermoelectrics are explored, including pristine MXene and MXene based composites.
Collapse
Affiliation(s)
- Maiyong Zhu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Congcong Lu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Lingran Liu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
12
|
Hu X, Quan B, Zhu C, Wen H, Sheng M, Liu S, Li X, Wu H, Lu X, Qu J. Upgrading Electricity Generation and Electromagnetic Interference Shielding Efficiency via Phase-Change Feedback and Simple Origami Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206835. [PMID: 36950746 DOI: 10.1002/advs.202206835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Developing ultimate electromagnetic interference (EMI) shielding materials that can simultaneously upgrade the quality of generated electricity and the light-thermal-electric conversion efficiency based on traditional thermoelectric devices is crucially desired. Herein, a series of flexible multilayered phase change films (PCFs) is developed by a simple and novel origami strategy. The PCFs are first reported to improve the light-thermal-electric conversion efficiency by as high as 11.3%. Simultaneously, the PCFs could significantly upgrade the generated electricity on average voltage (27.3%), average current (23.8%), and lasting power outputs by 2010 times from microwatts to milliwatts. Besides, the EMI shielding efficiency of PCFs could be tuned from 39.2 to 71.9 dB by the origami process, the wide-range EMI shielding performance could be suitable for varying occasions. Overall, this work provides a promising solution for both the preparation of multifunctional materials, high-efficiency solar energy harvesting and upgrading electricity generation, which shows broad application prospects in EMI shielding, energy storage, and conversion.
Collapse
Affiliation(s)
- Xinpeng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Bingqing Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Chuanbiao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Haoye Wen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Mengjie Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Shuang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Xiaolong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Hao Wu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Xiang Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan, 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Gan F, Rao Q, Deng J, Cheng L, Zhong Y, Lu Z, Wang F, Wang J, Zhou H, Rao G. Controllable Architecture of ZnO/FeNi Composites Derived from Trimetallic ZnFeNi Layered Double Hydroxides for High-Performance Electromagnetic Wave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300257. [PMID: 36967536 DOI: 10.1002/smll.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The optimization design of micro-structure and composition is an important strategy to obtain high-performance metal-based electromagnetic (EM) wave absorption materials. In this work, ZnO/FeNi composites derived from ZnFeNi layered double hydroxides are prepared by a one-step hydrothermal method and subsequent pyrolysis process, and can be employed as an effective alternative for high-performance EM wave absorber. A series of ZnO/FeNi composites with different structures are obtained by varying the molar ratios of Zn2+ /Fe3+ /Ni2+ , and the ZnO/FeNi composites with a Zn2+ /Fe3+ /Ni2+ molar ratio of 6:1:3 show a hierarchical flower-like structure. Owing to the strong synergistic loss mechanism of dielectric-magnetic components and favorable structural features, this hierarchical flower-like ZnO/FeNi sample supplies the optimal EM wave absorption performance with the highest reflection loss of -52.08 dB and the widest effective absorption bandwidth of 6.56 GHz. The EM simulation further demonstrates that impedance matching plays a determining role in EM wave absorption performance. This work provides a new way for the fabrication of a high-performance metal-based EM wave absorber.
Collapse
Affiliation(s)
- Fangyu Gan
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Qingrong Rao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jianqiu Deng
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Lichun Cheng
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Yan Zhong
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Zhao Lu
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Feng Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Jiang Wang
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Huaiying Zhou
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| | - Guanghui Rao
- School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, P. R. China
| |
Collapse
|
14
|
Zhang Q, Cui J, Zhao S, Zhang G, Gao A, Yan Y. Development of Electromagnetic-Wave-Shielding Polyvinylidene Fluoride-Ti 3C 2T x MXene-Carbon Nanotube Composites by Improving Impedance Matching and Conductivity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:417. [PMID: 36770378 PMCID: PMC9921545 DOI: 10.3390/nano13030417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Absorption-dominated electromagnetic interference (EMI) shielding is attained by improving impedance matching and conductivity through structural design. Polyvinylidene fluoride (PVDF)-Ti3C2Tx MXene-single-walled carbon nanotubes (SWCNTs) composites with layered heterogeneous conductive fillers and segregated structures were prepared through electrostatic flocculation and hot pressing of the PVDF composite microsphere-coated MXene and SWCNTs in a layer-by-layer fashion. Results suggest that the heterogeneous fillers improve impedance matching and layered coating, and hot compression allows the MXene and SWCNTs to form a continuous conducting network at the PVDF interface, thereby conferring excellent conductivity to the composite. The PVDF-MXene-SWCNTs composite showed a conductivity of 2.75 S cm-1 at 2.5% MXene and 1% SWCNTs. The EMI shielding efficiency (SE) and contribution from absorption loss to the total EMI SE of PVDF-MXene-SWCNTs were 46.1 dB and 85.7%, respectively. Furthermore, the PVDF-MXene-SWCNTs composite exhibited excellent dielectric losses and impedance matching. Therefore, the layered heteroconductive fillers in a segregated structure optimize impedance matching, provide excellent conductivity, and improve absorption-dominated electromagnetic shielding.
Collapse
Affiliation(s)
- Qimei Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Jian Cui
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Zhao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangfa Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ailin Gao
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yehai Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
15
|
Zhou C, Sun QM, Cao Q, He JH, Lu JM. Synergistic Effect of Fe Single-Atom Catalyst for Highly Efficient Microwave-Stimulated Remediation of Chloramphenicol-Contaminated Soil. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205341. [PMID: 36399645 DOI: 10.1002/smll.202205341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Chloramphenicol (CAP) has long been used extensively in agriculture and is severely toxic to the biological environment. Microwave catalysis appears a promising method for soil remediation due to its fast and effective heat transfer, but it is challenging to prepare catalysts with good electromagnetic wave absorption and robust catalytic activity. In this study, atomically dispersed Fe on three-dimensional N-doped carbon supports (3D Fe-NC) is firstly used for microwave remediation of soil. Thanks to the synergistic effect of microwave "hot spots" and reactive oxygen species (•OH, •O2 - ), 3D Fe-NC can completely remove 99.9% of CAP in 5 min. The removal rate constant is nearly twice that of commercial activated carbon. Significantly, the germination rate of lettuce seeds in microwave-repaired soil contaminated by CAP reaches 70%. This work demonstrates the application of Fe single-atom catalyst in microwave remediation of contaminated soil, providing a novel insight for agricultural soil remediation.
Collapse
Affiliation(s)
- Chang Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Qi-Meng Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, National United Engineering Laboratory of Functionalized Environmental Adsorption Materials, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
16
|
Constructing Active Sites on Self-Supporting Ti3C2Tx (T = OH) Nanosheets for Enhanced Photocatalytic CO2 Reduction into Alcohols. Catalysts 2022. [DOI: 10.3390/catal12121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ti3C2Tx (T = OH) was first prepared from Ti3AlC2 by HF etching and applied into a photocatalytic CO2 reduction. Then, the Ti3C2Tx nanosheets present interbedded a self-supporting structure and extended interlayer spacing. Meanwhile, the Ti3C2Tx nanosheets are decorated with abundant oxygen-containing functional groups in the process of etching, which not only serve as active sites but also show efficient charge migration and separation. Among Ti3C2Tx materials prepared by etching for different times, Ti3C2Tx-36 (Etching time: 36 h) showed the best performance for photoreduction of CO2 into alcohols (methanol and ethanol), giving total yield of 61 μmol g catal.−1, which is 2.8 times than that of Ti3AlC2. Moreover, excellent cycling stability for CO2 reduction is beneficial from the stable morphology and crystalline structure. This work provided novel sights into constructing surface active sites controllably.
Collapse
|
17
|
Yang B, Wang L, Zhao J, Pang R, Yuan B, Tan J, Song S, Nie J, Zhang M. A Robust, Flexible, Hydrophobic, and Multifunctional Pressure Sensor Based on an MXene/Aramid Nanofiber (ANF) Aerogel Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47075-47088. [PMID: 36206550 DOI: 10.1021/acsami.2c14094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pressure sensors with desirable flexibility, robustness, and versatility are urgently needed for complicated smart wearable devices. However, developing an ideal multifunctional flexible sensor is still challenging. In this work, a composite aerogel film sensor with an internal three-dimensional (3D) microporous and hierarchical structure is successfully fabricated by the self-assembly of aramid nanofiber (ANF) and conductive MXene by vacuum-assisted filtration and ice crystal growth. The resultant MXene/ANF aerogel film with a mass ratio of 3/7 (30% MAAF) presents high robustness with an outstanding tensile strength of 14.1 MPa and a modulus of 455 MPa while retaining appealing flexibility and sensitive characteristics due to the 3D microstructure. Accompanied by superior electric conductivity, the MAAF sensor performs noticeably in human motion and microexpression detection with a fast response time of 100 ms and a high sensitivity of 37.4 kPa-1. In addition, MAAF exhibits considerable thermal shielding performance based on the excellent thermostability. Moreover, it possesses prominent electrothermal property with a wide heating temperature range (32.7-242 °C) in a fast thermal response time (5 s) due to the Joule effect. Additionally, a hydrophobic SiO2 coating is introduced on the surface of MAAF to further broaden the sensing application, and the obtained MAAF@SiO2 sensor shows distinguished sensing capability underwater, which can be accurately applied to swimming monitoring. Therefore, this work provides a highly flexible, lightweight, robust, and multifunctional aerogel film sensor, showing promising potential in smart wearable sensing and healthcare devices, intelligent robots, and underwater detection.
Collapse
Affiliation(s)
- Bin Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Lin Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Junfan Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Ruixue Pang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Baolong Yuan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Shunxi Song
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Jingyi Nie
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Province Key Laboratory of papermaking Technology and Specialty paper Development, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an 710021, China
| |
Collapse
|
18
|
Bridging Sheet Size Controls Densification of MXene Films for Robust Electromagnetic Interference Shielding. iScience 2022; 25:105001. [PMID: 36105589 PMCID: PMC9464893 DOI: 10.1016/j.isci.2022.105001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Numerous voids among the incompact layer-structure of MXene films result in their low ambient stability and poor innate conductivity for electromagnetic interference (EMI) shielding. Herein, we report a bridging-sheet-size-controlled densification process of MXene films by applying graphene oxide (GO) as a bridging agent. Specifically, the sheet size of GO is tailored to quantify a negative correlation of sheet size with densification for directing the preparation of most compact MXene-GO films. Benefiting from the shortest electron-transport-distance in the most compact structure, the conductivity of the MXene-GO film achieves 1.7 times (∼1.6 × 105 S/m) that of MXene film. The EMI shielding performance (5.2 × 106 dB/m) reaches the record-value among reported MXene films at 10 μm-scale thickness. Moreover, the compact structure boosts the ambient stability of MXene-GO films where the conductivity and EMI shielding performance remain 88.7% and 90.0% after 15 days, respectively. The findings rationale the structure-activity relationship of compact MXene films for flexible electronics. Densification of MXene films is controlled by a bridging-sheet-size strategy Shortening electron-transport-distance in compact structure improves conductivity Control of densification delivers high EMI shielding performance and air stability
Collapse
|
19
|
Chand K, Zhang X, Chen Y. Recent Progress in MXene and Graphene based Nanocomposites for Microwave Absorption and EMI Shielding. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Yu L, Xu L, Lu L, Alhalili Z, Zhou X. Thermal Properties of MXenes and Relevant Applications. Chemphyschem 2022; 23:e202200203. [PMID: 35674280 DOI: 10.1002/cphc.202200203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/26/2022] [Indexed: 11/10/2022]
Abstract
The properties and applications of MXenes (a family of layered transition metal carbides, nitrides, and carbonitrides) have aroused enormous research interests for a decade since the successful synthesis of few-layer transition metal carbides in 2011. Though MXenes, as the building blocks, have already been applied in various fields (such as wearable electronics) owing to the distinctive optical, mechanical and electrical properties, their thermal stability and intrinsic thermal properties were less thoroughly investigated compared to other characteristics in early reports. The pioneering theoretical prediction of the thermoelectric nature of MXenes was performed in 2013 while the first experiment-based report concerning the degradation behavior of the 2D structure at elevated temperatures in a controlled atmosphere was published in 2015, followed by numerous discoveries regarding the thermal properties of MXenes. Herein, after a brief description of the synthesis, this Review summarized the latest insights into the thermal stability and thermophysical properties of MXenes, and further associated these unique properties with relevant applications by multiple examples. Finally, current hurdles and challenges in this field were provided along with some advices on potential research directions in the future.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lyu Xu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| | - Zahrah Alhalili
- College of Sciences and Arts, Shaqra University, Sajir, Riyadh, Saudi Arabia
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu 214153, People's Republic of China
| |
Collapse
|
21
|
Chen C, Dong H, Wang J, Chen W, Li D, Cai M, Zhou K. A General Way to Fabricate Chain-like Ferrite with Ultralow Conductive Percolation Threshold and Wideband Absorbing Ability. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1603. [PMID: 35564318 PMCID: PMC9104183 DOI: 10.3390/nano12091603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022]
Abstract
The magnetic nanochain-like material has been regards as one of the most promising electromagnetic (EM) absorbing material but remains a challenging. Herein, magnetic chain-like ferrite (included Fe3O4, CoFe2O4 and NiFe2O4) are successfully produced through a general solvothermal method, using PVP as the structural-liking agent. Experimental results confirm the ultimate sample possess a 3-dimensional chain-like structure which are constructed by numerous ferrite's nanoparticles with ~60 nm in diameter. Their electromagnetic parameters can be also manipulated by such a chain structure, especially the dielectric loss, where a sharply increases can be observed on within a lower filling ratio. It greatly benefits to the EM absorbing property. In this article, the electromagnetic absorption layer made with a lower content of ferrite possess the excellent electromagnetic absorption ability, where the optimized effective absorption band was nearly 6.4 GHz under a thickness of 1.8 mm. Moreover, the filling ratio is only 30 wt%. Our method for designing of chain-like magnetic material can be helpful for producing wideband electromagnetic absorption in a low filling ratio.
Collapse
Affiliation(s)
- Cong Chen
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
- Asia Silicon (Qinghai) Co., Ltd., Xining 810007, China
| | - Haitao Dong
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
- Asia Silicon (Qinghai) Co., Ltd., Xining 810007, China
| | - Jiayuan Wang
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
| | - Wen Chen
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
| | - Denghui Li
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
| | - Meng Cai
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
| | - Kun Zhou
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University, Xining 810007, China; (H.D.); (J.W.); (W.C.); (D.L.); (M.C.); (K.Z.)
| |
Collapse
|
22
|
Qin M, Zhang L, Wu H. Dielectric Loss Mechanism in Electromagnetic Wave Absorbing Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105553. [PMID: 35128836 PMCID: PMC8981909 DOI: 10.1002/advs.202105553] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Indexed: 05/19/2023]
Abstract
Electromagnetic (EM) wave absorbing materials play an increasingly important role in modern society for their multi-functional in military stealth and incoming 5G smart era. Dielectric loss EM wave absorbers and underlying loss mechanism investigation are of great significance to unveil EM wave attenuation behaviors of materials and guide novel dielectric loss materials design. However, current researches focus more on materials synthesis rather than in-depth mechanism study. Herein, comprehensive views toward dielectric loss mechanisms including interfacial polarization, dipolar polarization, conductive loss, and defect-induced polarization are provided. Particularly, some misunderstandings and ambiguous concepts for each mechanism are highlighted. Besides, in-depth dielectric loss study and novel dielectric loss mechanisms are emphasized. Moreover, new dielectric loss mechanism regulation strategies instead of regular components compositing are summarized to provide inspiring thoughts toward simple and effective EM wave attenuation behavior modulation.
Collapse
Affiliation(s)
- Ming Qin
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
23
|
Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107538. [PMID: 34755916 DOI: 10.1002/adma.202107538] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Indexed: 05/17/2023]
Abstract
Electromagnetic (EM) wave absorption materials possess exceptionally high EM energy loss efficiency. With vigorous developments in nanotechnology, such materials have exhibited numerous advanced EM functions, including radiation prevention and antiradar stealth. To achieve improved EM performance and multifunctionality, the elaborate control of microstructures has become an attractive research direction. By designing them as core-shell structures with different dimensions, the combined effects, such as interfacial polarization, conduction networks, magnetic coupling, and magnetic-dielectric synergy, can significantly enhance the EM wave absorption performance. Herein, the advances in low-dimensional core-shell EM wave absorption materials are outlined and a selection of the most remarkable examples is discussed. The derived key information regarding dimensional design, structural engineering, performance, and structure-function relationship are comprehensively summarized. Moreover, the investigation of the cutting-edge mechanisms is given particular attention. Additional applications, such as oxidation resistance and self-cleaning functions, are also introduced. Finally, insight into what may be expected from this rapidly expanding field and future challenges are presented.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
24
|
Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. NANO-MICRO LETTERS 2022; 14:63. [PMID: 35190917 PMCID: PMC8861240 DOI: 10.1007/s40820-022-00812-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/22/2022] [Indexed: 05/14/2023]
Abstract
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot. Here, the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam (MF) through electrostatic self-assembly and dip-coating adsorption process, realizing the integration of microwave absorption, infrared stealth, and flame retardant. Remarkably, the Ni/MXene-MF achieves a minimum reflection loss (RLmin) of - 62.7 dB with a corresponding effective absorption bandwidth (EAB) of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm. Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks, which provided excellent impedance matching, dielectric loss, magnetic loss, interface polarization, and multiple attenuations. In addition, the Ni/MXene-MF endows low density, excellent heat insulation, infrared stealth, and flame-retardant functions. This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Haoran Cheng
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yamin Pan
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Xin Wang
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Chuntai Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Changyu Shen
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianhu Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
25
|
Yan B, Bao X, Liao X, Wang P, Zhou M, Yu Y, Yuan J, Cui L, Wang Q. Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial Cinnamomum camphora Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2132-2145. [PMID: 34939796 DOI: 10.1021/acsami.1c22740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Natural fabrics are gradually becoming the ideal substrate for flexible smart wearable devices due to their excellent moisture absorption, softness, and skin-friendliness. However, the bonding fastness of the conductive layer and the corresponding durability during service have not yet been well satisfied. In this report, we successfully prepared a smart wearable multifunctional protective cotton fabric with microbreathing monitoring and rapid-photothermal antibacterial abilities of Cinnamomum camphora bark microstructure, by combining chitosan quaternary ammonium salt (HACC) with MXene nanosheets through electrostatic self-assembly. Impressively, MXene nanosheets and HACC established a strong interaction using the electrostatic attraction, endowing the fiber surface with ordered nanosheets. Meanwhile, the fabric decorated with MXene/HACC retains its original characteristics of outstanding breathability and softness, and its conductivity exhibits noticeable stability in terms of resistances to oxidation, washing, various solvents, and long-term bending cycles. On the basis of the principle of adsorption and release of water molecules in the MXene multilayer structures, the MXene/HACC fabric could accurately monitor the physiological health activities of users according to their breathing frequency and depth. Benefiting from the local surface plasmon resonance (LSPR) effect, the MXene/HACC shows encouraging photothermal conversion ability, photothermal stability under long time irradiation, washing resistance, and cycle stability. In addition, the fabric achieved an antibacterial efficiency of nearly 100% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus within 5 min under an irradiation intensity of 400 mW/cm2. More importantly, after 10 washes, the antibacterial efficiency against the two bacteria could still reach 99.975% and 99.98%, respectively. This multifunctional protective MXene/HACC cotton fabric is expected to play a unique role in the new generation of smart wearable microbreathing sensing and against to bacterial attack, and shows a broad application prospect.
Collapse
Affiliation(s)
- Biaobiao Yan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xueming Bao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaoting Liao
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
26
|
Zhang X, Shi Y, Xu J, Ouyang Q, Zhang X, Zhu C, Zhang X, Chen Y. Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2021; 14:27. [PMID: 34894293 PMCID: PMC8665961 DOI: 10.1007/s40820-021-00773-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/11/2021] [Indexed: 05/11/2023]
Abstract
Atomically dispersed metals on N-doped carbon supports (M-NxCs) have great potential applications in various fields. However, a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss properties of M-NxCs at the atomic-level is still lacking. Herein, we report a general approach to synthesize a series of three-dimensional (3D) honeycomb-like M-NxC (M = Mn, Fe, Co, Cu, or Ni) containing metal single atoms. Experimental results indicate that 3D M-NxCs exhibit a greatly enhanced dielectric loss compared with that of the NC matrix. Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure, which enhances conductive loss and dipolar polarization loss of 3D M-NxCs, respectively. Consequently, these 3D M-NxCs exhibit excellent electromagnetic wave absorption properties, outperforming the most commonly reported absorbers. This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.
Collapse
Affiliation(s)
- Xinci Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Yanan Shi
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jia Xu
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Qiuyun Ouyang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Chunling Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Xiaoli Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
27
|
Keykavous-Amand S, Peymanfar R. Fabrication of clay soil/CuFe 2O 4 nanocomposite toward improving energy and shielding efficiency of buildings. Sci Rep 2021; 11:20832. [PMID: 34675310 PMCID: PMC8531380 DOI: 10.1038/s41598-021-00347-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
In this research, the energy and shielding efficiency of brick, fabricated by clay soil, as a practical building material was reinforced using CuFe2O4 nanoparticles. Initially, the nanoparticles were fabricated using the sol-gel method and then loaded in the brick matrix as a guest. The architected samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared (FTIR), diffuse reflection spectroscopy (DRS), field emission scanning electron microscopy (FE-SEM), High-resolution transmission electron microscopy (HRTEM), vibrating-sample magnetometer (VSM), differential scanning calorimetry (DSC) thermograms, and vector network analyzer (VNA) analyses. IR absorption of the tailored samples was monitored under an IR source using an IR thermometer. IR absorption and energy band gap attested that inserting the nanoparticles in brick medium led to the acceleration of a warming brick, desirable for energy efficiency in cold climates. It is worth noting that the brick/CuFe2O4 nanocomposite achieved a strong reflection loss (RL) of 58.54 dB and gained an efficient bandwidth as wide as 4.22 GHz (RL > 10 dB) with a thickness of 2.50 mm, meanwhile it shielded more than 58% of the electromagnetic waves at X-band by only a filler loading of 10 wt%. The microwave absorbing and shielding characteristics of the composite are mainly originated from conductive loss, electron hopping, natural and exchange resonance, relaxation loss, secondary fields, as well as eddy current loss. Interestingly, the shielding property of the nanocomposite was significantly generated from its absorbing features, reducing the secondary electromagnetic pollutions produced by the shielding materials applying the impedance mismatching mechanism.
Collapse
Affiliation(s)
| | - Reza Peymanfar
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| |
Collapse
|
28
|
Dey CC, Sadhukhan S, Mitra A, Dalal M, Shaw A, Bajorek A, Chakrabarti PK. Magnetic Energy Morphing, Capacitive Concept for Ni 0.3Zn 0.4Ca 0.3Fe 2O 4 Nanoparticles Embedded in Graphene Oxide Matrix, and Studies of Wideband Tunable Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46967-46979. [PMID: 34550668 DOI: 10.1021/acsami.1c10241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticles of Ni0.3Zn0.4Ca0.3Fe2O4 (NZCF) were successfully prepared by the facile wet chemical method coupled with the sonochemical method. These nanoparticles were embedded in a graphene oxide (GO) matrix (NZCFG). Rietveld analyses of X-ray diffraction, transmission electron microscope, scanning electron microscope, and X-ray photoelectron spectroscopy were carried out to extract different relevant information regarding the structure, morphology, and ionic state. A major improvement in saturation magnetization is achieved due to substitution of Ca2+ in the ferrite lattice. Interestingly, the observed value of electromagnetic absorption for a sample thickness of 1.5 mm is ∼-67.7 dB at 13.3 GHz, and the corresponding bandwidth is 5.73 GHz. The Cole-Cole plot, the Jonscher power-law fitting, and the Nyquist plot confirm the probability of improved hopping conductance and attractive capacitive behavior in NZCFG. The presence of magnetic energy morphing in combination with a higher attenuation constant, lower skin depth, and various forms of resonance and relaxation makes NZCFG the most suitable for microwave absorption.
Collapse
Affiliation(s)
- Chandi Charan Dey
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
| | - Sukhendu Sadhukhan
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
| | - Ayan Mitra
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
| | - Madhumita Dalal
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
| | - Anirban Shaw
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
- Department of Physics, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas 743372, West Bengal, India
| | - Anna Bajorek
- A. Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Pabitra K Chakrabarti
- Solid State Research Laboratory, Department of Physics, Burdwan University, Burdwan 713104, West Bengal, India
| |
Collapse
|
29
|
Shooshtary Veisi S, Yousefi M, Amini M, Shakeri A, Bagherzadeh M, Afghahi SS. Magnetic properties, structural studies and microwave absorption performance of Ba0.5Sr0.5CuxZrxFe12-2xO19/Poly Ortho-Toluidine (X = 0.2,0.4, 0.6, 0.8) ceramic nanocomposites. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Fang YS, Cao WQ, Chen YB, Sun XD, Cao MS. Ti 3C 2T xnanohybrids: tunable local conductive network and efficient EMI shielding performance for multifunctional materials and devices. NANOTECHNOLOGY 2021; 32:442002. [PMID: 34320474 DOI: 10.1088/1361-6528/ac18a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Ti3C2Txis an important member of the MXenes family. Due to its excellent electrical conductivity, adjustable atomic layer, and modifiable active surface, Ti3C2Txhas attracted great attention in the field of electromagnetic interference (EMI) shielding. This paper introduces the important role of regulating conductive network to improve the EMI shielding performance of materials and summarizes the EMI shielding performance of Ti3C2Txnanohybrids reported in recent years. In addition, Ti3C2Txbased EMI shielding materials towards multifunctional devices are also systematically introduced. After that, the development status of Ti3C2Txnanohybrids in the field of EMI shielding is objectively described, and the main problems and challenges are evaluated. Finally, the prospect of Ti3C2Txnanohybrids for advanced and green EMI shielding materials is forecasted.
Collapse
Affiliation(s)
- Yong-Sheng Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yu-Bin Chen
- Beijing Institute of Aeronautical Materials, Beijing 100095, People's Republic of China
| | - Xiao-Di Sun
- Department of Oral Implantology, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, Tianjin 300041, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
31
|
Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Saeidi A, Tavassoli SH. Preparation of self-healing hydrogel toward improving electromagnetic interference shielding and energy efficiency. Sci Rep 2021; 11:16161. [PMID: 34373565 PMCID: PMC8352865 DOI: 10.1038/s41598-021-95683-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, a self-healing hydrogel was prepared that is transparent to visible (Vis) light while absorbing ultraviolet (UV), infrared (IR), and microwave. The optothermal features of the hydrogel were explored by monitoring temperature using an IR thermometer under an IR source. The hydrogel was synthesized using sodium tetraborate decahydrate (borax) and polyvinyl alcohol (PVA) as raw materials based on a facile thermal route. More significantly, graphene oxide (GO) and graphite-like carbon nitride (g-C3N4) nanostructures as well as carbon microsphere (CMS) were applied as guests to more dissect their influence on the microwave and optical characteristics. The morphology of the fillers was evaluated using field emission scanning electron microscopy (FE-SEM). Fourier transform infrared (FTIR) attested that the chemical functional groups of the hydrogel have been formed and the result of diffuse reflection spectroscopy (DRS) confirmed that the hydrogel absorbs UV while is transparent in Vis light. The achieved result implied that the hydrogel acts as an essential IR absorber due to its functional groups desirable for energy efficiency and harvesting. Interestingly, the achieved results have testified that the self-healing hydrogels had the proper self-healing efficiency and self-healing time. Eventually, microwave absorbing properties and shielding efficiency of the hydrogel, hydrogel/GO, g-C3N4, or CMS were investigated, demonstrating the salient microwave characteristics, originated from the established ionic conductive networks and dipole polarizations. The efficient bandwidth of the hydrogel was as wide as 3.5 GHz with a thickness of 0.65 mm meanwhile its maximum reflection loss was 75.10 dB at 14.50 GHz with 4.55 mm in thickness. Particularly, the hydrogel illustrated total shielding efficiency (SET) > 10 dB from 1.19 to 18 and > 20 dB from 4.37 to 18 GHz with 10.00 mm in thickness. The results open new windows toward improving the shielding and energy efficiency using practical ways.
Collapse
Affiliation(s)
- Reza Peymanfar
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, 19839, Tehran, Iran.
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran.
| | - Elnaz Selseleh-Zakerin
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ahmadi
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | - Ardeshir Saeidi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Hassan Tavassoli
- Laser and Plasma Research Institute, Shahid Beheshti University, G. C., Evin, 19839, Tehran, Iran.
| |
Collapse
|
32
|
Peymanfar R, Selseleh-Zakerin E, Ahmadi A, Tavassoli SH. Architecting functionalized carbon microtube/carrollite nanocomposite demonstrating significant microwave characteristics. Sci Rep 2021; 11:11932. [PMID: 34099804 PMCID: PMC8184785 DOI: 10.1038/s41598-021-91370-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Biomass-derived materials have recently received considerable attention as lightweight, low-cost, and green microwave absorbers. On the other hand, sulfide nanostructures due to their narrow band gaps have demonstrated significant microwave characteristics. In this research, carbon microtubes were fabricated using a biowaste and then functionalized by a novel complementary solvothermal and sonochemistry method. The functionalized carbon microtubes (FCMT) were ornamented by CuCo2S4 nanoparticles as a novel spinel sulfide microwave absorber. The prepared structures illustrated narrow energy band gap and deposition of the sulfide structures augmented the polarizability, desirable for dielectric loss and microwave attenuation. Eventually, the architected structures were blended by polyacrylonitrile (PAN) to estimate their microwave absorbing and antibacterial characteristics. The antibacterial properties against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were scrupulously assessed. Noteworthy, the maximum reflection loss (RL) of the CuCo2S4/PAN with a thickness of 1.75 mm was 61.88 dB at 11.60 GHz, while the architected FCMT/PAN composite gained a broadband efficient bandwidth as wide as 7.91 GHz (RL > 10 dB) and 3.25 GHz (RL > 20 dB) with a thickness of 2.00 mm. More significantly, FCMT/CuCo2S4/PAN demonstrated an efficient bandwidth of 2.04 GHz (RL > 20 dB) with only 1.75 mm in thickness. Interestingly, FCMT/CuCo2S4/PAN and CuCo2S4/PAN composites demonstrated an electromagnetic interference shielding efficiency of more than 90 and 97% at the entire x and ku-band frequencies, respectively.
Collapse
Affiliation(s)
- Reza Peymanfar
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran.
| | | | - Ali Ahmadi
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | - Seyed Hassan Tavassoli
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
33
|
Peymanfar R, Ghorbanian-Gezaforodi S. Functionalized carbonized monarch butterfly wing scales (FCBW) ornamented by β-Co(OH) 2 nanoparticles: an investigation on its microwave, magnetic, and optical characteristics. NANOTECHNOLOGY 2021; 32:195201. [PMID: 33508805 DOI: 10.1088/1361-6528/abe0e4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this research, a bioinspired carbon structure was applied as a novel, unique, green, affordable, light weight, thin, and broadband microwave absorbing material. Briefly, the monarch butterfly wing scales were pyrolyzed and then CBWs were functionalized using oxidative treatments, following that they were ornamented by hexagonal β-Co(OH)2 nanoparticles to improve their microwave absorbing features based on an innovative complementary method by combining sonochemistry and hydrothermal routes. Noticeably, the polyacrylonitrile (PAN) was used as a practical medium to fabricate the microwave absorbers developing an integrated structure and augmenting the relaxation loss mechanism. Various analyses were applied to identify the prepared samples including x-ray powder diffraction, diffuse reflection spectroscopy, Fourier transform infrared, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer, and vector network analyzer. The net-like morphology of FCBWs were fully coated by the hierarchical hexagonal β-Co(OH)2 nanoparticles. FCBW illustrated a saturation magnetization of 0.06 emu g-1 originated from its defects, distortions, dislocations, unique morphology, as well as folding, developing localized magnetic moments. Noticeably, inserting FCBWs narrow the energy bandgap of β-Co(OH)2 nanoparticles, amplifying their light absorption and polarizability, desirable for the microwave attenuation. As revealed, FCBW/β-Co(OH)2/PAN nanocomposite gained strong reflection loss (RL) of 68.41 at 9.08 GHz, while FCBW/PAN achieved broadband efficient bandwidth as wide as 7.97 GHz (RL > 10 dB) with a thickness of 2.00 mm. More significantly, β-Co(OH)2/PAN nanocomposites demonstrated salient efficient bandwidth of 3.62 GHz (RL > 20 dB) with only 2.50 mm in thickness. Noteworthy, the eye-catching microwave absorptions were obtained by only filler loading of 10 Wt%. The remarkable microwave absorbing properties of the samples were generated from their microwave absorbing mechanisms which were scrupulously dissected. More significantly, the negative imaginary parts were obtained, originated from the produced secondary fields.
Collapse
Affiliation(s)
- Reza Peymanfar
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | | |
Collapse
|
34
|
He P, Cao MS, Cao WQ, Yuan J. Developing MXenes from Wireless Communication to Electromagnetic Attenuation. NANO-MICRO LETTERS 2021; 13:115. [PMID: 34138345 PMCID: PMC8079551 DOI: 10.1007/s40820-021-00645-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/21/2021] [Indexed: 05/08/2023]
Abstract
There is an urgent global need for wireless communication utilizing materials that can provide simultaneous flexibility and high conductivity. Avoiding the harmful effects of electromagnetic (EM) radiation from wireless communication is a persistent research hot spot. Two-dimensional (2D) materials are the preferred choice as wireless communication and EM attenuation materials as they are lightweight with high aspect ratios and possess distinguished electronic properties. MXenes, as a novel family of 2D materials, have shown excellent properties in various fields, owing to their excellent electrical conductivity, mechanical stability, high flexibility, and ease of processability. To date, research on the utility of MXenes for wireless communication has been actively pursued. Moreover, MXenes have become the leading materials for EM attenuation. Herein, we systematically review the recent advances in MXene-based materials with different structural designs for wireless communication, electromagnetic interference (EMI) shielding, and EM wave absorption. The relationship governing the structural design and the effectiveness for wireless communication, EMI shielding, and EM wave absorption is clearly revealed. Furthermore, our review mainly focuses on future challenges and guidelines for designing MXene-based materials for industrial application and foundational research.
Collapse
Affiliation(s)
- Peng He
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, People's Republic of China
| |
Collapse
|
35
|
Song Y, Yin F, Zhang C, Guo W, Han L, Yuan Y. Three-Dimensional Ordered Mesoporous Carbon Spheres Modified with Ultrafine Zinc Oxide Nanoparticles for Enhanced Microwave Absorption Properties. NANO-MICRO LETTERS 2021; 13:76. [PMID: 34138330 PMCID: PMC8187605 DOI: 10.1007/s40820-021-00601-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/28/2020] [Indexed: 05/31/2023]
Abstract
Currently, electromagnetic radiation and interference have a significant effect on the operation of electronic devices and human health systems. Thus, developing excellent microwave absorbers have a huge significance in the material research field. Herein, a kind of ultrafine zinc oxide (ZnO) nanoparticles (NPs) supported on three-dimensional (3D) ordered mesoporous carbon spheres (ZnO/OMCS) is prepared from silica inverse opal by using phenolic resol precursor as carbon source. The prepared lightweight ZnO/OMCS nanocomposites exhibit 3D ordered carbon sphere array and highly dispersed ultrafine ZnO NPs on the mesoporous cell walls of carbon spheres. ZnO/OMCS-30 shows microwave absorbing ability with a strong absorption (- 39.3 dB at 10.4 GHz with a small thickness of 2 mm) and a broad effective absorption bandwidth (9.1 GHz). The outstanding microwave absorbing ability benefits to the well-dispersed ultrafine ZnO NPs and the 3D ordered mesoporous carbon spheres structure. This work opened up a unique way for developing lightweight and high-efficient carbon-based microwave absorbing materials.
Collapse
Affiliation(s)
- Yan Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Fuxing Yin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Chengwei Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| | - Weibing Guo
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| | - Liying Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Ye Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China.
| |
Collapse
|
36
|
Peymanfar R, Moradi F. Functionalized carbon microfibers (biomass-derived) ornamented by Bi 2S 3 nanoparticles: an investigation on their microwave, magnetic, and optical characteristics. NANOTECHNOLOGY 2021; 32:065201. [PMID: 33080576 DOI: 10.1088/1361-6528/abc2ec] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The biomass-derived materials emerged as novel, low-cost, green, and light-weight microwave absorbers. On the other hand, the sulfide nanostructures due to narrow band gap demonstrated significant dielectric features. In this research, the pure carbon microfibers were prepared using Erodium cicutarium harvest and they were functionalized by a sonochemistry method. The treated microfibers were coated by Bi2S3 nanoparticles, obtained by a novel modified solvothermal route. X-ray powder diffraction, Fourier transform infrared, diffuse reflection spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy, and vector network analyzer analyses were applied to characterize the features of the prepared structures. The obtained results manifest that the anchoring nanoparticles onto the functionalized microfibers narrowed band gap to 1.35 eV and reinforced polarizability of the nanocomposite, desirable for dielectric attenuation. In this study, the interfacial interactions were modulated using polyacrylonitrile (PAN) and polyvinylidene fluoride. Interestingly, FCMF blended in PAN demonstrated an eye-catching efficient bandwidth as wide as 8.13 GHz (RL > 10 dB) with only 2.00 mm in thickness, whereas it illustrated an outstanding reflection loss of 81.96 at 11.48 GHz with a thickness of 2.50 mm. More significantly, FCMF/Bi2S3/PAN nanocomposite promoted the efficient bandwidth to 3.07 GHz (RL > 20 dB). Noteworthy, all of the samples illustrated total electromagnetic interference shielding effectiveness (SET) more than 15 dB entire the x and ku-band frequency.
Collapse
Affiliation(s)
- Reza Peymanfar
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | - Fereshteh Moradi
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| |
Collapse
|
37
|
Peymanfar R, Ghorbanian-Gezaforodi S. Preparation of graphite-like carbon nitride (g-C 3N 4)/NiCo 2S 4 nanocomposite toward salient microwave characteristics and evaluation of medium influence on its microwave features. NANOTECHNOLOGY 2020; 31:495202. [PMID: 32990262 DOI: 10.1088/1361-6528/abb2c0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, NiCo2S4 sulphide spinel nanoparticles are prepared using a modified solvothermal route, after which the obtained siegenite nanoparticles are tailored on graphite-like carbon nitride (g-C3N4) nanosheets. The morphology of tailored nanostructures is accomplished via an ion exchange process. Interestingly, the g-C3N4 stick structures are fabricated based on an innovative approach. Moreover, interfacial polarizations at heterojunction interfaces, and medium effects on microwave characteristics are examined, using polystyrene (PS) and polyvinylidene fluoride (PVDF) as polymeric matrices. The specimens are characterized via Fourier transform infrared (FTIR), X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM) analyses. The optical performance of nanostructures is studied by means of diffuse reflection spectroscopy (DRS) analysis, and is suggestive of a narrow band gap for NiCo2S4 and NiCo2S4/g-C3N4 nanostructures. Finally, the material's microwave absorbing features are clarified using a vector network analyzer (VNA) instrument via a wave guide technique. The resulting significant microwave absorptions reveal that our g-C3N4/NiCo2S4/PVDF 40% nanocomposite exhibited seven notches of reflection loss (RL), more than 30 dB in its curve, at 1.75 mm in thickness, while its maximum RL was 59.39 dB at 13.07 GHz. Interestingly, this composite, in a mass fraction of 60%, illustrates an efficient bandwidth of 5.1 GHz (RL > 10 dB) at only 1 mm thickness. It is worth noting that the maximum RL of g-C3N4 stick structures/PVDF measures 74.53 dB at 14.86 GHz, with a broadband efficient bandwidth of 7.96 GHz (RL > 10 dB). More significantly, both g-C3N4/NiCo2S4/PVDF and NiCo2S4/PVDF demonstrated salient electromagnetic interference shielding effectiveness (SE) > 30 dB across both x- and ku-band frequencies.
Collapse
Affiliation(s)
- Reza Peymanfar
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | | |
Collapse
|
38
|
Rajavel K, Yu X, Zhu P, Hu Y, Sun R, Wong C. Exfoliation and Defect Control of Two-Dimensional Few-Layer MXene Ti 3C 2T x for Electromagnetic Interference Shielding Coatings. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49737-49747. [PMID: 33085473 DOI: 10.1021/acsami.0c12835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Defect-controlled exfoliation of few-layer transition-metal carbide (f-Ti3C2Tx) MXene was demonstrated by optimizing chemical etching conditions, and electromagnetic interference (EMI) shielding coatings were explored. The structural features such as layer morphology, lateral size, layer thickness, defect density, and mechanical stability of the exfoliated f-Ti3C2Tx were strongly dependent on exfoliation conditions. By selecting appropriate exfoliation conditions, moderate etching time leads to the formation of quality f-Ti3C2Tx with lesser defects, whereas longer etching time can break the layer structure and increase defect density, structural misalignment, and oxidative products of f-Ti3C2Tx. The resultant fabricated free-standing flexible f-Ti3C2Tx films exhibited electrical conductivity and electromagnetic interference (EMI) shielding effectiveness (SE) in the X-band of about 3669 ± 33 S/m and 31.97 dB, respectively, at a thickness of 6 μm. The large discrepancy in EMI SE performance between quality (31.97 dB) and defected (3.164 dB) f-Ti3C2Tx sheets is attributed to interconnections between f-Ti3C2Tx nanolaminates interrupted by defects and oxidative products, influencing EMI attenuation ability. Furthermore, the demonstrated solution-processable high-quality f-Ti3C2Tx inks are compatible and, when applied for EM barrier coating on various substrates, including paper, cellulose fabric, and PTFE membranes, exhibited significant EMI shielding performance. Moreover, controlling defects in f-Ti3C2Tx and assembly of heterogeneous disordered carbon-loaded TiO2-Ti3C2Tx ternary hybrid nanostructures from f-Ti3C2Tx by tuning etching conditions could play an enormous role in energy and environmental applications.
Collapse
Affiliation(s)
- Krishnamoorthy Rajavel
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuecheng Yu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengli Zhu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chingping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Sultanov F, Daulbayev C, Bakbolat B, Daulbayev O. Advances of 3D graphene and its composites in the field of microwave absorption. Adv Colloid Interface Sci 2020; 285:102281. [PMID: 33011572 DOI: 10.1016/j.cis.2020.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The intensive progress of information technology increases the demand for urgent development of practical materials for microwave absorption (MA), meeting the general requirement "thin, wide, light and strong". In the past 6 years, graphene is of great interest for MA performance due to its unique properties such as high specific surface area, high electrical conductivity, strong dielectric loss, and low density. Taking in account that the structure of absorber plays a key role in MA performance, the attempts to produce an efficient microwave absorbing materials (MAMs) have led to 3D graphene - aerogels and foams - due to their extremely high porosity, large specific surface area, excellent mechanical properties with ability of compression and further maintaining the original shape, lightweight, reduced agglomeration of graphene sheets. All listed parameters enhance the impedance matching of MAMs, generate the synergistic loss effects, thereby improving the MA properties. The review describes the bases of MA theory and summarizes the recent achievements in the fabrication of pure 3D graphene networks and their composites with magnetic, ceramic nanoparticles and nanowires, polymers, MXenes, and multicomponent systems, directed to improve the impedance matching and generate loss mechanisms for the overall improvement of their performance as MAMs.
Collapse
|
40
|
Peymanfar R, Yektaei M, Javanshir S, Selseleh-Zakerin E. Regulating the energy band-gap, UV–Vis light absorption, electrical conductivity, microwave absorption, and electromagnetic shielding effectiveness by modulating doping agent. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Wang XX, Cao WQ, Cao MS, Yuan J. Assembling Nano-Microarchitecture for Electromagnetic Absorbers and Smart Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002112. [PMID: 32686195 DOI: 10.1002/adma.202002112] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Smart devices, nowadays, are inspiring the infinite vitality and possibilities of intelligent life, such as self-power electromagnetic (EM) nanogenerator and microsensor, smart window, thermally-driven EM absorber, interstellar energy deliverer, and so on. Herein, the latest and most impressive works of 3D nano-micro architectures and their smart EM devices are highly focused on. The most key information, including assembly strategy and mechanism, EM response, and approach-structure-function relationship, is extracted and well-organized with profundity and easy-to-understand approach. The merit and demerit are revealed by comparison. What's more, the brightest and most cutting-edge smart EM devices constructed by 3D nano-micro architectures are reported as highlights, and the device principles are deeply dissected. Finally, a profound and top comment on the fast-growing field as well as challenges are proposed, and the future directions are predicted intelligently.
Collapse
Affiliation(s)
- Xi-Xi Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Yuan
- School of Information Engineering, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
42
|
Liu H, Li L, Cui G, Wang X, Zhang Z, Lv X. Heterostructure Composites of CoS Nanoparticles Decorated on Ti 3C 2T x Nanosheets and Their Enhanced Electromagnetic Wave Absorption Performance. NANOMATERIALS 2020; 10:nano10091666. [PMID: 32858800 PMCID: PMC7560137 DOI: 10.3390/nano10091666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 11/25/2022]
Abstract
As a typical two-dimensional material, MXene possesses excellent conductivity and tunable interlayer space, which makes it have an impressive development potential in the field of electromagnetic (EM) waves absorbing materials. In this work, we fabricated a sandwich structure CoS@Ti3C2Tx composite using a simple solvothermal process. The CoS nanoparticles are anchored on the Ti3C2Tx MXene sheets, forming a heterolayered structure. The results demonstrate that the CoS@Ti3C2Tx composites with the sandwich-like architecture showed excellent EM absorbing performance due to the synergistic effects of the conductivity loss, interface polarization, and dipole polarization. When the doping ratio was 40 wt %, the maximum reflection loss value of CoS@Ti3C2Tx was up to –59.2 dB at 14.6 GHz, and the corresponding effective absorption bandwidth (below –10 dB) reached 5.0 GHz when the thickness was only 2.0 mm. This work endows a new candidate for the design of MXene-based absorption materials with optimal performance.
Collapse
Affiliation(s)
- Hui Liu
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Ling Li
- Engineering College of Field Engineering, The Army Engineering University of PLA, Nanjing 210007, China;
- Correspondence: (L.L.); (G.C.)
| | - Guangzhen Cui
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
- Correspondence: (L.L.); (G.C.)
| | - Xinxin Wang
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Zhi Zhang
- Graduate School, The Army Engineering University of PLA, Nanjing 210007, China; (H.L.); (X.W.); (Z.Z.)
| | - Xuliang Lv
- Engineering College of Field Engineering, The Army Engineering University of PLA, Nanjing 210007, China;
| |
Collapse
|
43
|
Zhao X, Wang LY, Tang CY, Zha XJ, Liu Y, Su BH, Ke K, Bao RY, Yang MB, Yang W. Smart Ti 3C 2T x MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS NANO 2020; 14:8793-8805. [PMID: 32644797 DOI: 10.1021/acsnano.0c03391] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An increasing utilization of flexible healthcare electronics and biomedicine-related therapeutic materials urges the development of multifunctional wearable/flexible smart fabrics for personal therapy and health management. However, it is currently a challenge to fabricate multifunctional and on-body healthcare electronic devices with reliable mechanical flexibility, excellent breathability, and self-controllable joule heating effects. Here, we fabricate a multifunctional MXene-based smart fabric by depositing 2D Ti3C2Tx nanosheets onto cellulose fiber nonwoven fabric via special MXene-cellulose fiber interactions. Such multifunctional fabrics exhibit sensitive and reversible humidity response upon H2O-induced swelling/contraction of channels between the MXene interlayers, enabling wearable respiration monitoring application. Besides, it can also serve as a low-voltage thermotherapy platform due to its fast and stable electro-thermal response. Interestingly, water molecular extraction induces electrical response upon heating, i.e., functioning as a temperature alarm, which allows for real-time temperature monitoring for thermotherapy platform without low-temperature burn risk. Furthermore, metal-like conductivity of MXene renders the fabric an excellent Joule heating effect, which can moderately kill bacteria surrounding the wound in bacteria-infected wound healing therapy. This work introduces a multifunctional smart flexible fabric suitable for next-generation wearable electronic devices for mobile healthcare and personal medical therapy.
Collapse
Affiliation(s)
- Xing Zhao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Li-Ya Wang
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chun-Yan Tang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Xiang-Jun Zha
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Yong Liu
- Science and Technology Information Center, PetroChina West East Gas Pipeline Company, Wuhan 430074, Hubei, China
| | - Bai-Hai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Ke
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Rui-Ying Bao
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Ming-Bo Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China
| |
Collapse
|
44
|
Wang L, Huang M, Yu X, You W, Zhang J, Liu X, Wang M, Che R. MOF-Derived Ni 1-xCo x@Carbon with Tunable Nano-Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. NANO-MICRO LETTERS 2020; 12:150. [PMID: 34138180 PMCID: PMC7770844 DOI: 10.1007/s40820-020-00488-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 05/26/2023]
Abstract
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Mengqiu Huang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xuefeng Yu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, People's Republic of China
| | - Min Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
45
|
Li X, Zhang M, You W, Pei K, Zeng Q, Han Q, Li Y, Cao H, Liu X, Che R. Magnetized MXene Microspheres with Multiscale Magnetic Coupling and Enhanced Polarized Interfaces for Distinct Microwave Absorption via a Spray-Drying Method. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18138-18147. [PMID: 32204585 DOI: 10.1021/acsami.0c00935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As a typical 2D (two dimensional) material, Ti3C2Tx, has been used as a promising microwave absorber (MA) because of its massive interface architecture, abundant natural defects, and chemical surface functional groups. However, its single dielectric-type loss and excessive high conductivity seriously restrict the further enhancement of MA performance. Herein, we first describe a simple spray-drying routine to reshape the 2D MXene into a confined and magnetized microsphere with tightly embedded Fe3O4 nanospheres (designated as M/F), contributing to the enhanced specific interfaces and strong dielectric polarization. These Fe3O4 magnetic units are highly dispersed into the dielectric Mxene framework, leading to the optimized impedance balance and electromagnetic coordination capability. This composite way effectively exceeds the conventionally physical mixing, simple loading, and local phase separation method. Meanwhile, strong magnetic loss capability with significantly improved magnetic flux line density is achieved from microscale MXene and nanoscale Fe3O4, confirming our 3D multiscale magnetic coupling network. Accordingly, the M/F composites hold distinct microwave absorption property with the strong reflection loss (-50.6 dB) and effective absorption bandwidth (4.67 GHz) at the thickness as thin as only 2 mm. Our encouraging strategy provides important designable implications for MXene-based functional materials and high-performance absorbers.
Collapse
Affiliation(s)
- Xiao Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Mao Zhang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Qing Han
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Yuesheng Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Hui Cao
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Ministry of Education, Zhengzhou 450002, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
46
|
Guo D, Yuan H, Wang X, Zhu C, Chen Y. Urchin-like Amorphous Nitrogen-Doped Carbon Nanotubes Encapsulated with Transition-Metal-Alloy@Graphene Core@Shell Nanoparticles for Microwave Energy Attenuation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9628-9636. [PMID: 32020801 DOI: 10.1021/acsami.9b20412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, we report three-dimensional (3D) urchin-like amorphous nitrogen-doped CNT (NCNT) arrays with embedded cobalt-nickel@graphene core@shell nanoparticles (NPs) in the inner parts of NCNTs (CoNi@G@NCNTs) for highly efficient absorption toward microwave (MW). The CoNi NPs are covered with about seven layers of graphene shell, resulting in the formation of CoNi@G core-shell structures. In the meanwhile, the CoNi@G core-shell NPs are further encapsulated within NCNTs. Benefitting from the multiple scattering of the unique 3D structure toward MW, cooperative effect between magnetic loss and dielectric loss, and additional interfacial polarizations, the 3D urchin-like CoNi@G@NCNTs exhibit excellent MW energy attenuation ability with a broad absorption bandwidth of 5.2 GHz with a matching thickness of merely 1.7 mm, outperforming most reported absorbers. Furthermore, the chemical stability of the 3D urchin-like CoNi@G@NCNTs is improved greatly due to the presence of the graphene coating layers and outmost NCNTs, facilitating their practical applications. Our results highlight a novel strategy for fabrication of 3D nanostructures as high-performance MW-absorbing materials.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Haoran Yuan
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Xianchao Wang
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| | - Chunling Zhu
- College of Chemistry and Chemical Engineering , Harbin Engineering University , Harbin 150001 , China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics, Ministry of Education and College of Science , Harbin Engineering University , Harbin 150001 , China
| |
Collapse
|
47
|
Deng B, Xiang Z, Xiong J, Liu Z, Yu L, Lu W. Sandwich-Like Fe&TiO 2@C Nanocomposites Derived from MXene/Fe-MOFs Hybrids for Electromagnetic Absorption. NANO-MICRO LETTERS 2020; 12:55. [PMID: 34138299 PMCID: PMC7770802 DOI: 10.1007/s40820-020-0398-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/02/2020] [Indexed: 05/17/2023]
Abstract
Electromagnetic pollution has been causing a series of problems in people's life, and electromagnetic absorbers with lightweight and broad absorbing bandwidth properties are widely desired. In this work, novel sandwich-like 2D laminated Fe&TiO2 nanoparticles@C nanocomposites were rationally designed and successfully developed from the MXene-MOFs hybrids. The formation of Fe and rutile-TiO2 nanoparticles sandwiched by the two-dimensional carbon nanosheets provided strong electromagnetic energy attenuation and good impedance matching for electromagnetic wave (EMW) absorption. As expected, the nanocomposites achieved a broad effective absorption bandwidth of 6.5 GHz at a thickness of only 1.6 mm and the minimum reflection loss (RL) value of - 51.8 dB at 6.6 GHz with a thickness of 3 mm. This work not only provides a good design and fabricating concept for the laminated metal and functional nanoparticles@C nanocomposites with good EMW absorption, but also offers an important guideline to fabricate various two-dimensional nanocomposites derived from the MXene precursors.
Collapse
Affiliation(s)
- Baiwen Deng
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhen Xiang
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Juan Xiong
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhicheng Liu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Lunzhou Yu
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai, 200092, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab. of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
48
|
Microwave absorption performances of planar anisotropy ferromagnetic Pr2Co17 flakes prepared by high-energy ball-milling process. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Improving the electromagnetic shielding of fabricated NdFeB particles by a coating thin carbonaceous layer. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Xie F, Jia F, Zhuo L, Lu Z, Si L, Huang J, Zhang M, Ma Q. Ultrathin MXene/aramid nanofiber composite paper with excellent mechanical properties for efficient electromagnetic interference shielding. NANOSCALE 2019; 11:23382-23391. [PMID: 31793611 DOI: 10.1039/c9nr07331k] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MXenes, new two-dimensional compounds with hydrophilic surfaces and high metallic conductivity, have attracted significant interest in the electromagnetic interference shielding field in recent years. Nevertheless, poor mechanical properties and brittle nature are bottlenecks for their commercial application. Herein, one-dimensional ANFs were designed as the intermolecular cross-linker between d-Ti3C2Tx flakes and MXene (d-Ti3C2Tx)/aramid nanofiber (ANF) composite paper with a multi-layered structure was fabricated via the vacuum-assisted filtration approach. Further investigation revealed that the ANFs and MXene displayed good combination by hydrogen bonding, and MXene/ANF composite papers exhibited excellent mechanical properties and superior electrical conductivity. The MXene/ANF composite paper possessed a favorable shielding effectiveness (SE) which reached ∼28 dB in 8.2-12.4 GHz (X band) with an ultra-thin thickness ∼17 μm and showed potential application prospects as an advanced composite in sensitive electronic products.
Collapse
Affiliation(s)
- Fan Xie
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Fengfeng Jia
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Longhai Zhuo
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Lianmeng Si
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Jizhen Huang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Meiyun Zhang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| | - Qin Ma
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, No. 6, Xuefu Road, Xi'an, 710021, P.R. China.
| |
Collapse
|