1
|
Yang Y, Jian Y, He L. High performance persistent organic pollutants removal using stabilized enzyme aggregates over amino functionalized magnetic biochar. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137868. [PMID: 40073570 DOI: 10.1016/j.jhazmat.2025.137868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
Herein, a highly efficient and recyclable biocatalyst was developed using stabilized enzyme aggregates on amino-functionalized magnetic biochar for removing persistent organic pollutants from water. The biochar derived from biomass featured abundant hydroxyl functional groups, after functionalization with amino functional groups and magnetic nanoparticles, it was employed for laccase immobilization via enzyme electrostatic adsorption, precipitation and cross-linking in a favorable orientation. This immobilized enzyme aggregates exhibited enhanced pH tolerance, thermal and storage stability than free enzyme. Complete removal of 20 mg/L bisphenol A was achieved within 60 min via C-C bond cleavage and hydroxylation. Notably, the removal efficiency remained at approximately 90 % even after six cycles. Furthermore, this biocatalyst was also successfully applied to efficiently remove other various persistent organic pollutants and demonstrated applicability in real environmental water samples. This study highlights the substantial potential of enzyme-based biocatalysts, presenting a sustainable and efficient approach for water purification and biomass resource recovery.
Collapse
Affiliation(s)
- Yadong Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yangyang Jian
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingzhi He
- Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Kim D, Kim BC, Hwang ET. Double crystallization-driven copper-2-methylimidazole nanoflowers: Stabilizing glucose oxidase and activating nanozyme functions for tandem catalysis. Int J Biol Macromol 2025; 315:144341. [PMID: 40398785 DOI: 10.1016/j.ijbiomac.2025.144341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Based on the structural characteristics of metal-organic framework (MOF) synthesis, we designed a double-crystallized copper-2-methylimidazole nanoflower (DCu NF) platform in which glucose oxidase (GOx) was incorporated to form an enzyme-nanozyme hybrid for glucose sensing. The D-Cu@GOx NF system mimics a GOx-horseradish peroxidase-like multi-enzyme cascade, benefiting from synergistic oxidation capabilities. Double crystallization of Cu nanoflowers (Cu-NFs) was crucial for inducing nanozyme activity by creating a unique Fenton-like reaction site, enhancing both cascade activity and enzyme stability. The system was constructed using a self-assembly method, integrating Cu-NF synthesis with in situ GOx immobilization. The double crystallization of Cu-NFs expanded the surface area, forming D-Cu@GOx NFs, which significantly enhanced cascade activity and enzyme stability. The system demonstrated excellent glucose detection performance, maintaining 88 % of enzyme activity after 30 days at room temperature, with temperature resistance up to 60 °C and pH stability between 3 and 8. The enhanced oxidation from the Cu metal Fenton-like reaction site enabled sensitive glucose detection over a wide linear range (0-50 μM), with a limit of detection of 1.25 μM. The system also showed high reproducibility, with a relative standard deviation of <5 % across five replicate measurements. Furthermore, it successfully detected human blood glucose in real samples, with results comparable to standard clinical methods. This report presents Cu NF synthesis with an integrated GOx approach, demonstrating cost-effectiveness through enhanced stability and sensitivity that reduces enzyme usage and enables rapid, accurate glucose biosensing. The D-Cu@GOx NFs, a hybrid enzyme-nanozyme complex, offer improved sensitivity and stability for glucose detection in serum. By enhancing enzyme stability, the system eliminates the need for dual enzymes, reducing costs and improving efficiency, while maintaining cost-effectiveness for industrial and diagnostic applications.
Collapse
Affiliation(s)
- Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea
| | - Byoung Chan Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Yuan P, Wang Q, Deng X, Zhang X, Fan D, Bai Y. Coimmobilized Dual Enzymes in a Continuous Flow Reactor for the Efficient Synthesis of Optically Pure γ/δ-Lactones. ACS APPLIED MATERIALS & INTERFACES 2025; 17:867-879. [PMID: 39693126 DOI: 10.1021/acsami.4c14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Enzyme catalysis is a promising method for producing chiral chemicals with high stereoselectivity under mild conditions. However, the traditional batch reaction suffers from low enzyme stability, low cofactor recycling, and poor enzyme reusability. Here, we present a continuous-flow method using coimmobilized dual enzymes for the synthesis of chiral γ-/δ-lactones, which are widely used in fragrances and flavors. Typically, a carbonyl reductase mutant SmCRM5 from Serratia marcescens, was coimmobilized by covalent binding with BmGDH, a glucose dehydrogenase capable of recovering and recycling the cofactor NADPH. After immobilization, SmCRM5 and BmGDH exhibited a 8.9-/8.7-fold increase in catalytic efficiency (kcat/Km) and a 57-/15-fold increase in half-life at 30 °C, respectively. We demonstrated that coimmobilized dual enzymes used in a continuous flow reactor showed a higher reaction rate and a higher space-time yield (1586 g·L-1 d-1) than free enzymes and immobilized enzymes in a batch reaction for the production of (R)-δ-decalactone. This continuous flow reactor can run continuously for more than 650 h with 99% ee and 80% conversion, and the total volume exceeds 1500 reactor volumes. The robustness of this continuous-flow immobilized enzyme system provides a green and efficient method for the synthesis of high value-added chiral chemicals.
Collapse
Affiliation(s)
- Pengyu Yuan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Qing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xuelei Deng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
| | - Daidi Fan
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, China
- Shaanxi R&D Centre of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
4
|
Siddiqui I, Owais M, Husain Q. Antimicrobial effects of peptides from fenugreek and ginger proteins using Fe 3O 4@PDA-MWCNT conjugated trypsin by improving enzyme stability & applications. Int J Biol Macromol 2024; 282:137197. [PMID: 39489254 DOI: 10.1016/j.ijbiomac.2024.137197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Trypsin was immobilized onto a newly formulated nanocomposite (NC) comprising magnetic (Fe3O4) multiwalled carbon nanotubes (MWCNTs) anchored with polydopamine (PDA). The fabricated NC and the NC-bound trypsin were subjected to comprehensive characterization using various biophysical techniques including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectroscopy. The NC-bound trypsin exhibited significantly enhanced thermostability and increased tolerance to various organic solvents and denaturants. The enzymatic activity of trypsin was notably augmented through its coupling with the nano support, yielding an effectiveness factor (η) of 2.65. Fenugreek and ginger protein hydrolysates, prepared using both native and NC-bound enzyme, were evaluated for their antimicrobial activities. The analysis revealed that peptides generated by NC-bound trypsin showed higher antimicrobial activity (~ 10) in most cases compared to peptides obtained by using native trypsin. This strategy presents an innovative methodology for the production of potential biopeptides, with the prospect of their incorporation into pharmaceutical and therapeutic sectors through the utilization of NC-bound trypsin in protein hydrolysis.
Collapse
Affiliation(s)
- Irfanah Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| | - Mohammad Owais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Deiana L, Avella A, Rafi AA, Mincheva R, De Winter J, Lo Re G, Córdova A. In Situ Enzymatic Polymerization of Ethylene Brassylate Mediated by Artificial Plant Cell Walls in Reactive Extrusion. ACS APPLIED POLYMER MATERIALS 2024; 6:10414-10422. [PMID: 39296488 PMCID: PMC11406489 DOI: 10.1021/acsapm.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa. In addition, we discovered that APCW catalyzes the formation of large ethylene brassylate macrocycles. The enzymatic stability and efficiency of the APCW were investigated by recycling the catalyst both in bulk and reactive extrusion. The obtained poly(ethylene brassylate) was applied as a biobased and biodegradable hydrophobic paper coating.
Collapse
Affiliation(s)
- Luca Deiana
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Angelica Avella
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons (UMONS), 7000 Mons, Belgium
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| |
Collapse
|
6
|
Ran L, Lin Y, Su G, Yang Z, Teng H. Co-Immobilization of ADH and GDH on Metal-Organic-Framework: An Effective Biocatalyst for Asymmetric Reduction of Ketones. Chembiochem 2024; 25:e202400147. [PMID: 38629211 DOI: 10.1002/cbic.202400147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Indexed: 05/22/2024]
Abstract
Chiral alcohols are not only important building blocks of various bioactive natural compounds and pharmaceuticals, but can serve as synthetic precursors for other valuable organic chemicals, thus the synthesis of these products is of great importance. Bio-catalysis represents one effective way to obtain these molecules, however, the weak stability and high cost of enzymes often hinder its broad application. In this work, we designed a biological nanoreactor by embedding alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) in metal-organic-framework ZIF-8. The biocatalyst ADH&GDH@ZIF-8 could be applied to the asymmetric reduction of a series of ketones to give chiral alcohols in high yields (up to 99 %) and with excellent enantioselectivities (>99 %). In addition, the heterogeneous biocatalyst could be recycled and reused at least four times with slight activity decline. Moreover, E. coli containing ADH and GDH was immobilized by ZIF-8 to form biocatalyst E. coli@ZIF-8, which also exhibits good catalytic behaviours. Finally, the chiral alcohols are further converted to marketed drugs (R)-Fendiline, (S)-Rivastigmine and NPS R-568 respectively.
Collapse
Affiliation(s)
- Lu Ran
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yu Lin
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Guorong Su
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zhenyan Yang
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Huailong Teng
- College of Chemistry, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Wang Z, Cai Y, Li M, Wan X, Mi L, Yang W, Hu Y. Boosting one-step degradation of shrimp shell waste to produce chitin oligosaccharides at smart nanoscale enzyme reactor with liquid-solid system. Int J Biol Macromol 2024; 268:131787. [PMID: 38657939 DOI: 10.1016/j.ijbiomac.2024.131787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Chitin oligosaccharides (CTOS) possess potential applications in food, medicine, and agriculture. However, lower mass transfer and catalytic efficiency are the main kinetic limitations for the production of CTOS from shrimp shell waste (SSW) and crystalline chitin. Chemical or physical methods are usually used for pretreatment to improve chitinase hydrolysis efficiency, but this is not eco-friendly and cost-effective. To address this challenge, a chitinase nanoreactor with the liquid-solid system (BcChiA1@ZIF-8) was manufactured to boost the one-step degradation of SSW and crystalline chitin. Compared with free enzyme, the catalytic efficiency of BcChiA1@ZIF-8 on colloidal chitin was significantly improved to 142 %. SSW and crystalline chitin can be directly degraded by BcChiA1@ZIF-8 without any pretreatments. The yield of N, N'-diacetylchitobiose [(GlcNAc)2] from SSW and N-acetyl-D-glucosamine (GlcNAc) from crystalline chitin was 2 times and 3.1 times than that of free enzyme, respectively. The reason was that BcChiA1@ZIF-8 with a liquid-solid system enlarged the interface area, increased the collision frequency between enzyme and substrate, and improved the large-substrates binding activity of chitinase. Moreover, the biphasic system exhibited excellent stability, and the design showed universal applicability. This strategy provided novel guidance for other polysaccharide biosynthesis and the conversion of environmental waste into carbohydrates.
Collapse
Affiliation(s)
- Ziteng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China
| | - Yijin Cai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China
| | - Mingxuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China
| | - Xiaoru Wan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China
| | - Li Mi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China.
| | - Wenge Yang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China
| | - Yonghong Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China; College of Food Science and Light Industry, Nanjing Tech University, No. 30, South Puzhu Road, Nanjing 211816, PR China.
| |
Collapse
|
8
|
Jabeen R, Ali N, Tajwar MA, Liu Y, Luo D, Li D, Qi L. Encapsulation of an enzyme-immobilized smart polymer membrane in a metal-organic framework for enhancement of catalytic performance. J Mater Chem B 2024; 12:3996-4003. [PMID: 38563677 DOI: 10.1039/d4tb00162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.
Collapse
Affiliation(s)
- Rubina Jabeen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nasir Ali
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Ali Tajwar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yutong Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Dong Luo
- College of Chemistry and Material Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | - Dan Li
- College of Chemistry and Material Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Li W, Yan X, Xia W, Zhao L, Pei J. Enzymatic properties and immobilization of a thermostable prenyltransferase from Aspergillus fumigatiaffinis for the production of prenylated naringenin. Bioorg Chem 2024; 145:107183. [PMID: 38340474 DOI: 10.1016/j.bioorg.2024.107183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/24/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Prenyltransferases catalyze the synthesis of prenylated flavonoids, providing these with greater lipid solubility, biological activity, and availability. In this study, a thermostable prenyltransferase (AfPT) from Aspergillus fumigatiaffinis was cloned and expressed in Escherichia coli. By optimizing induction conditions, the expression level of AfPT reached 39.3 mU/mL, which was approximately 200 % of that before optimization. Additionally, we determined the enzymatic properties of AfPT. Subsequently, AfPT was immobilized on carboxymethyl cellulose magnetic nanoparticles (CMN) at a maximum load of 0.6 mg/mg. Optimal activity of CMN-AfPT was achieved at pH 8.0 and 55 °C. Thermostability assays showed that the residual activity of CMN-AfPT was greater than 50 % after incubation at 55 °C for 4 h. Km and Vmax of CMN-AfPT for naringenin were 0.082 mM and 5.57 nmol/min/mg, respectively. The Kcat/Km ratio of CMN-AfPT was higher than that of AfPT. Residual prenyltransferase activity of CMN-AfPT remained higher than 70 % even after 30 days of storage. Further, CMN-AfPT retained 68 % of its original activity after 10 cycles of reuse. Compared with free AfPT, CMN-AfPT showed higher catalytic efficiency, thermostability, metal ion tolerance, substrate affinity, storage stability, and reusability. Our study presents a thermostable prenyltransferase and its immobilized form for the production of prenylated flavonoids in vitro.
Collapse
Affiliation(s)
- Wenbo Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Xin Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Wenli Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China
| | - Linguo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| | - Jianjun Pei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
10
|
Khan MRH, Armstrong Z, Lenertz M, Saenz B, Kale N, Li Q, MacRae A, Yang Z, Quadir M. Metal-Organic Framework Induced Stabilization of Proteins in Polymeric Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38490971 DOI: 10.1021/acsami.3c16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG-PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG-PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients.
Collapse
Affiliation(s)
- Md Rakib Hasan Khan
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Briana Saenz
- Department of Chemistry and Biochemistry, St. Mary's University, San Antonio, Texas 78228, United States
| | - Narendra Kale
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- Biomedical Engineering Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
11
|
Lenertz M, Li Q, Armstrong Z, Scheiwiller A, Ni G, Wang J, Feng L, MacRae A, Yang Z. Magnetic Multienzyme@Metal-Organic Material for Sustainable Biodegradation of Insoluble Biomass. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11617-11626. [PMID: 38410049 DOI: 10.1021/acsami.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Biodegradation of insoluble biomass such as cellulose via carbohydrase enzymes is an effective approach to break down plant cell walls and extract valuable materials therein. Yet, the high cost and poor reusability of enzymes are practical concerns. We recently proved that immobilizing multiple digestive enzymes on metal-organic materials (MOMs) allows enzymes to be reused via gravimetric separation, improving the cost efficiency of cereal biomass degradation [ACS Appl. Mater. Interfaces 2021, 13, 36, 43085-43093]. However, this strategy cannot be adapted for enzymes whose substrates or products are insoluble (e.g., cellulose crystals). Recently, we described an alternative approach based on magnetic metal-organic frameworks (MOFs) using model enzymes/substrates [ACS Appl. Mater. Interfaces 2020, 12, 37, 41794-41801]. Here, we aim to prove the effectiveness of combining these two strategies in cellulose degradation. We immobilized multiple carbohydrase enzymes that cooperate in cellulose degradation via cocrystallization with Ca2+, a carboxylate ligand (BDC) in the absence and presence of magnetic nanoparticles (MNPs). We then compared the separation efficiency and enzyme reusability of the resultant multienzyme@Ca-BDC and multienzyme@MNP-Ca-BDC composites via gravimetric and magnetic separation, respectively, and found that, although both composites were effective in cellulose degradation in the first round, the multienzyme@MNP-Ca-BDC composites displayed significantly enhanced reusability. This work provides the first experimental demonstration of using magnetic solid supports to immobilize multiple carbohydrase enzymes simultaneously and degrade cellulose and promotes green/sustainable chemistry in three ways: (1) reusing the enzymes saves energy/sources to prepare them, (2) the synthetic conditions are "green" without generating unwanted wastes, and (3) using our composites to degrade cellulose is the first step of extracting valuable materials from sustainable biomasses such as plants whose growth does not rely on nonregeneratable resources.
Collapse
Affiliation(s)
- Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Boston, Massachusetts 02138, United States
| | - Jien Wang
- California State University, San Marcos, San Marcos, California 92096, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
12
|
Armstrong Z, Jordahl D, MacRae A, Li Q, Lenertz M, Shen P, Botserovska A, Feng L, Ugrinov A, Yang Z. A Protocol for Custom Biomineralization of Enzymes in Metal-Organic Frameworks (MOFs). Bio Protoc 2024; 14:e4930. [PMID: 38379827 PMCID: PMC10875352 DOI: 10.21769/bioprotoc.4930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/16/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
Enzyme immobilization offers a number of advantages that improve biocatalysis; however, finding a proper way to immobilize enzymes is often a challenging task. Implanting enzymes in metal-organic frameworks (MOFs) via co-crystallization, also known as biomineralization, provides enhanced reusability and stability with minimal perturbation and substrate selectivity to the enzyme. Currently, there are limited metal-ligand combinations with a proper protocol guiding the experimental procedures. We have recently explored 10 combinations that allow custom immobilization of enzymes according to enzyme stability and activity in different metals/ligands. Here, as a follow-up of that work, we present a protocol for how to carry out custom immobilization of enzymes using the available combinations of metal ions and ligands. Detailed procedures to prepare metal ions, ligands, and enzymes for their co-crystallization, together with characterization and assessment, are discussed. Precautions for each experimental step and result analysis are highlighted as well. This protocol is important for enzyme immobilization in various research and industrial fields. Key features • A wide selection of metal ions and ligands allows for the immobilization of enzymes in metal-organic frameworks (MOFs) via co-crystallization. • Step-by-step enzyme immobilization procedure via co-crystallization of metal ions, organic linkers, and enzymes. • Practical considerations and experimental conditions to synthesize the enzyme@MOF biocomposites are discussed. • The demonstrated method can be generalized to immobilize other enzymes and find other metal ion/ligand combinations to form MOFs in water and host enzymes.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | | | | | - Li Feng
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North
Dakota State University, Fargo, ND, USA
| |
Collapse
|
13
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
14
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
15
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
16
|
Armstrong Z, MacRae A, Lenertz M, Li Q, Johnson K, Scheiwiller A, Shen P, Feng L, Quadir M, Yang Z. Impact of Crystallinity on Enzyme Orientation and Dynamics upon Biomineralization in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38124-38131. [PMID: 37494658 DOI: 10.1021/acsami.3c07870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds. We have discovered several new aqueous MOFs for enzyme biomineralization with varied crystallinity [Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller, A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z. Expanding the Library of Metal-Organic Frameworks (MOFs) for Enzyme Biomineralization. ACS Appl. Mater. Interfaces 2022, 14 (46), 51619-51629, DOI: 10.1021/acsami.2c12998]. Here, we address the second challenge by probing enzyme dynamics/restriction in these MOFs at the residue level via site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, a unique approach to determine protein backbone motions regardless of the background complexity. We encapsulated a model large-substrate enzyme, lysozyme, in eight newly discovered MOFs, which possess various degrees of crystallization, via aqueous-phase co-crystallization. Through the EPR study and simulations, we found rough connections between (a) enzyme mobility/dynamics and MOF crystal properties (packing quality and density) and (b) enzyme areas exposed above each MOF and their catalytic performance. This work suggests that protein SDSL and EPR can serve as an indicator of MOF crystal packing quality/density when biomineralized in MOFs. The method can be generalized to probing the dynamics of other enzymes on other solid surfaces/interfaces and guide the rational design of solid platforms (ca. MOFs) to customize enzyme immobilization.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kelley Johnson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Patrick Shen
- Davis High School, Fargo, North Dakota 58104, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
17
|
Li H, Pan Y, Li C, Yang Z, Rao J, Chen B. Lysozyme-phenolics bioconjugates with antioxidant and antibacterial bifunctionalities: Structural basis underlying the dual-function. Food Chem 2023; 406:135070. [PMID: 36462353 DOI: 10.1016/j.foodchem.2022.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/26/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
This work aims at adopting an Electron Paramagnetic Resonance (EPR) spectroscopic technique to help understanding protein-phenolic conjugation and final functionalities relationship as well as the underlying structural basis of antioxidant and antibacterial dual functionalities. Specifically, lysozyme (Lys) was conjugated with two natural phenolic acids, i.e. rosmarinic acid (RA) and gentisic acid (GA, our previous work) with obviously different molecular features. Lys-RA displayed 8.6- and 4.0-times enhanced antioxidant stoichiometry compared to the native Lys and ones with GA, respectively, due to the stronger antioxidant activity of RA. However, RA conjugation mitigated both enzymatic and antibacterial activities of Lys-RA conjugates. Such inhibition effect is attributed to the greater structural and surface property changes of Lys upon conjugating with RA. Furthermore, the polyphenol conjugation related structural basis of disturbance, reactivity and selectivity were explored via site-directed spin labeling (SDSL)-EPR. A dynamic picture of reactivity and selectivity of phenolics conjugation on Lys was proposed.
Collapse
Affiliation(s)
- Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States
| | - Chun Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, United States.
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States.
| |
Collapse
|
18
|
Shao Y, Zhou Y, Chen N, Xu W, Zhou H, Lai W, Huang X, Xiang X, Ye Q, Zhang J, Wang J, Parak WJ, Wu Q, Ding Y. Synthesizing Submicron Polyelectrolyte Capsules to Boost Enzyme Immobilization and Enhance Enzyme-Based Immunoassays. ACS OMEGA 2023; 8:12393-12403. [PMID: 37033870 PMCID: PMC10077544 DOI: 10.1021/acsomega.3c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Polyelectrolyte capsules (PCs) exhibit attractive superiorities in enzyme immobilization, including providing a capacious microenvironment for enzyme conformational freedom, highly effective mass transfer, and protecting enzymes from the external environment. Herein, we provide the first systemic evaluation of submicron PCs (SPCs, 500 nm) for enzyme immobilization. The catalytic kinetics results show that SPC encapsulation affected the affinities of enzymes and substrates but significantly enhanced their catalytic activity. The stability test indicates that SPC-encapsulated horseradish peroxidase (HRP) exhibits ultrahigh resistance to external harsh conditions and has a longer storage life than that of soluble HRP. The proposed encapsulation strategy enables 7.73-, 2.22-, and 11.66-fold relative activities when working at a pH as low as 3, at a NaCl concentration as high as 500 mM, and at a trypsin concentration as high as 10 mg/mL. We find that SPC encapsulation accelerates the cascade reaction efficiency of HRP and glucose oxidase. Owing to SPCs enhancing the catalytic activity of the loaded enzymes, we established an amplified enzyme-linked immunosorbent assay (ELISA) for the detection of Escherichia coli O157:H7 using HRP-loaded SPCs. The detection sensitivity of SPC-improved ELISA was found to be 280 times greater than that of conventional HRP-based ELISA. Altogether, we provide an elaborate evaluation of 500 nm SPCs on enzyme immobilization and its application in the ultrasensitive detection of foodborne pathogens. This evaluation provides evidence to reveal the potential advantage of SPCs on enzyme immobilization for enzyme-based immunoassays. It has excellent biological activity and strong stability and broadens the application prospect in urine, soy sauce, sewage, and other special samples.
Collapse
Affiliation(s)
- Yanna Shao
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yaofeng Zhou
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Nuo Chen
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Wenxing Xu
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huan Zhou
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weihua Lai
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaolin Huang
- State
Key Laboratory of Food Science and Technology, School of Food Science
and Technology, Nanchang University, Nanchang 330047, China
| | - Xinran Xiang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qinghua Ye
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College
of Food Science, South China Agricultural
University, Guangzhou 510432, China
| | - Wolfgang J. Parak
- Center
for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany
| | - Qingping Wu
- Institute
of Microbiology; State Key Laboratory of Applied Microbiology Southern
China; Key Laboratory of Agricultural Microbiomics and Precision Application,
Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key
Laboratory of Microbial Safety and Health, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yu Ding
- Department
of Food Science and Engineering, Institute of Food Safety and Nutrition,
College of Science & Engineering, College of Life Science and
Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
19
|
Luan L, Ji X, Guo B, Cai J, Dong W, Huang Y, Zhang S. Bioelectrocatalysis for CO 2 reduction: recent advances and challenges to develop a sustainable system for CO 2 utilization. Biotechnol Adv 2023; 63:108098. [PMID: 36649797 DOI: 10.1016/j.biotechadv.2023.108098] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/11/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Activation and turning CO2 into value added products is a promising orientation to address environmental issues caused by CO2 emission. Currently, electrocatalysis has a potent well-established role for CO2 reduction with fast electron transfer rate; but it is challenged by the poor selectivity and low faradic efficiency. On the other side, biocatalysis, including enzymes and microbes, has been also employed for CO2 conversion to target Cn products with remarkably high selectivity; however, low solubility of CO2 in the liquid reaction phase seriously affects the catalytic efficiency. Therefore, a new synergistic role in bioelectrocatalysis for CO2 reduction is emerging thanks to its outstanding selectivity, high faradic efficiency, and desirable valuable Cn products under mild condition that are surveyed in this review. Herein, we comprehensively discuss the results already obtained for the integration craft of enzymatic-electrocatalysis and microbial-electrocatalysis technologies. In addition, the intrinsic nature of the combination is highly dependent on the electron transfer. Thus, both direct electron transfer and mediated electron transfer routes are modeled and concluded. We also explore the biocompatibility and synergistic effects of electrode materials, which emerge in combination with tuned enzymes and microbes to improve catalytic performance. The system by integrating solar energy driven photo-electrochemical technics with bio-catalysis is further discussed. We finally highlight the significant findings and perspectives that have provided strong foundations for the remarkable development of green and sustainable bioelectrocatalysis for CO2 reduction, and that offer a blueprint for Cn valuable products originate from CO2 under efficient and mild conditions.
Collapse
Affiliation(s)
- Likun Luan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Boxia Guo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jinde Cai
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wanrong Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Pan Y, Li Q, Liu W, Armstrong Z, MacRae A, Feng L, McNeff C, Zhao P, Li H, Yang Z. Unveiling the orientation and dynamics of enzymes in unstructured artificial compartments of metal-organic frameworks (MOFs). NANOSCALE 2023; 15:2573-2577. [PMID: 36655708 DOI: 10.1039/d2nr06659a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Confining enzymes in well-shaped MOF compartments is a promising approach to mimic the cellular environment of enzymes and determine enzyme structure-function relationship therein. Under the cellular crowding, however, enzymes can also be confined in unstructured spaces that are close to the shapes/outlines of the enzyme. Therefore, for a better understanding of enzymes in their physiological environments, it is necessary to study enzymes in these unstructured spaces. However, practically it is challenging to create compartments that are close to the outline of an enzyme and probe enzyme structural information therein. Here, for proof-of-principle, we confined a model enzyme, lysozyme, in the crystal defects of a MOF via co-crystallization, where lysozyme served as the nuclei for MOF crystal scaffolds to grow on so that unstructured spaces close to the outline of lysozyme are created, and determined enzyme relative orientation and dynamics. This effort is important for understanding enzymes in near-native environments and guiding the rational design of biocatalysts that mimic how nature confines enzymes.
Collapse
Affiliation(s)
- Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Charles McNeff
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Pinjing Zhao
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
21
|
Li Q, Armstrong Z, MacRae A, Ugrinov A, Feng L, Chen B, Huang Y, Li H, Pan Y, Yang Z. Metal-Organic Materials (MOMs) Enhance Proteolytic Selectivity, Efficiency, and Reusability of Trypsin: A Time-Resolved Study on Proteolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8927-8936. [PMID: 36757369 DOI: 10.1021/acsami.2c19873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteases are involved in essential biological functions in nature and have become drug targets recently. In spite of the promising progress, two challenges, (i) the intrinsic instability and (ii) the difficulty in monitoring the catalytic process in real time, still hinder the further understanding and engineering of protease functionalities. These challenges are caused by the lack of proper materials/approaches to stabilize proteases and monitor proteolytic products (truncated polypeptides) in real time in a highly heterogeneous reaction mixture. This work combines metal-organic materials (MOMs), site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy, and mass spectrometry (MS) to overcome both barriers. A model protease, trypsin, which cleaves the peptide bonds at lysine or arginine residues, was immobilized on a Ca-MOM via aqueous-phase, one-pot cocrystallization, which allows for trypsin protection and ease of separation from its proteolytic products. Time-resolved EPR and MS were employed to monitor the populations, rotational motion, and sequences of the cleaved peptide truncations of a model protein substrate as the reaction proceeded. Our data suggest a significant (at least 5-10 times) enhancement in the catalytic efficiency (kcat/km) of trypsin@Ca-MOM and excellent reusability as compared to free trypsin in solution. Surprisingly, entrapping trypsin in Ca-MOMs results in cleavage site/region selectivity against the protein substrate, as compared to the near nonselective cleavage of all lysine and arginine residues of the substrate in solution. Remarkably, immobilizing trypsin allows for the separation and, thus, MS study on the sequences of truncated peptides in real time, leading to a time-resolved "movie" of trypsin proteolysis. This work demonstrates the use of MOMs and cocrystallization to enhance the selectivity, catalytic efficiency, and stability of trypsin, suggesting the possibility of tuning the catalytic performance of a general protease using MOMs.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ying Huang
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
22
|
Study of stability, kinetic parameters and release of lysozyme immobilized on chitosan microspheres by crosslinking and covalent attachment for cotton fabric functionalization. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
23
|
Amin M, Abdullah BM, Wylie SR, Rowley-Neale SJ, Banks CE, Whitehead KA. The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:36. [PMID: 36615946 PMCID: PMC9824597 DOI: 10.3390/nano13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry results demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified in the range of 3-150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-NHS/GA SPE was 0.8 μg/mL, and the biosensor was also found to be effective when tested in artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the voltammetric detection of cadaverine which was also active in the presence of artificial saliva was presented in this study.
Collapse
Affiliation(s)
- Mohsin Amin
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Badr M. Abdullah
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stephen R. Wylie
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
24
|
Jordahl D, Armstrong Z, Li Q, Gao R, Liu W, Johnson K, Brown W, Scheiwiller A, Feng L, Ugrinov A, Mao H, Chen B, Quadir M, Li H, Pan Y, Yang Z. Expanding the "Library" of Metal-Organic Frameworks for Enzyme Biomineralization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51619-51629. [PMID: 36346909 DOI: 10.1021/acsami.2c12998] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are advanced platforms for enzyme immobilization. Enzymes can be entrapped via either diffusion (into pre-formed MOFs) or co-crystallization. Enzyme co-crystallization with specific metals/ligands in the aqueous phase, also known as biomineralization, minimizes the enzyme loss compared to organic phase co-crystallization, removes the size limitation on enzymes and substrates, and can potentially broaden the application of enzyme@MOF composites. However, not all enzymes are stable/functional in the presence of excess metal ions and/or ligands currently available for co-crystallization. Furthermore, most current biomineralization-based MOFs have limited (acid) pH stability, making it necessary to explore other metal-ligand combinations that can also immobilize enzymes. Here, we report our discovery on the combination of five metal ions and two ligands that can form biocomposites with two model enzymes differing in size and hydrophobicity in the aqueous phase under ambient conditions. Surprisingly, most of the formed composites are single- or multiphase crystals, even though the reaction phase is aqueous, with the rest as amorphous powders. All 20 enzyme@MOF composites showed good to excellent reusability and were stable under weakly acidic pH values. The stability under weakly basic conditions depended upon the selection of enzyme and metal-ligand combinations, yet for both enzymes, 3-4 MOFs offered decent stability under basic conditions. This work initiates the expansion of the current "library" of metal-ligand selection for encapsulating/biomineralizing large enzymes/enzyme clusters, leading to customized encapsulation of enzymes according to enzyme stability, functionality, and optimal pH.
Collapse
Affiliation(s)
- Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Runxiang Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Kelley Johnson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - William Brown
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Haiyan Mao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
25
|
Wu C, Zhi D, Yao B, Zhou Y, Yang Y, Zhou Y. Immobilization of microbes on biochar for water and soil remediation: A review. ENVIRONMENTAL RESEARCH 2022; 212:113226. [PMID: 35452667 DOI: 10.1016/j.envres.2022.113226] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/05/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Biochar has caught great attention over the last decade with the loose and porous structure, and carbon stability provides suitable living conditions for the growth and activity of microorganisms. This review provided a comprehensive summary of biochar immobilization microbe (BIM) in water and soil decontamination. Firstly, the bacterial immobilization techniques including adsorption, entrapping, and covalence methods were exhibited. Secondly, the applications of BIM in water and soil environmental remediation were introduced, mainly including the treatment of organic pollutants, heavy metals, and N/P, among which the most frequently immobilized microorganism was Bacillus. Then, the mechanisms of adsorption, redox, and degradation were analyzed. Finally, pertinent questions for future research of BIM technology were proposed. The purpose of this paper is to provide useful background information for the selection of better biochar fixation microorganisms for water and soil remediation.
Collapse
Affiliation(s)
- Chuchu Wu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Dan Zhi
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Yuzhou Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
26
|
Moguei MRS, Habibi Z, Shahedi M, Yousefi M, Alimoradi A, Mobini S, Mohammadi M. Immobilization of Thermomyces lanuginosus lipase through isocyanide-based multi component reaction on multi-walled carbon nanotube: application for kinetic resolution of rac-ibuprofen. BIOTECHNOLOGY REPORTS 2022; 35:e00759. [PMID: 36060211 PMCID: PMC9434027 DOI: 10.1016/j.btre.2022.e00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 10/26/2022]
|
27
|
Ding Y, Jin Y, Peng T, Gao Y, Zang Y, He H, Li F, Zhang Y, Zhang H, Chen L. Fabrication of multifunctional metal-organic frameworks nanoparticles via layer-by-layer self-assembly to efficiently discover PSD95-nNOS uncouplers for stroke treatment. J Nanobiotechnology 2022; 20:379. [PMID: 35964123 PMCID: PMC9375364 DOI: 10.1186/s12951-022-01583-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background Disruption of the postsynaptic density protein-95 (PSD95)—neuronal nitric oxide synthase (nNOS) coupling is an effective way to treat ischemic stroke, however, it still faces some challenges, especially lack of satisfactory PSD95-nNOS uncouplers and the efficient high throughput screening model to discover them. Results Herein, the multifunctional metal–organic framework (MMOF) nanoparticles as a new screening system were innovatively fabricated via layer-by-layer self-assembly in which His-tagged nNOS was selectively immobilized on the surface of magnetic MOF, and then PSD95 with green fluorescent protein (GFP-PSD95) was specifically bound on it. It was found that MMOF nanoparticles not only exhibited the superior performances including the high loading efficiency, reusability, and anti-interference ability, but also possessed the good fluorescent sensitivity to detect the coupled GFP-PSD95. After MMOF nanoparticles interacted with the uncouplers, they would be rapidly separated from uncoupled GFP-PSD95 by magnet, and the fluorescent intensities could be determined to assay the uncoupling efficiency at high throughput level. Conclusions In conclusion, MMOF nanoparticles were successfully fabricated and applied to screen the natural actives as potential PSD95-nNOS uncouplers. Taken together, our newly developed method provided a new material as a platform for efficiently discovering PSD95-nNOS uncouplers for stoke treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01583-7.
Collapse
Affiliation(s)
- Yingying Ding
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Tao Peng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yankun Gao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yang Zang
- College of Economics and Management, Anhui Agricultural University, Hefei, Anhui, 230036, People's Republic of China
| | - Hongliang He
- Department of Pharmacy, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Fei Li
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Hongjuan Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Lina Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|
28
|
Salehipour M, Rezaei S, Asadi Khalili HF, Motaharian A, Mogharabi-Manzari M. Nanoarchitectonics of Enzyme/Metal–Organic Framework Composites for Wastewater Treatment. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Baron AM, Rodrigues RDS, Sante LGG, Kister JMDM, do Nascimento VMG, Bail A. Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2068371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandra Machado Baron
- Universidade Tecnológica Federal do Paraná (UTFPR), Coordenação de Licenciatura em Química (COLIQ), Apucarana, Brazil
| | - Ricardo de Sousa Rodrigues
- Universidade Tecnológica Federal do Paraná (UTFPR), Coordenação de Licenciatura em Química (COLIQ), Apucarana, Brazil
| | - Luis Guilherme Giannina Sante
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Jocácia Muriele de Miranda Kister
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Valéria Marta Gomes do Nascimento
- Universidade Estadual de São Paulo (Unesp), Departamento de Ciências Biológicas, Laboratório de Bioquímica e Bioprocessos, Assis, Brazil
| | - Alesandro Bail
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| |
Collapse
|
30
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
31
|
Schakowski KM, Elm C, Linders J, Kirsch M. Synthesis and characterization of enzymatically active micrometer protein-capsules. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:606-613. [PMID: 34559040 DOI: 10.1080/21691401.2021.1955698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
This work describes a general method for the encapsulation of enzymes with albumin as wall material and the enzyme catalase as prime example. Care was taken for the preparation of biochemically active sub-micrometer particles in order to prevent oxygen toxicity induced by artificial oxygen carriers of any type. In cell culture experiments, capsules containing catalase did not exhibit any harmful activities in the absence of peroxides. In the presence of hydrogen peroxide application of low and medium dosed capsules below 0.05 vol% (final concentration 0.001 vol%) even increased the cell damaging process. However, a higher dosage of capsules (>0.05 vol%) prevented completely cellular disruption induced by 5 mM hydrogen peroxide and decreased up to 90% of cellular damage at higher peroxide concentrations. These results demonstrated that encapsulated catalase was enzymatically active and the over-all activity of prepared catalase capsules was determined to be >1900 U mL-1 vol%-1.
Collapse
Affiliation(s)
- Kai Melvin Schakowski
- Institute of Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Elm
- Institute of Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Linders
- Department of Physical Chemistry, University of Duisburg-Essen, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Duisburg, Germany
| | - Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
32
|
Liang B, Liu Y, Zhao Y, Xia T, Chen R, Yang J. Development of bacterial biosensor for sensitive and selective detection of acetaldehyde. Biosens Bioelectron 2021; 193:113566. [PMID: 34416430 DOI: 10.1016/j.bios.2021.113566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
Acetaldehyde is a human carcinogen and widely existed in alcoholic beverages and polluted air. In this study, a simple, fast, convenient and sensitive acetaldehyde biosensor was developed based on an acetaldehyde dehydrogenase (AldDH) bacteria surface display system. The whole-cell catalyst facilitated the dehydrogenation of acetaldehyde, while coenzyme NAD+ was reduced and the resultant NADH can be detected spectrometrically at 340 nm. The correct location of AldDH on the bacteria surface was confirmed by the subcellular fraction and immunofluorescence analysis. By comparing the fusion protein expression level and whole-cell activity, the proper display system for anchoring AldDH on the cell surface was obtained. The results of kinetics analysis towards both surface-displayed AldDH and intracellular expressed AldDH demonstrated that the mass-transport resistance was dramatically alleviated by cell-surface display strategy. Under optimal conditions, AldDH-surface display strain with the highest whole-cell activity (3.41 ± 0.3 mU/OD600) was applied to spectrophotometry acetaldehyde detection system. An excellent linear relationship between the increases of absorbance at 340 nm and acetaldehyde concentration over the range from 1 μM to 300 μM was reached. The proposed approach offered adequate sensitivity for the detection of acetaldehyde at 0.33 μM. Most importantly, the developed biosensor showed the narrowest substrate specificity towards acetaldehyde, which has been employed for quick determination of acetaldehyde in real samples with good accuracy. The total detection time was within 20 min. The method reported here provided a simple, rapid, and low-cost strategy for the sensitive and selective measurement of acetaldehyde. Therefore, genetically engineered cells may find broad application in biosensors and biocatalysts.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Yunhui Liu
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Tianyu Xia
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ruofei Chen
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China; Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
33
|
Sheng T, Guan X, Liu C, Su Y. De Novo Approach to Encapsulating Biocatalysts into Synthetic Matrixes: From Enzymes to Microbial Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52234-52249. [PMID: 34352175 DOI: 10.1021/acsami.1c09708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biocatalysts hold great promise in chemical and electrochemical reactions. However, biocatalysts are prone to inhospitable physiochemical conditions. Encapsulating biocatalysts into a synthetic host matrix can improve their stability and activity, and broaden their operational conditions. In this Review, we summarize the emerging de novo approaches to encapsulating biocatalysts into synthetic matrixes. Here, de novo means that embedding of biocatalysts and construction of matrixes take place simultaneously. We discuss the advantages and limitations of the de novo approach. On the basis of the nature of the biocatalysts and the synthetic frameworks, we specifically focus on two aspects: (1) encapsulation of enzymes (in vitro) in metal-organic frameworks and (2) encapsulation of microbial electrocatalysts (in vivo) on the electrode. For both cases, we discuss how the encapsulation improves biocatalysts' performance (stability, viability, activity, and etc.). We also highlight the benefit of encapsulation in facilitating the transport of charge carriers in microbial electrocatalysis.
Collapse
Affiliation(s)
- Tianran Sheng
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yude Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
34
|
Qi W, Yu H. Virus-templated magnetic composite hydrogels for surface immobilization of mimic-free-lipase. NANOSCALE 2021; 13:17871-17880. [PMID: 34673862 DOI: 10.1039/d1nr03571a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface immobilization of enzymes on magnetic-recoverable carriers is of great interest and importance for the biocatalysis of relatively large molecules. In this work, the nanosized amino-rich filamentous M13 virus, a versatile biological scaffold, was applied as the unique soft backbone for lipase immobilization. Based on the structure and capsid proteins of M13 phages, the magnetic-recoverable mimic-free-lipases (MFLs) composed of the M13 hydrogels and magnetic particles were developed in two designs. In the first design, nanosized wild M13 phages were crosslinked into a phage hydrogel through the N-terminals of pVIII peptides while NH2-Fe3O4 magnetic nanoparticles (MNPs) were attached to the M13 virus through glutaraldehyde, forming the M13-(NH2-Fe3O4) magnetic phage hydrogel. In the second design, special M13 with Fe3O4 affinity pIII-peptide (FAP-M13) was biopanned for strongly binding towards bare Fe3O4 with the "hook"-like pIII-peptide (N-LPLSTQH-C). TEM observation confirmed the direct grasp of FAP-M13 on bare Fe3O4, forming the magnetic (FAP-M13)-Fe3O4 virus hydrogel. Lipases were uniformly anchored on the phage surface of nanoscale by crosslinking with the N-terminals of pVIII peptides, and then lipase@M13-(NH2-Fe3O4) and lipase@(FAP-M13)-Fe3O4 MFLs were constructed. For both MFLs, high activity recovery yield (>95%) and efficient magnetic separation were characterized. Significantly reduced MNP-usage-amount and enhanced lipase-loading-amount both by about 40 folds were obtained, compared with the conventional NH2-Fe3O4 carriers. The quantified Km and Vmax/Km values were almost equal to those of the free lipases, verifying free-enzyme-mimicking features of the MFLs. High pH-tolerance, wide temperature adaptability, enhanced thermal stability and stable magnetic separation capability of both MFLs were also observed. In particular, the (FAP-M13)-Fe3O4 magnetic virus hydrogel simply using bare Fe3O4 MNPs would be more convenient and economical in the scaled-up biocatalysis.
Collapse
Affiliation(s)
- Wenjing Qi
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
35
|
Recent advances in carbon nanotubes-based biocatalysts and their applications. Adv Colloid Interface Sci 2021; 297:102542. [PMID: 34655931 DOI: 10.1016/j.cis.2021.102542] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
Enzymes have been incorporated into a wide variety of fields and industries as they catalyze many biochemical and chemical reactions. The immobilization of enzymes on carbon nanotubes (CNTs) for generating nano biocatalysts with high stability and reusability is gaining great attention among researchers. Functionalized CNTs act as excellent support for effective enzyme immobilization. Depending on the application, the enzymes can be tailored using the various surface functionalization techniques on the CNTs to extricate the desirable characteristics. Aiming at the preparation of efficient, stable, and recyclable nanobiocatalysts, this review provides an overview of the methods developed to immobilize the various enzymes. Various applications of carbon nanotube-based biocatalysts in water purification, bioremediation, biosensors, and biofuel cells have been comprehensively reviewed.
Collapse
|
36
|
Li Q, Pan Y, Li H, Lenertz M, Reed K, Jordahl D, Bjerke T, Ugrinov A, Chen B, Yang Z. Cascade/Parallel Biocatalysis via Multi-enzyme Encapsulation on Metal-Organic Materials for Rapid and Sustainable Biomass Degradation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43085-43093. [PMID: 34478257 DOI: 10.1021/acsami.1c12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multiple-enzyme cooperation simultaneously is an effective approach to biomass conversion and biodegradation. The challenge, however, lies in the interference of the involved enzymes with each other, especially when a protease is needed, and thus, the difficulty in reusing the enzymes; while extracting/synthesizing new enzymes costs energy and negative impact on the environment. Here, we present a unique approach to immobilize multiple enzymes, including a protease, on a metal-organic material (MOM) via co-precipitation in order to enhance the reusability and sustainability. We prove our strategy on the degradation of starch-containing polysaccharides (require two enzymes to degrade) and food proteins (require a protease to digest) before the quantification of total dietary fiber. As compared to the widely adopted "official" method, which requires the sequential addition of three enzymes under different conditions (pH/temperature), the three enzymes can be simultaneously immobilized on the surface of our MOM crystals to allow for contact with the large substrates (starch), while MOMs offer sufficient protection to the enzymes so that the reusability and long-term storage are improved. Furthermore, the same biodegradation can be carried out without adjusting the reaction condition, further reducing the reaction time. Remarkably, the simultaneous presence of all enzymes enhances the reaction efficiency by a factor of ∼3 as compared to the official method. To our best knowledge, this is the first experimental demonstration of using aqueous-phase co-precipitation to immobilize multiple enzymes for large-substrate biocatalysis. The significantly enhanced efficiency can potentially impact the food industry by reducing the labor requirement and enhancing enzyme cost efficiency, leading to reduced food cost. The reduced energy cost of extracting enzymes and adjusting reaction conditions minimize the negative impact on the environment. The strategy to prevent protease damage in a multi-enzyme system can be adapted to other biocatalytic reactions involving proteases.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kailyn Reed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Taylor Bjerke
- Sheyenne High School, West Fargo, North Dakota 58078, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
37
|
Meena J, Gupta A, Ahuja R, Singh M, Panda AK. Recent advances in nano-engineered approaches used for enzyme immobilization with enhanced activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Han J, Huang W, Zhao M, Wu J, Li Y, Mao Y, Wang L, Wang Y. A novel enhanced enrichment glucose oxidase@ZIF-8 biomimetic strategy with 3-mercaptophenylboronic acid for highly efficient catalysis of glucose. Colloids Surf B Biointerfaces 2021; 208:112034. [PMID: 34418721 DOI: 10.1016/j.colsurfb.2021.112034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/06/2023]
Abstract
Herein, a glucose oxidase@ZIF-8 composite (3-MPBA/GOx@ZIF-8) with enhanced enrichment was enabled the rapid encapsulation of glucose oxidase (GOx) into microporous zeolitic imidazolate framework-8 (ZIF-8) for the first time. The 3-MPBA/GOx@ZIF-8 not only has improved affinity and catalytic efficiency to the substrate but also can shorten the formation time. The optimum loading amount of GOx on ZIF-8 was determined to be 470 mg/g. The as-prepared 3-MPBA/GOx@ZIF-8 composite maintained the native conformation of the enzyme and showed excellent bioactivity, even in chemical agents or at high temperature. Furthermore, the 3-MPBA/GOx@ZIF-8 showed satisfactory reusability, preserving almost 80.8 % activity after 7 cycles. The Michaelis constant Km and specificity constant kcat/Km of the 3-MPBA/GOx@ZIF-8 were 0.03 ± 0.02 mM and 63.87 ± 1.96 s-1 mM-1, respectively, which were superior to corresponding values of free GOx. Therefore, the 3-MPBA/GOx@ZIF-8 displayed high catalytic efficiency, high loading efficiency and enhanced stability. Moreover, a new type of visual colorimetric sensor for screening of the diabetes was realized through the 3-MPBA/GOx@ZIF-8, which provided a new strategy for the analysis field of glucose.
Collapse
Affiliation(s)
- Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Wenrui Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Man Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yuanyuan Li
- Jingjiang College, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yanli Mao
- School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, Henan Province, 467036, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
39
|
Pan Y, Li H, Li Q, Lenertz M, Schuster I, Jordahl D, Zhu X, Chen B, Yang Z. Protocol for resolving enzyme orientation and dynamics in advanced porous materials via SDSL-EPR. STAR Protoc 2021; 2:100676. [PMID: 34308381 PMCID: PMC8287244 DOI: 10.1016/j.xpro.2021.100676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Enzyme encapsulation in metal-organic frameworks (MOFs)/covalent-organic frameworks (COFs) provides advancement in biocatalysis, yet the structural basis underlying the catalytic performance is challenging to probe. Here, we present an effective protocol to determine the orientation and dynamics of enzymes in MOFs/COFs using site-directed spin labeling and electron paramagnetic resonance spectroscopy. The protocol is demonstrated using lysozyme and can be generalized to other enzymes. For complete information on the generation and use of this protocol, please refer to Pan et al. (2021a). A protocol to resolve protein orientation/dynamics in porous materials is provided Site-directed spin labeling is combined with electron paramagnetic resonance Principles of protein labeling and key data acquisition steps are summarized Spectral simulation details with troubleshooting procedures are detailed
Collapse
Affiliation(s)
- Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Isabelle Schuster
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Drew Jordahl
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| | - Xiao Zhu
- Research Computing, Information Technology at Purdue (ITaP), Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58102, USA
| |
Collapse
|
40
|
Marsh C, Shearer GC, Knight BT, Paul-Taylor J, Burrows AD. Supramolecular aspects of biomolecule interactions in metal–organic frameworks. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Mao S, Chen Y, Sun J, Wei C, Song Z, Lu F, Qin HM. Enhancing the sustainability of KsdD as a biocatalyst for steroid transformation by immobilization on epoxy support. Enzyme Microb Technol 2021; 146:109777. [PMID: 33812565 DOI: 10.1016/j.enzmictec.2021.109777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/21/2021] [Accepted: 02/27/2021] [Indexed: 11/18/2022]
Abstract
The Δ1-dehydrogenation of 3-ketosteroid substrates is a crucial reaction in the production of steroids. Although 3-ketosteroid Δ1-dehydrogenase (KsdD) catalyzes this reaction with high efficiency and selectivity, the low stability and high cost of the purified enzyme catalyst have limited its industrial application. In this study, an epoxy support was used to evaluate the covalent immobilization of KsdD from Pimelobacter simplex, and the best androsta-1,4-diene-317-dione (ADD) production was achieved after optimized immobilization of KsdD enzyme in 1.5 M NaH2PO4- Na2HPO4 buffer (pH 6.5) for 12 h at 25 °C. The immobilized KsdD exhibited higher tolerance toward 20 % methanol. The dehydrogenation reaction reached a conversion efficiency of up to 90.0 % in 2 h when using 0.6 mg/mL of 4-androstene-317-dione (AD). The W299A and W299 G mutants of KsdD were also immobilized, and both showed the better catalytic performance with higher kcat/KM values compared with the wild type (WT). The immobilized W299A, W299 G and WT KsdD respectively maintained 70.5, 65.7 and 38.7 % of their initial activity at the end of 15 reaction cycles. Furthermore, the W299A retained 66.3 % of the initial activity after 30 days of incubation at 4 °C, and was more stable than free KsdD, Thus, the immobilized W299A is a promising biocatalyst for steroid dehydrogenation. In this study, we investigated the application of immobilized enzymes for the dehydrogenation of steroids, which will be of great importance for improving the development of green technology and sustainable use of biocatalysts in the steroid manufacturing industry.
Collapse
Affiliation(s)
- Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Ying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Jing Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Cancan Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Zhan Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China.
| |
Collapse
|
42
|
Emerging applications of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) to study food protein structure, dynamics, and interaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Liu Y, Shao X, Kong D, Li G, Li Q. Immobilization of thermophilic lipase in inorganic hybrid nanoflower through biomimetic mineralization. Colloids Surf B Biointerfaces 2021; 197:111450. [DOI: 10.1016/j.colsurfb.2020.111450] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
|
44
|
Fatima SW, Barua S, Sardar M, Khare SK. Immobilization of Transglutaminase on multi-walled carbon nanotubes and its application as bioinspired hydrogel scaffolds. Int J Biol Macromol 2020; 163:1747-1758. [DOI: 10.1016/j.ijbiomac.2020.09.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
|
45
|
Bilal M, Anh Nguyen T, Iqbal HM. Multifunctional carbon nanotubes and their derived nano-constructs for enzyme immobilization – A paradigm shift in biocatalyst design. Coord Chem Rev 2020; 422:213475. [DOI: 10.1016/j.ccr.2020.213475] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Zhao D, Wang Y, Su Q, Li L, Zhou J. Lysozyme Adsorption on Porous Organic Cages: A Molecular Simulation Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12299-12308. [PMID: 32988201 DOI: 10.1021/acs.langmuir.0c02233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, porous organic cages (POCs) have emerged as a novel porous material with many merits and are widely utilized in many application fields. In this work, for the first time, molecular dynamics simulations were performed to investigate the mechanism of lysozyme adsorption onto the CC3 crystal, a kind of widely studied POC material. The simulation results show that lysozyme adsorbs onto the surface of CC3 with "top end-on," "back-on," or "side-on" orientations. It is found that the van der Waals interaction is the primary contribution to the binding; the conformation of the lysozyme is well preserved during the adsorption process. This provides some evidence for its biocompatibility and feasibility in biorelated applications. Arginine plays an important role in mediating the adsorption through nonpolar aliphatic chains. More importantly, the distribution and structure of the water layer on the POC surface has a significant impact on adsorption. This study provides insights into the development of POC materials with defined morphologies for the adsorption of biomolecules and may help the rational design of biorelated systems.
Collapse
Affiliation(s)
- Daohui Zhao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yuqing Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Qianwen Su
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Libo Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
47
|
Li Q, Pan Y, Li H, Alhalhooly L, Li Y, Chen B, Choi Y, Yang Z. Size-Tunable Metal-Organic Framework-Coated Magnetic Nanoparticles for Enzyme Encapsulation and Large-Substrate Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41794-41801. [PMID: 32830486 PMCID: PMC7501215 DOI: 10.1021/acsami.0c13148] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immobilizing enzymes on nanoparticles (NPs) enhances the cost-efficiency of biocatalysis; however, when the substrates are large, it becomes difficult to separate the enzyme@NP from the products while avoiding leaching or damage of enzymes in the reaction medium. Metal-organic framework (MOF)-coated magnetic NPs (MNPs) offer efficient magnetic separation and enhanced enzyme protection; however, the involved enzymes/substrates have to be smaller than the MOF apertures. A potential solution to these challenges is coprecipitating metal/ligand with enzymes on the MNP surface, which can partially bury (protect) the enzyme below the composite surface while exposing the rest of the enzyme to the reaction medium for catalysis of larger substrates. Here, to prove this concept, we show that using Ca2+ and terephthalic acid (BDC), large-substrate enzymes can be encapsulated in CaBDC-MOF layers coated on MNPs via an enzyme-friendly, aqueous-phase one-pot synthesis. Interestingly, we found that using MNPs as the nuclei of crystallization, the composite size can be tuned so that nanoscale composites were formed under low Ca2+/BDC concentrations, while microscale composites were formed under high Ca2+/BDC concentrations. While the microscale composites showed significantly enhanced reusability against a non-structured large substrate, the nanoscale composites displayed enhanced catalytic efficiency against a rigid, crystalline-like large substrate, starch, likely due to the improved diffusivity of the nanoscale composites. To our best knowledge, this is the first report on aqueous-phase one-pot synthesis of size-tunable enzyme@MOF/MNP composites for large-substrate biocatalysis. Our platform can be applied to immobilize other large-substrate enzymes with enhanced reusability and tunable sizes.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Lina Alhalhooly
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yue Li
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
48
|
Liang J, Liang K. Multi‐enzyme Cascade Reactions in Metal‐organic Frameworks. CHEM REC 2020; 20:1100-1116. [DOI: 10.1002/tcr.202000067] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine The University of New South Wales Sydney NSW 2052 Australia
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
49
|
Farmakes J, Schuster I, Overby A, Alhalhooly L, Lenertz M, Li Q, Ugrinov A, Choi Y, Pan Y, Yang Z. Enzyme Immobilization on Graphite Oxide (GO) Surface via One-Pot Synthesis of GO/Metal-Organic Framework Composites for Large-Substrate Biocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23119-23126. [PMID: 32338863 DOI: 10.1021/acsami.0c04101] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Although enzyme immobilization has improved many areas, biocatalysis involving large-size substrates is still challenging for immobilization platform design because of the protein damage under the often "harsh" reaction conditions required for these reactions. Our recent efforts indicate the potential of using Metal-Organic Frameworks (MOFs) to partially confine enzymes on the surface of MOF-based composites while offering sufficient substrate contact. Still, improvements are required to expand the feasible pH range and the efficiency of contacting substrates. In this contribution, we discovered that Zeolitic Imidazolate Framework (ZIF) and a new calcium-carboxylate based MOF (CaBDC) can both be coprecipitated with a model large-substrate enzyme, lysozyme (lys), to anchor the enzyme on the surface of graphite oxide (GO). We observed lys activity against its native substrate, bacterial cell walls, indicating lys was confined on composite surface. Remarkably, lys@GO/CaBDC displayed a stronger catalytic efficiency at pH 6.2 as compared to pH 7.4, indicating CaBDC is a good candidate for biocatalysis under acidic conditions as compared to ZIFs which disassemble under pH < 7. Furthermore, to understand the regions of lys being exposed to the reaction medium, we carried out a site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy study. Our data showed a preferential orientation of lys in GO/ZIF composite, whereas a random orientation in GO/CaBDC. This is the first report on immobilizing solution-state large-substrate enzymes on GO surface using two different MOFs via one-pot synthesis. These platforms can be generalized to other large-substrate enzymes to carry out catalysis under the optimal buffer/pH conditions. The orientation of enzyme at the molecular level on composite surfaces is critical for guiding the rational design of new composites.
Collapse
Affiliation(s)
- Jasmin Farmakes
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Isabelle Schuster
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Amanda Overby
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Lina Alhalhooly
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yongki Choi
- Department of Physics, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
50
|
Szelwicka A, Kolanowska A, Latos P, Jurczyk S, Boncel S, Chrobok A. Carbon nanotube/PTFE as a hybrid platform for lipase B from Candida antarctica in transformation of α-angelica lactone into alkyl levulinates. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00545b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly active biocatalyst based on a hybrid platform was designed for the conversion of α-angelica lactone to alkyl levulinates.
Collapse
Affiliation(s)
- Anna Szelwicka
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Anna Kolanowska
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Piotr Latos
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Sebastian Jurczyk
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes
- 87-100 Toruń
- Poland
| | - Slawomir Boncel
- Department of Organic Chemistry
- Bioorganic Chemistry and Biotechnology
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| | - Anna Chrobok
- Department of Organic Chemical Technology and Petrochemistry
- Silesian University of Technology
- 44-100 Gliwice
- Poland
| |
Collapse
|