1
|
Sarsenbayeva A, Sadak S, Kucuk I, Kudreyeva L, Bakytzhanovna AM, Uslu B. Molybdenum-Based Electrochemical Sensors for Breast Cancer Biomarker Detection: Advances and Challenges. Crit Rev Anal Chem 2025:1-21. [PMID: 40257753 DOI: 10.1080/10408347.2025.2487581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Breast cancer, which is considered the most common type of cancer among women worldwide, is estimated to reach 4.4 million cases in 2070. Early diagnosis has become very important to prevent this expected increase. Various traditional methods, such as mammography, biopsy, enzyme immunoassay (EI), liquid biopsy, immunohistochemistry (IGH), fluorescence in situ hybridization (FISH) are used to diagnose breast cancer, but the fact that these methods are very expensive, have low sensitivity, and cause mutations in tissues due to X-rays has led researchers to discover faster, more cost-effective, and easily detectable methods. In particular, increased levels of new blood-based biomarkers in the circulation can be detected sensitively and selectively by electrochemical methods to facilitate early disease screening and rapid diagnosis. This comprehensive review focuses on the prevalence and pathology of breast cancer, clinical diagnosis of breast cancer, and electrochemical sensors of molybdenum-based compounds for the detection of various breast cancer biomarkers in recent years. Electrochemical analysis studies carried out in the field in recent years are compiled and are considered as aptamer-based, nucleotide-based, and immunosensors. The chemical properties of molybdenum compounds are discussed, and the modifications of these compounds to the electrode surface are discussed under 4 headings: drop casting, electrodeposition, atomic layer deposition, and electrophoretic deposition.
Collapse
Affiliation(s)
- Aliya Sarsenbayeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Selenay Sadak
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Ipek Kucuk
- The Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Department of Analytical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Leila Kudreyeva
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Abu Moldir Bakytzhanovna
- Department of Analytical Chemistry, Colloidal Chemistry and Technology of Rare Elements, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Wang J, Han H, Ma Z. Rational engineering of ligands & metal nodes: MOF-on-MOF based probe for efficient integration of anti-interference and triple signal amplification. Talanta 2025; 284:127237. [PMID: 39566153 DOI: 10.1016/j.talanta.2024.127237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Accurate and sensitive detection of slight fluctuations in insulin concentration is essential for the assessment and treatment of early diabetes. The requirement posed a serious challenge to the responsiveness of electrochemical sensors in analyzing slight fluctuation in concentration and their ability to accurately identify the target analyte. Therefore, a MOF-on-MOF (NH2-MIL-88B-on-NH2-UiO-66) probe with integrated anti-interference and signal-amplification capabilities was designed by engineering functionalized ligands and metal nodes, which ensures the sensitivity of sensors while improving the detection accuracy. Signal-amplification: the bimetallic ion nodes of MOF-on-MOF act synergistically at the sensing interface (sodium citrate doped poly-thionine/poly (3, 4-ethylenedioxythiophene) film) to impede the electron transfer, leading to a decrease in the poly-thionine (PThi) oxidation current signal. The complexed Fe3+ triggers a Fenton reaction, further leading to a decrease in the PThi oxidation current signal. A triple amplification of the PThi oxidation current signal response induced by changes in concentration per unit of analyte was achieved. Anti-interference: The growth of a more hydrophilic MOF on the surface of another less hydrophilic MOF and the introduction of a large number of amino groups resulted in a significant anti-interference property of the MOF-on-MOF based immunoprobes. The proposed sensor not only achieves detection limits of insulin at the fg level, but also has a signal response per unit change in insulin concentration being 5-50 times higher than existing electrochemical sensors. The integration of the hydrophilic and triple signal amplification strategy is significant in the monitoring of slight fluctuations of analyte concentrations.
Collapse
Affiliation(s)
- Jiaqing Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Zhanfang Ma
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
3
|
Dervisevic M, Esser L, Chen Y, Alba M, Prieto-Simon B, Voelcker NH. High-density microneedle array-based wearable electrochemical biosensor for detection of insulin in interstitial fluid. Biosens Bioelectron 2025; 271:116995. [PMID: 39616898 DOI: 10.1016/j.bios.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 01/06/2025]
Abstract
The development of point-of-care wearable devices capable of measuring insulin concentration has the potential to significantly improve diabetes management and life quality of diabetic patients. However, the lack of a suitable point-of-care device for personal use makes regular insulin level measurements challenging, in stark contrast to glucose monitoring. Herein, we report an electrochemical transdermal biosensor that utilizes a high-density polymeric microneedle array (MNA) to detect insulin in interstitial fluid (ISF). The biosensor consists of gold-coated polymeric MNA modified with an insulin-selective aptamer, which was used for extraction and electrochemical quantification of the insulin in ISF. In vitro testing of biosensor, performed in artificial ISF (aISF), showed high selectivity for insulin with a linear response between 0.01 nM and 4 nM (sensitivity of ∼65 Ω nM-1), a range that covers both the physiological and the pathological concentration range. Furthermore, ex vivo extraction and quantification of insulin from mouse skin showed no impact on the biosensor's linear response. As a proof of concept, an MNA-based biosensing platform was utilized for the extraction and quantification of insulin on live mouse skin. In vivo application showed the ability of MNs to reach ISF, extract insulin from ISF, and perform electrochemical measurements sufficient for determining insulin levels in blood and ISF. We believe that our MNA-based biosensing platform based on extraction and quantification of the biomarkers will help move insulin assays from traditional laboratory approaches to personalized point-of-care settings.
Collapse
Affiliation(s)
- Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Lars Esser
- Commonwealth Scientific and Industrial Research Organization (CSIRO, Clayton, Victoria, 3168, Australia
| | - Yaping Chen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Maria Alba
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Beatriz Prieto-Simon
- Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia; Materials Science and Engineering, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
4
|
Li J, Wu T, Liu X, Feng R, Du Y, Li F, Wei Q. Hexagonal Prism-Shaped AIE-Active MOFs as Coreactant-Free Electrochemiluminescence Luminophores Coupled with Hollow Cu 2-xO@Pd Heterostructures as Efficient Quenching Probes for Sensitive Biosensing. Anal Chem 2024; 96:18170-18177. [PMID: 39494497 DOI: 10.1021/acs.analchem.4c04298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
For most self-luminous metal-organic framework (MOF)-involved electrochemiluminescence (ECL) systems, the integration of exogenous coreactants is indispensable to promote ECL efficiency. However, the introduction of a coreactant into an electrolyte would result in poor stability, thereby inevitably affecting analytical accuracy. Herein, by employing aggregation-induced emission luminogens as ligands, we first synthesized one hexagonal prism-shaped MOF that displays robust and steady ECL signal without an exogenous coreactant. Furthermore, adenosine triphosphate (ATP), as the target analyte, can be fixed on the electrode surface directly owing to the strong coordination between Zr4+ and phosphate groups. According to the ECL resonance energy transfer effect, hollow Cu2-xO@Pd heterostructures are conveniently prepared and act as efficient quenching probes. Remarkably, the resultant urchin-like hollow structure could provide more active sites to anchor ATP aptamers, thus enhancing the ECL quenching efficiency. In this manner, an elaborate coreactant-free ECL system was developed to detect ATP, which demonstrates a remarkable detection limit of 0.17 nM, as well as excellent stability and reproducibility. The present work offers significant enlightenment for the further evolution of advanced ECL systems integrated with MOF-based luminophores.
Collapse
Affiliation(s)
- Jingshuai Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Yu Du
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Faying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Jiang W, Yang Q, Duo H, Wu W, Hou X. Ionic liquid-enhanced silica aerogels for the specific extraction and detection of aflatoxin B1 coupled with a smartphone-based colorimetric biosensor. Food Chem 2024; 447:138917. [PMID: 38452540 DOI: 10.1016/j.foodchem.2024.138917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The polymer ionic liquid (1-allyl-3-butylimidazolium bromide) enhanced silica aerogel was modified onto the surface of stainless-steel mesh to immobilize aptamer-1 for the specific recognition of AFB1. The porous channels of silica aerogel could prevent the interference of macromolecules in food samples. Enzyme kinetic analysis showed that the MoS2/Au was an effective peroxidase mimic with a relatively low Michaelis constant (Km) value of 0.17 mM and a high catalytic rate of 3.87 × 10-8 mol (L·s)-1, which exhibited obvious superiority compared with horseradish peroxidase. The established "sandwich-structure" biosensor was coupled with the smartphone "Color Picker" application was used to detect AFB1 with a wide linear range (1-100 ng mL-1) and low detection limit (0.25 ng mL-1). The anti-interference ability of the established biosensor was evaluated by adding different concentrations of standards in corn, peanut, and wheat and matrix effects were 90.84-106.11 %. The results showed that this method demonstrated high specificity, sensitivity, rapidity and low interference in food samples.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Huixiao Duo
- School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China.
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257343, China.
| |
Collapse
|
6
|
Song H, Li B, Cheng Z, Hu H, Li Z, Chen L, Han Z, He T, Lu Y, Wei X, Huo L. One-pot synthesis and hydrogen peroxide electrochemical sensing of 3D TiO 2/MnO 2 nanorods assembled microspheres. Mikrochim Acta 2024; 191:291. [PMID: 38687386 DOI: 10.1007/s00604-024-06356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Nanorods assembled 3D microspheres of TiO2/MnO2 were prepared via a simple one-pot hydrothermal approach. The resultant composite material exhibited remarkable electrocatalytic activity for hydrogen peroxide (H2O2) in comparison to each single component. The electrochemical sensor constructed with TiO2/MnO2 exhibited a linear relationship within the range 0.0001-5.6 mmol·L-1 for H2O2. The limit of detection (LOD) and sensitivity for H2O2 were 0.03 µmol·L-1 (S/N = 3) and 316.6 µA (mmol·L-1)-1 cm-2. Moreover, this sensor can be employed to detect trace amount of H2O2 in serum and urine samples successfully, supporting an insight and strategy for a more sensitive electrochemical sensor.
Collapse
Affiliation(s)
- Haiyan Song
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China.
| | - Bilong Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhenyu Cheng
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Haobin Hu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Zhijun Li
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Luzi Chen
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Zhiyi Han
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Tingting He
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Yani Lu
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Xiaoxia Wei
- Gansu Key Laboratory of Efficient Utilization of Oil and Gas Resources in Longdong, College of Petroleum and Chemical Engineering, Longdong University, Qingyang, 745000, China
| | - Lihua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
7
|
Huang J, Xie Z, Luo S, Li M, Xie L, Fan Q, Zeng T, Zhang Y, Zhang M, Xie Z, Wang S, Li D, Wei Y, Li X, Wan L, Ren H. A sandwich amperometric immunosensor for the detection of fowl adenovirus group I based on bimetallic Pt/Ag nanoparticle-functionalized multiwalled carbon nanotubes. Sci Rep 2024; 14:261. [PMID: 38168000 PMCID: PMC10762159 DOI: 10.1038/s41598-023-50821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
An enzyme-free sandwich amperometric immunosensor based on bimetallic Pt/Ag nanoparticle (Pt/AgNPs)-functionalized chitosan (Chi)-modified multiwalled carbon nanotubes (MWCNTs) as dual signal amplifiers and Chi-modified MWCNTs (MWCNTs-Chi) as substrate materials was developed for ultrasensitive detection of fowl adenovirus group I (FAdV-I). MWCNTs have a large specific surface area, and many accessible active sites were formed after modification with Chi. Hence, MWCNTs-Chi, as a substrate material for modifying glassy carbon electrodes (GCEs), could immobilize more antibodies (fowl adenovirus group I-monoclonal antibody, FAdV-I/MAb). Multiple Pt/AgNPs were attached to the surface of MWCNTs-Chi to generate MWCNTs-Chi-Pt/AgNPs with high catalytic ability for the reaction of H2O2 and modified active sites for fowl adenovirus group I-polyclonal antibody (FAdV-I/PAb) binding. Amperometric i-t measurements were employed to characterize the recognizability of FAdV-I. Under optimal conditions, and the developed immunosensor exhibited a wide linear range (100.93 EID50 mL-1 to 103.43 EID50 mL-1), a low detection limit (100.67 EID50 mL-1) and good selectivity, reproducibility and stability. This immunosensor can be used in clinical sample detection.
Collapse
Affiliation(s)
- Jiaoling Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China.
| | - Sisi Luo
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Meng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Qing Fan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Tingting Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Yanfang Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Minxiu Zhang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Zhiqin Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Sheng Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Dan Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - You Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Xiaofeng Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Lijun Wan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - Hongyu Ren
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| |
Collapse
|
8
|
Liu J, Zhang Z, Dong J, Chen A, Qiu J, Li C. Electrochemical immunosensor based on hollow Pt@Cu 2O as a signal label for dual-mode detection of procalcitonin. Talanta 2024; 266:125018. [PMID: 37572476 DOI: 10.1016/j.talanta.2023.125018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
As a reliable biomarker to evaluate the severity of sepsis, sensitive and accurate detection of procalcitonin (PCT) is essential. In this study, a dual-mode electrochemical immunosensor based on Au/ZIF-8 as substrate and Pt@Cu2O as signal label was constructed for the detection of PCT. By loading Au nanoparticles onto rhombic dodecahedral ZIF-8, the substrate (Au/ZIF-8) has large specific surface area and can immobilize antibody (Ab1) by Au-N bonds. Meanwhile, hollow Pt@Cu2O nanocomposite with excellent peroxidase-like activity and electrocatalytic activity were synthesized as signal label. In the process of electrochemical testing, Pt@Cu2O catalyzed the reduction of hydrogen peroxide (H2O2) and further promotes the oxidation of hydroquinone (HQ) to achieve the synergistic amplification of electrochemical signals. The proposed immunosensor detected PCT by amperometric i-t and differential pulse voltammetry (DPV) tests with a good linear response and low limit of detection (i-t: 0.70 fg/mL and DPV: 0.40 fg/mL) in the range of 10 fg/mL∼100 ng/mL. The immunosensor exhibited excellent sensitivity and accuracy, indicating the potential application of this method for PCT detection.
Collapse
Affiliation(s)
- Jie Liu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zixuan Zhang
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Dong
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Chaorui Li
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Meng Y, Li Y, Liu S, Wang S, Dong H, Jiang F, Liu Q, Li Y, Wei Q. Sandwich-type electrochemical immunosensor based on CuFe 2O 4-Pd for cardiac troponin I detection. Mikrochim Acta 2023; 190:249. [PMID: 37266715 DOI: 10.1007/s00604-023-05831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
A sandwich-type electrochemical immunosensor was designed by highly efficient catalytic cycle amplification strategy of CuFe2O4-Pd for sensitive detection of cardiac troponin I. CuFe2O4 with coupled variable valence metal elements exhibited favorable catalytic performance through bidirectional cycling of Fe2+/Fe3+ and Cu+/Cu2+ redox pairs. More importantly, Cu+ acted as the intermediate product of the catalytic reaction, promoted the regeneration of Fe2+ and ensured the continuous recycling occurrence of the double redox pairs, and significantly amplified the current signal response. Pd nanoparticles (Pd NPs) loaded on the surface of amino-functionalized CuFe2O4 (CuFe2O4-NH2) served as electrochemical mediators to capture labeled antibodies (Ab2), and also as co-catalysts of CuFe2O4 to further enhance the catalytic efficiency, thus improving the sensitivity of the electrochemical immunosensor. Under the optimal experimental conditions, the linear range was 0.001 ~ 100 ng/mL, and the detection limit was 1.91 fg/mL. The electrochemical immunosensor has excellent analytical performance, giving a new impetus for the sensitive detection of cTnI.
Collapse
Affiliation(s)
- Yaoyao Meng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Shanghua Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Feng Jiang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, Shandong, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
10
|
Ouyang R, Zhang W, Liu J, Li Y, Zhang J, Jiang L, Zhao Y, Wang H, Dai C, Tamayo AIB, Liu B, Miao Y. Pt Nanodot Inlaid Mesoporous NaBiOF Nanoblackberry for Remarkable Signal Amplification Toward Biomarker Detection. Mikrochim Acta 2023; 190:214. [PMID: 37171612 DOI: 10.1007/s00604-023-05789-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Abstract
A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weilun Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
11
|
Chen C, Kang J, Wang S, Chen S, Guo H, Chen M. An electrochemical immunosensor based on polyaniline microtubules and zinc gallinate for detection of human growth differentiation factor-15. Mikrochim Acta 2023; 190:92. [PMID: 36790563 DOI: 10.1007/s00604-023-05674-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023]
Abstract
The incidence rate of cardiovascular diseases (CVDs) remains high, and their mortality rate is significantly higher than that of other diseases. Growth differentiation factor-15 (GDF-15) is a recently developed biomarker for the early diagnosis and prognostic evaluation of CVDs because its concentration in serum increases substantially after a cardiovascular injury or an inflammatory reaction. In this study, a sandwich-type immunosensor was constructed for the sensitive detection of GDF-15. Specifically, peony-like zinc gallinate (ZnGa2O4) prepared using a hydrothermal method, which exhibits excellent electrocatalytic performance, was coupled with Au nanoparticles (NPs) to obtain golden-peony-like ZnGa2O4/Au NPs. They preserved the immune activity of GDF-15 antibody molecules and further enhanced the conductivity, thereby realizing additional signal amplification. Hollow polyaniline (PANI) microtubules decorated with Pd NPs were used as the sensing platform (PANI/Pd NPs). The hollow microtubules provided abundant active sites and considerably improved the electron-transfer rate. Under optimal conditions, a linear range and remarkably low detection limit of 100 fg mL-1-10 ng mL-1 and 42.23 fg mL-1, respectively, were achieved. These experimental results indicate that the strategy reported herein can be adopted as a novel approach for the convenient and rapid detection of GDF-15.
Collapse
Affiliation(s)
- Cizhi Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.,School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Jiao Kang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Siyi Wang
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Siyu Chen
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Hong Guo
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
12
|
Huang X, Miao J, Xu X, Cao D, Liu L, Wei Q, Cao W. Dual-mode electrochemical immunoassay for Non-small cell lung cancer detection based on CoSe2-GO-Au and poly(MB)-Au. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Zhao X, Yang J, Deng W, Tan Y, Xie Q. Construction of a high power-density microbial fuel cell based on lipopolysaccharide-lectin interactions and its application for detecting heavy metal toxicity. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Li M, He B, Yan H, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y. An aptasensor for cadmium ions detection based on PEI-MoS2@Au NPs 3D flower-like nanocomposites and Thi-PtPd NPs core-shell sphere. Anal Chim Acta 2022; 1232:340470. [DOI: 10.1016/j.aca.2022.340470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
|
15
|
Sakthivel R, Prasanna SB, Tseng CL, Lin LY, Duann YF, He JH, Chung RJ. A Sandwich-Type Electrochemical Immunosensor for Insulin Detection Based on Au-Adhered Cu 5 Zn 8 Hollow Porous Carbon Nanocubes and AuNP Deposited Nitrogen-Doped Holey Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202516. [PMID: 35950565 DOI: 10.1002/smll.202202516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid, accurate, and sensitive insulin detection is crucial for managing and treating diabetes. A simple sandwich-type electrochemical immunosensor is engineered using gold nanoparticle (AuNP)-adhered metal-organic framework-derived copper-zinc hollow porous carbon nanocubes (Au@Cu5 Zn8 /HPCNC) and AuNP-deposited nitrogen-doped holey graphene (NHG) are used as a dual functional label and sensing platform. The results show that identical morphology and size of Au@Cu5 Zn8 /HPCNC enhance the electrocatalytic active sites, conductivity, and surface area to immobilize the detection antibodies (Ab2 ). In addition, AuNP/NHG has the requisite biocompatibility and electrical conductivity, which facilitates electron transport and increases the surface area of the capture antibody (Ab1 ). Significantly, Cu5 Zn8 /HPCNC exhibits necessary catalytic activity and sensitivity for the electrochemical reduction of H2 O2 using (i-t) amperometry and improves the electrochemical response in differential pulse voltammetry. Under optimal conditions, the immunosensor for insulin demonstrates a wide linear range with a low detection limit and viable specificity, stability, and reproducibility. The platform's practicality is evaluated by detecting insulin in human serum samples. All these characteristics indicate that the Cu5 Zn8 /HPCNC-based biosensing strategy may be used for the point-of-care assay of diverse biomarkers.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Sanjay Ballur Prasanna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- Research Center of Biomedical Device, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei, 10608, Taiwan
| |
Collapse
|
16
|
Trends in advanced materials for the fabrication of insulin electrochemical immunosensors. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Sakthivel R, Lin LY, Duann YF, Chen HH, Su C, Liu X, He JH, Chung RJ. MOF-Derived Cu-BTC Nanowire-Embedded 2D Leaf-like Structured ZIF Composite-Based Aptamer Sensors for Real-Time In Vivo Insulin Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28639-28650. [PMID: 35709524 DOI: 10.1021/acsami.2c06785] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin, which is a hormone produced by the β-cells of the pancreas, regulates the glucose levels in the blood and can transport glucose into cells to produce glycogen or triglycerides. Insulin deficiency can lead to hyperglycemia and diabetes. Therefore, insulin detection is critical in clinical diagnosis. In this study, disposable Au electrodes were modified with copper(II) benzene-1,3,5-tricarboxylate (Cu-BTC)/leaf-like zeolitic imidazolate framework (ZIF-L) for insulin detection. The aptamers are easily immobilized on the Cu-BTC/ZIF-L composite by physical adsorption and facilitated the specific interaction between aptamers and insulin. The Cu-BTC/ZIF-L composite-based aptasensor presented a wide linear insulin detection range (0.1 pM to 5 μM) and a low limit of detection of 0.027 pM. In addition, the aptasensor displayed high specificity, good reproducibility and stability, and favorable practicability in human serum samples. For the in vivo tests, Cu-BTC/ZIF-L composite-modified electrodes were implanted in non-diabetic and diabetic mice, and insulin was quantified using electrochemical and enzyme-linked immunosorbent assay methods.
Collapse
Affiliation(s)
- Rajalakshmi Sakthivel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Lu-Yin Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Yeh-Fang Duann
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Hsiao-Hsuan Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Chaochin Su
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology,National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Xinke Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jr-Hau He
- Department of Materials Science and Engineering, City University of Hong Kong, 26 Kowloon, Kowloon 999077, Hong Kong
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| |
Collapse
|
18
|
Zhang B, Li F, Han F, Yang H, Jiang C, Tan S, Tu J, Qiao B, Wang X, Wu Q. A sandwich-type electrochemical immunosensor using trimetallic nanozyme as signal amplification for NT-proBNP sensitive detection. Bioelectrochemistry 2022; 145:108075. [DOI: 10.1016/j.bioelechem.2022.108075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
|
19
|
Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A. Mikrochim Acta 2022; 189:126. [PMID: 35230535 DOI: 10.1007/s00604-022-05225-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In order to determine procalcitonin, a sandwich-type ratiometic electrochemical immunosensor was developed by differential pulse voltammetry (DPV). Due to high chemical stability and good biocompatibility, graphitic carbon nitride (g-C3N4) could be used as feasible supporter to carry silver nanoparticles (Ag NPs) with an obvious oxidative peak (measured typically at + 0.3 V vs. SCE). Ag NPs loaded onto g-C3N4 were not only beneficial to prevent the agglomeration of Ag NPs, but also favorable to improve the electron transfer velocity of g-C3N4. Moreover, the g-C3N4-Ag NPs as the matrix could immobilize primary antibody by Ag-N bond. Nile blue A (NBA), an excellent redox probe based on the redox reaction with two-electrons, provides a current signal at - 0.38 V (vs. SCE). Zr-based metal organic framework (UiO-67), an ideal framework material with large specific surface area and high porosity, could absorb the substantial water-soluble NBA by electrostatic adsorption. The UiO-67 modified by NBA (NBA-UiO-67) owned admirable biocompatibility and was a qualifying marker to load the secondary antibody. For the immunosensor, the current ratio of NBA to Ag NPs (INBA/IAg NPs) was increased as the concentrations of PCT increased. Under the optimum conditions, the linear range of the immunosensor was 0.005 to 50 ng/mL; the detection limit was 1.67 pg/mL (S/N = 3), which reflected the excellent analytical performance of the sensor. The proposed immunosensor strategy is a simple and dependable platform, with great application potential in biometric analysis.
Collapse
|
20
|
Tang C, Wang P, Zhou K, Ren J, Wang S, Tang F, Li Y, Liu Q, Xue L. Electrochemical immunosensor based on hollow porous Pt skin AgPt alloy/NGR as a dual signal amplification strategy for sensitive detection of Neuron-specific enolase. Biosens Bioelectron 2022; 197:113779. [PMID: 34781176 DOI: 10.1016/j.bios.2021.113779] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.
Collapse
Affiliation(s)
- Chunyuan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China.
| | - Kaiwei Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Jie Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| | - Li Xue
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049, Zibo, PR China
| |
Collapse
|
21
|
Li H, Zhao H, Wang Z, Zhou F, Lan M. Facilely proposed PtCu-rGO bimetallic nanocomposites modified carbon fibers microelectrodes for detecting hydrogen peroxide released from living cells. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
22
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
23
|
Mei L, Zhao W, Zhang L, Zhang M, Song Y, Liang J, Sun Y, Chen S, Li H, Hong C. The application of the inexpensive and synthetically simple electrocatalyst CuFe-MoC@NG in immunosensors. Analyst 2021; 146:5421-5428. [PMID: 34355712 DOI: 10.1039/d1an00840d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, we used inexpensive and synthetically simple electrocatalysts as replacements for conventional precious metal materials to reduce hydrogen peroxide (H2O2). We for the first time developed N-doped graphene-coated CuFe@MoC using one-step calcination of binary Prussian blue analogues (PBAs) with Mo6+ cationic grafting precursors. The synergistic interaction of CuFe PBA and MoC increased the catalytically active sites for H2O2 reduction. The catalyst was optimized in terms of the ratio of CuFe PBA to Mo6+, PVP content, and calcination temperature to improve its catalytic activity. When it was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA) detection, polydopamine (CuFe-MoC@NG@PDA) was coated on its outer surface to increase the antibody loading and MoS2-Au NPs were used as substrates to improve Ab1 immobilization and accelerate electron transfer at the electrode interface, thereby improving the response signal of the immunosensor. Its concentration was linearly related to the response signal from 10 fg mL-1 to 80 ng mL-1, and the lowest limit of detection was 3 fg mL-1. In addition, the immunosensor has acceptable selectivity and high stability. All data indicate that nanocomposites have electrocatalytic applications.
Collapse
Affiliation(s)
- Lisha Mei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cheng D, Li P, Zhu X, Liu M, Zhang Y, Liu Y. Enzyme‐free Electrochemical Detection of Hydrogen Peroxide Based on the
Three‐Dimensional
Flower‐like Cu‐based Metal Organic Frameworks and
MXene
Nanosheets
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dan Cheng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University Changsha Hunan 410081 China
| | - Yang Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
25
|
Cao L, Tan Y, Deng W, Xie Q. MWCNTs-CoP hybrids for dual-signal electrochemical immunosensing of carcinoembryonic antigen based on overall water splitting. Talanta 2021; 233:122521. [PMID: 34215136 DOI: 10.1016/j.talanta.2021.122521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Great efforts have been made to search for highly active catalysts toward electrochemical water splitting, but double-signal immunosensors have not been reported based on bifunctional water splitting electrocatalysts. We report here a dual-signal electrochemical immunosensor for detecting carcinoembryonic antigen (CEA) using multi-wall carbon nanotubes (MWCNTs)-cobalt phosphide (CoP) as an electrocatalytic label. The preparation of MWCNTs-CoP involves the growth of Co3O4 nanoparticles on MWCNTs and low-temperature phosphatization of Co3O4 nanoparticles. The MWCNTs-CoP catalyst shows excellent electrocatalytic activities in a neutral medium toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), enabling MWCNTs-CoP as the electrocatalytic label for sensitive immunosensing. The linear range of the sandwich-type immunosensor for detecting CEA based on the HER signal is from 10-4-100 ng mL-1, whereas a linear range for detecting CEA based on the OER signal is achieved from 10-4 to 10 ng mL-1. The detection limits for detecting CEA using HER and OER signals are 10 and 12 fg mL-1, respectively. This work can provide a new double-signal immunosensing platform based on a bifunctional water splitting electrocatalyst.
Collapse
Affiliation(s)
- Lin Cao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
26
|
Zhang N, Meng Y, Ning Y, Wheatley AEH, Chai F. A reusable catalyst based on CuO hexapods and a CuO-Ag composite for the highly efficient reduction of nitrophenols. RSC Adv 2021; 11:13193-13200. [PMID: 35423838 PMCID: PMC8697534 DOI: 10.1039/d1ra01560e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
The enormous and urgent need to explore cost-effective catalysts with high efficiency has always been at the forefront of environmental protection and remediation research. This work develops a novel strategy for the fabrication of reusable CuO-based non-noble metal nanomaterials as high-efficiency catalysts. We report a facile and eco-friendly synthesis of CuO hexapods and CuO–Ag composite using uric acid as a reductant and protectant. Both exhibited high catalytic activity in the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4), with the CuO–Ag composite showing superior catalytic performance. Notably, the highest turnover frequency of CuO–Ag reached 7.97 × 10−2 s−1, which was much higher than numerous noble-metal nanomaterials. In addition, CuO hexapods and CuO–Ag composite were also shown to act as highly efficient and recyclable catalysts in the degeneration of 4-NP. Both CuO hexapods and the CuO–Ag composite exhibited outstanding catalytic durability, with no significant loss of activity over more than 10 cycles in the hydrogenation of 4-NP. Schematic illustration for the process of preparing CuO hexapods and CuO–Ag composite, and their application in catalytically reducing 4-NP and K3(Fe(CN)6).![]()
Collapse
Affiliation(s)
- Nannan Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 Heilongjiang China
| | - Yuxi Meng
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 Heilongjiang China
| | - Yuxue Ning
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 Heilongjiang China
| | - Andrew E H Wheatley
- Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University Harbin 150025 Heilongjiang China .,Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
| |
Collapse
|
27
|
Zhao H, Du X, Dong H, Jin D, Tang F, Liu Q, Wang P, Chen L, Zhao P, Li Y. Electrochemical immunosensor based on Au/Co-BDC/MoS 2 and DPCN/MoS 2 for the detection of cardiac troponin I. Biosens Bioelectron 2021; 175:112883. [PMID: 33341318 DOI: 10.1016/j.bios.2020.112883] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/11/2022]
Abstract
The content of cardiac troponin I (CTnI) in human blood is the key factor in judging acute myocardial infarction (AMI). In order to detect the content of CTnI, we constructed a sandwich-type electrochemical immunosensor based on hydrogen peroxide (H2O2) as a signal source. Dendritic platinum-copper alloy nanoparticles (DPCN) loaded on molybdenum disulfide (MoS2) nanosheets (DPCN/MoS2) as secondary antibodies (Ab2) label provided signal amplification. The hollow three-dimensional (3D) pyramid-shaped structure of DPCN exposed abundant active sites and exhibited excellent catalytic properties. MoS2 nanosheets with flower-like structure and a larger specific surface area can effectively load more DPCN. The combination of MoS2 and DPCN enhanced the catalytic performance of DPCN/MoS2 towards H2O2 reduction and realized signal amplification. For the substrate material, the two-dimensional (2D) metal-organic framework (Co-BDC, 1,4-benzenedicarboxylate is abbreviated as BDC) was hybridized with MoS2 nanosheets to load gold nanoparticles (Au NPs). The obtained Au/Co-BDC/MoS2 had low catalytic activity and excellent electrical conductivity, which was used to load primary antibodies (Ab1) to effectively enhance the sensitivity. Under the best conditions, we constructed the immunosensor with the detection range of 10 fg/mL to 100 ng/mL and the limit of detection (LOD) of 3.02 fg/mL. At the same time, the content of CTnI in human serum was tested with satisfactory results. Therefore, the constructed immunosensor has important significance in the sensitive and accurate detection of CTnI and early diagnosis of AMI.
Collapse
Affiliation(s)
- Huan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Xin Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Delin Jin
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Feng Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Peiqing Zhao
- Zibo Central Hospital, Shandong University, Zibo, 255036, PR China.
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| |
Collapse
|
28
|
Zhang F, Huang F, Gong W, Tian F, Wu H, Ding S, Li S, Luo R. Multi-branched PdPt nanodendrites decorated amino-rich Fe-based metal-organic framework as signal amplifier for ultrasensitive electrochemical detection of prolactin. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Ding M, Zha L, Wang H, Liu J, Chen P, Zhao Y, Jiang L, Li Y, Ouyang R, Miao Y. A frogspawn-like Ag@C core–shell structure for an ultrasensitive label-free electrochemical immunosensing of carcinoembryonic antigen in blood plasma. RSC Adv 2021; 11:16339-16350. [PMID: 35479148 PMCID: PMC9030918 DOI: 10.1039/d1ra00910a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/18/2021] [Indexed: 12/31/2022] Open
Abstract
Novel frogspawn-like Ag@C nanoparticles were successfully used to fabricate an ultrasensitive electrochemical immunosensing platform toward CEA in human blood samples.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ling Zha
- Department of Laboratory Diagnosis
- Changhai Hospital
- Naval Medical University
- Shanghai 20043
- P. R. China
| | - Hui Wang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Jinyao Liu
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Peiwu Chen
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuefeng Zhao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Lan Jiang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuhao Li
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| | - Yuqing Miao
- Institute of Bismuth Science
- University of Shanghai for Science and Technology
- Shanghai 200093
- P. R. China
| |
Collapse
|
30
|
Song Y, Qiao J, Li W, Ma C, Chen S, Li H, Hong C. Bimetallic PtCu nanoparticles supported on molybdenum disulfide-functionalized graphitic carbon nitride for the detection of carcinoembryonic antigen. Mikrochim Acta 2020; 187:538. [PMID: 32876849 DOI: 10.1007/s00604-020-04498-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
A molybdenum disulfide based graphite phase carbon nitride (MoS2/g-C3N4) which is supported by a platinum-copper nanoparticle (PtCu) Z-type catalyst was created in this study. The catalyst exploits optoelectronic synergistic effect with large surface area, good catalysis, and biocompatibility to amplify the signal. The electrode impedance of the synthesized MoS2/g-C3N4-PtCu was reduced five times in visible light compared with dark conditions, thereby improving the detection of carcinoembryonic antigen (CEA). At a voltage of - 0.4 V, the immunoprobe constructed with this material is used for CEA detection. A linear relationship between 100 fg mL-1 and 80 ng mL-1 concentrations was achieved with a minimum detection limit of 33 fg mL-1 (S/N = 3). The recovery rate was 103-104%, and the relative standard deviation was 2.9-3.8%. This implies that the sandwich immunosensors have good reproducibility, selectivity, and stability and can be used in various applications. Graphical Abstract.
Collapse
Affiliation(s)
- Yiju Song
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Jingwen Qiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Wenjun Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Chaoyun Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Siyu Chen
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hongling Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| | - Chenglin Hong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
31
|
Ma E, Wang P, Yang Q, Yu H, Pei F, Zheng Y, Liu Q, Dong Y, Li Y. Electrochemical Immunosensors for Sensitive Detection of Neuron-Specific Enolase Based on Small-Size Trimetallic Au@Pd^Pt Nanocubes Functionalized on Ultrathin MnO2 Nanosheets as Signal Labels. ACS Biomater Sci Eng 2020; 6:1418-1427. [DOI: 10.1021/acsbiomaterials.9b01882] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Enhui Ma
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Qingshan Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Haoxuan Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yuting Zheng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 255049 Zibo, P. R. China
| |
Collapse
|
32
|
A robust host-guest interaction controlled probe immobilization strategy for the ultrasensitive detection of HBV DNA using hollow HP5-Au/CoS nanobox as biosensing platform. Biosens Bioelectron 2020; 153:112051. [PMID: 32056664 DOI: 10.1016/j.bios.2020.112051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/15/2023]
Abstract
The combination of supramolecular chemistry and nanotechnology has potentially applied in the construction of biosensors, and thus improves the analytical performance and robustness of electron devices. Herein, a new sandwich-type DNA sensor was constructed for ultrasensitive determination of hepatitis B virus (HBV) DNA, a recognized marker for chronic hepatitis B. The water-soluble pillar[5]arene stabilized Pd NPs combined with reduced graphene oxide nanosheet (WP5-Pd/RGO) was synthesized and employed as supporting material for the modification of electrode surface. The probe DNA was immobilized onto the electrode surface through a new strategy based on the host-guest interaction between WP5 and methylene blue labeled DNA (MB-DNA). Moreover, MOF-derived cobalt sulfide nanobox was prepared to anchor the hydroxylatopillar[5]arene stabilized Au NPs (HP5-Au/CoS), which had superior electrocatalytic performance towards H2O2 reduction to achieve signal amplification. Under the optimized conditions, the proposed sensor displayed a linear relationship between amperometric currents and the logarithm of tDNA solution from 1 × 10-15 mol/L to 1 × 10-9 mol/L, and a low detection limit of 0.32 fmol/L. What's more, the DNA sensor had remarkable behaviors of stability, reproducibility, specificity, and accuracy, which provided a potential and promising prospect for clinical diagnosis and analysis.
Collapse
|
33
|
Miao J, Li X, Li Y, Dong X, Zhao G, Fang J, Wei Q, Cao W. Dual-signal sandwich electrochemical immunosensor for amyloid β-protein detection based on Cu–Al2O3-g–C3N4–Pd and UiO-66@PANI-MB. Anal Chim Acta 2019; 1089:48-55. [DOI: 10.1016/j.aca.2019.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023]
|
34
|
Zhou X, Zhang W, Wang Z, Han J, Xie G, Chen S. Ultrasensitive aptasensing of insulin based on hollow porous C 3N 4/S 2O 82-/AuPtAg ECL ternary system and DNA walker amplification. Biosens Bioelectron 2019; 148:111795. [PMID: 31665673 DOI: 10.1016/j.bios.2019.111795] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
In this work, a high-efficiency electrochemiluminescence (ECL) ternary system was constructed for ultrasensitive assay of insulin based on hollow porous graphitic carbon nitride (HP-C3N4) as novel luminophore, S2O82- as coreactant and tri-metallic AuPtAg as coreaction accelerator. Specifically, in comparison with C3N4-based bulk nanomaterials, the as-prepared HP-C3N4 exhibits high luminous efficiency though decreased inner filter effect and minimized inactive ECL emitter. Noteworthy, tri-metallic AuPtAg, possessing the superiority of Au, Pt and Ag, was first used as coreaction accelerator to significantly enhance ECL intensity of HP-C3N4 and S2O82-. As a consequence, with the resultant ECL ternary (HP-C3N4/S2O82-/AuPtAg) system as aptasensing platform, a high-intense initial ECL signal was achieved. Subsequently, ferrocene-labeled quenching probe (Fc-HP2) as ECL quencher was used to quench the initial signal and achieve the low-background noise. Eventually, in the presence of insulin, the target-induced triple-helix molecular switch and Nb.BbvCI-assisted DNA walker amplification were executed to recover a strong ECL signal by releasing Fc-HP2 from the electrode surface. As expected, the constructed aptasensor presents an excellent sensitivity and selectivity for detecting insulin range from 0.05 pg mL-1 to 100 ng mL-1 with a detection limit of 17 fg mL-1. This work provides a new avenue for developing highly efficient HP-C3N4 based ECL ternary system as well as ultrasensitive ECL aptasensors for bioanalysis.
Collapse
Affiliation(s)
- Xumei Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Wen Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Zhen Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, PR China.
| |
Collapse
|
35
|
PtCu nanoprobe-initiated cascade reaction modulated iodide-responsive sensing interface for improved electrochemical immunosensor of neuron-specific enolase. Biosens Bioelectron 2019; 143:111612. [DOI: 10.1016/j.bios.2019.111612] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
|
36
|
Sandwich-type electrochemical immunosensor based on Au@Pt DNRs/NH2-MoSe2 NSs nanocomposite as signal amplifiers for the sensitive detection of alpha-fetoprotein. Bioelectrochemistry 2019; 128:140-147. [DOI: 10.1016/j.bioelechem.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
|
37
|
Tan Z, Dong H, Liu Q, Liu H, Zhao P, Wang P, Li Y, Zhang D, Zhao Z, Dong Y. A label-free immunosensor based on PtPd NCs@MoS 2 nanoenzymes for hepatitis B surface antigen detection. Biosens Bioelectron 2019; 142:111556. [PMID: 31377574 DOI: 10.1016/j.bios.2019.111556] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022]
Abstract
Nowadays, nanomaterials with enzymatic properties have aroused wide interest because of their special advantages, such as catalytic activity, simple preparation method and high stability. We introduced new nanoenzymes to a label-free electrochemical immunosensor for Hepatitis B surface antigen (HBs Ag) detection. In this study, PtPd nanocubes@MoS2 nanoenzymes (PtPd NCs@MoS2) were prepared by loading PtPd nanocubes (PtPd NCs) on molybdenum disulfide nano-sheet (MoS2) through in situ redox polymerization. The prepared nanoenzymes exhibited enhanced peroxidase-like activity than separate MoS2 and PtPd NCs. The catalytic process of PtPd NCs@MoS2 is in agreement with the Michaelis-Menten kinetic equation. PtPd NCs@MoS2 were used for sensitive detection of HBs Ag, which is ascribed to their superior peroxidase activity, good conductivity and high specific surface area and synergistic amplification for current signals. Compared with the detection limit of colorimetric method (3.3 pg/mL), the electrochemical method (10.2 fg/mL) shows a lower detection limit and a wider linear range from 32 fg/mL to 100 ng/mL, so it is more suitable for quantitative analysis of Hepatitis B. In summary, the prepared immunosensor provides a better opportunity for early diagnosis of Hepatitis B and also has further applications in biosensing and medical diagnostics.
Collapse
Affiliation(s)
- Zhaoling Tan
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China.
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Pingping Zhao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, PR China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Zengdian Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, PR China
| |
Collapse
|
38
|
Nanomaterials-based Electrochemical Immunosensors. MICROMACHINES 2019; 10:mi10060397. [PMID: 31207970 PMCID: PMC6630602 DOI: 10.3390/mi10060397] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
With the development of nanomaterials and sensor technology, nanomaterials-based electrochemical immunosensors have been widely employed in various fields. Nanomaterials for electrode modification are emerging one after another in order to improve the performance of electrochemical immunosensors. When compared with traditional detection methods, electrochemical immunosensors have the advantages of simplicity, real-time analysis, high sensitivity, miniaturization, rapid detection time, and low cost. Here, we summarize recent developments in electrochemical immunosensors based on nanomaterials, including carbon nanomaterials, metal nanomaterials, and quantum dots. Additionally, we discuss research challenges and future prospects for this field of study.
Collapse
|