1
|
Li SL, Wu ML, Li YD, Zhang MQ, Zeng JB. Tannic acid facilitated layer-by-layer nanoarchitectonics for hydrophobic conductive cotton fabric with improved stability for thermal management and flexible sensing. Int J Biol Macromol 2025; 301:140493. [PMID: 39890004 DOI: 10.1016/j.ijbiomac.2025.140493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Conductive cotton fabrics (CF) prepared using layer-by-layer (LBL) assembly are primarily driven by electrostatic interactions, facing challenges such as reliance on a single driving force and poor stability. In this study, we fabricated conductive CF through LBL assembly of tannic acid (TA) and cellulose nanofiber-dispersed carbon nanotubes (CNF-CNT) on the fabric surface. A subsequent hydrophobic treatment with stearic acid (STA) resulted in hydrophobic conductive CF (S/CCT/CF). The strong adhesion provided by the TA effectively anchor the CNF-CNT to the fabric surface, while the STA enhances the stability of the conductive CF, providing excellent resistance to tape peeling, ultrasonic washing, and water droplet impact. Furthermore, we evaluated the thermal management and sensing performance of S/CCT/CF. It exhibited exceptional electrothermal conversion capability, reaching temperatures of up to 119 °C at 12 V, and demonstrated stable thermal performance even after ~2330 bending cycles. Additionally, it displayed high sensitivity (GF = 8.75), rapid response times (0.24 s), and outstanding sensing stability, effectively monitoring human movements such as joint bending, chewing, and swallowing. The innovative use of the TA in LBL assembly offers valuable insights for designing low-cost, durable conductive fabrics, paving the way for the development of advanced smart textiles.
Collapse
Affiliation(s)
- Shuang-Li Li
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming-Liang Wu
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Dong Li
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Man-Qi Zhang
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jian-Bing Zeng
- Chongqing Key Laboratory of Soft-Matter Material Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Selvan T M, Mondal T. Prognosis of Cardiovascular Conditions Noninvasively Using Printable Elastomeric Electronic Skin. Adv Healthc Mater 2025; 14:e2404056. [PMID: 39745132 DOI: 10.1002/adhm.202404056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/17/2024] [Indexed: 03/04/2025]
Abstract
Lack of timely prognosis of cardiovascular condition (CVC) is resulting in increased mortality across the globe. Currently, available techniques are confined to medical facilities and need the intervention of specialists. Frequently, this impedes timely treatment, driven by socioeconomic factors. Consequently, the disease transcends toward incurable complications. In such a scenario, point-of-care diagnostic tools can help with prognosis at an early stage. Albeit there are such tools available, it is imperative to develop affordably in uncomplicated manufacturing techniques and should have simple readout and analysis modules for monitoring CVC. Accordingly, the solvent-free manufacturing of stencil printable liquid elastomer-carbon nanotube electronic skin-based strain sensor, capable of accurately detecting pulse (at different positions) and other parameters like augmentation index and stiffness index of artery related to the CVC, is reported. The Poincare plot, derived from the recorded data, measures heart rate variability, a key indicator linked to mortality. Thanks to the staggering linearity, gauge factor of 234.26, fast response time of 85 ms (measured from pulse data), and cyclic stability (over 500 cycles), assist in the ease of detection of vital parameters. Furthermore, the sensor patch demonstrates its capability to acquire pulse waves under different real-time artery conditions using cuff-based pressure applications.
Collapse
Affiliation(s)
- Muthamil Selvan T
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Van Nguyen D, Song P, Manshaii F, Bell J, Chen J, Dinh T. Advances in Soft Strain and Pressure Sensors. ACS NANO 2025; 19:6663-6704. [PMID: 39933798 DOI: 10.1021/acsnano.4c15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft strain and pressure sensors represent a breakthrough in material engineering and nanotechnology, providing accurate and reliable signal detection for applications in health monitoring, sports management, human-machine interface, or soft robotics, when compared to traditional rigid sensors. However, their performance is often compromised by environmental interference and off-axis mechanical deformations, which lead to nonspecific responses, as well as unstable and inaccurate measurements. These challenges can be effectively addressed by enhancing the sensors' specificity, making them responsive only to the desired stimulus while remaining insensitive to unwanted stimuli. This review systematically examines various materials and design strategies for developing strain and pressure sensors with high specificity for target physical signals, such as tactility, pressure distribution, body motions, or artery pulse. This review highlights approaches in materials engineering that impart special properties to the sensors to suppress interference from factors such as temperature, humidity, and liquid contact. Additionally, it details structural designs that improve sensor performance under different types of off-axis mechanical deformations. This review concludes by discussing the ongoing challenges and opportunities for inspiring the future development of highly specific electromechanical sensors.
Collapse
Affiliation(s)
- Duy Van Nguyen
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Farid Manshaii
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - John Bell
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Jun Chen
- Department of Bioengineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Toan Dinh
- School of Engineering and Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
4
|
Zhang B, Xue X, Zhao L, Hou B. Transparent Superhydrophobic and Self-Cleaning Coating. Polymers (Basel) 2024; 16:1876. [PMID: 39000731 PMCID: PMC11244105 DOI: 10.3390/polym16131876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 07/17/2024] Open
Abstract
Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces that combine superhydrophobicity with high transparency has been a continuous research focus for researchers and engineers. In this study, a transparent superhydrophobic coating was constructed on glass substrates using hydrophobic fumed silica (HF-SiO2) and waterborne polyurethane (WPU) as raw materials, combined with a simple spray-coating technique, resulting in a water contact angle (WCA) of 158.7 ± 1.5° and a sliding angle (SA) of 6.2 ± 1.8°. Characterization tests including SEM, EDS, LSCM, FTIR, and XPS revealed the presence of micron-scale protrusions and a nano-scale porous network composite structure on the surface. The presence of HF-SiO2 not only provided a certain roughness but also effectively reduced surface energy. More importantly, the coating exhibited excellent water-repellent properties, extremely low interfacial adhesion, self-cleaning ability, and high transparency, with the light transmittance of the coated glass substrate reaching 96.1% of that of the bare glass substrate. The series of functional characteristics demonstrated by the transparent superhydrophobic HF-SiO2@WPU coating designed and constructed in this study will play an important role in various applications such as underwater observation windows, building glass facades, automotive glass, and goggles.
Collapse
Affiliation(s)
- Binbin Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Xue
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Baorong Hou
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
5
|
Li Q, Zou K, Zhang Y. Artificial-intelligence-reinforced multimodal electronic skin for psychological stress assessment. Sci Bull (Beijing) 2024; 69:1173-1175. [PMID: 38538459 DOI: 10.1016/j.scib.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Affiliation(s)
- Qianming Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Kuangyi Zou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Cao L, Wu H. Dual-network fiber-hydrogel membrane for osmotic energy harvesting. Front Chem 2024; 12:1401854. [PMID: 38783897 PMCID: PMC11112087 DOI: 10.3389/fchem.2024.1401854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
Osmotic energy harvesting was a promising way to alleviate energy crisis with reverse electrodialysis (RED) membrane-based technology. Charged hydrogel combined with other materials was an effective strategy to overcome problems, including restricted functional groups and complicated fabrication, but the effect of the respective charges of the two materials combined on the membrane properties has rarely been studied in depth. Herein, a new method was proposed that charged hydrogel was equipped with charged filter paper to form dual network fiber-hydrogel membrane for osmotic energy harvesting, which had excellent ion selectivity (beyond 0.9 under high concentration gradient), high ion transference number and energy conversion efficiency (beyond 32.5% under wide range concentration gradient), good property of osmotic energy conversion (∼4.84 W/m2 under 50-fold KCl and ∼6.75 W/m2 under simulated sea water and river water). Moreover, the power density was attributed to the surface-space charge synergistic effect from large amounts overlapping of electric double layer (EDL), so that the transmembrane ion transport was enhanced. It might be a valid mode to extensively develop the osmotic energy harvesting.
Collapse
Affiliation(s)
- Licheng Cao
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, China
| | | |
Collapse
|
7
|
Dai Z, Lei M, Ding S, Zhou Q, Ji B, Wang M, Zhou B. Durable superhydrophobic surface in wearable sensors: From nature to application. EXPLORATION (BEIJING, CHINA) 2024; 4:20230046. [PMID: 38855620 PMCID: PMC11022629 DOI: 10.1002/exp.20230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/02/2023] [Indexed: 06/11/2024]
Abstract
The current generation of wearable sensors often experiences signal interference and external corrosion, leading to device degradation and failure. To address these challenges, the biomimetic superhydrophobic approach has been developed, which offers self-cleaning, low adhesion, corrosion resistance, anti-interference, and other properties. Such surfaces possess hierarchical nanostructures and low surface energy, resulting in a smaller contact area with the skin or external environment. Liquid droplets can even become suspended outside the flexible electronics, reducing the risk of pollution and signal interference, which contributes to the long-term stability of the device in complex environments. Additionally, the coupling of superhydrophobic surfaces and flexible electronics can potentially enhance the device performance due to their large specific surface area and low surface energy. However, the fragility of layered textures in various scenarios and the lack of standardized evaluation and testing methods limit the industrial production of superhydrophobic wearable sensors. This review provides an overview of recent research on superhydrophobic flexible wearable sensors, including the fabrication methodology, evaluation, and specific application targets. The processing, performance, and characteristics of superhydrophobic surfaces are discussed, as well as the working mechanisms and potential challenges of superhydrophobic flexible electronics. Moreover, evaluation strategies for application-oriented superhydrophobic surfaces are presented.
Collapse
Affiliation(s)
- Ziyi Dai
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
- State Key Laboratory of Crystal MaterialsInstitute of Novel SemiconductorsSchool of MicroelectronicsShandong UniversityJinanChina
| | - Ming Lei
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Sen Ding
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| | - Qian Zhou
- School of Physics and ElectronicsCentral South UniversityChangshaChina
| | - Bing Ji
- School of Physics and ElectronicsHunan Normal UniversityChangshaChina
| | - Mingrui Wang
- Department of Mechanical EngineeringUniversity of AucklandAucklandNew Zealand
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauAvenida da UniversidadeTaipaMacauChina
| |
Collapse
|
8
|
Xu Y, Cao Y, Li R. High-Performance Flexible Ionically Conductive Superhydrophobic Papers via Deep Eutectic Polymer-Enhanced Interfacial Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6463-6470. [PMID: 38483327 DOI: 10.1021/acs.langmuir.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Endowing paper with highly flexible, conductive, and superhydrophobic properties will effectively expand its applications in fields such as green packaging, smart sensing, and paper-based electronics. Herein, a multifunctional superhydrophobic paper is reported in which a highly flexible transparent conductive substrate is prepared by introducing a hydrophobic deep eutectic polymer into the ethylcellulose network via a matrix swelling-polymerization strategy, and then the substrate is modified using fluorinated silica to impart superhydrophobicity. By introducing soft deep eutectic polymers, (1) the superhydrophobic paper can efficiently dissipate energy during deformation, (2) intrinsically ion-conducting deep eutectic polymers can endow the material with good electrical sensing properties, and (3) meanwhile, enhanced interfacial interactions can anchor inorganic particles, thereby improving the coating stability. The prepared superhydrophobic paper has an ultrahigh water contact angle (contact angle ≈ 162.2°) and exhibits a stable electrical response signal to external deformation/pressure, and the electrical properties are almost unaffected by external water molecules. In addition, the superhydrophobic paper was able to withstand 5000 bending-recovery cycles at a large angle of 150°, exhibiting stable electrical performance. The design concepts demonstrated here will provide insights into the development of superhydrophobic paper-based flexible electronic devices.
Collapse
Affiliation(s)
- You Xu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yunfeng Cao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ren'ai Li
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab Pulp & Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
9
|
Pan D, Hu J, Wang B, Xia X, Cheng Y, Wang C, Lu Y. Biomimetic Wearable Sensors: Emerging Combination of Intelligence and Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303264. [PMID: 38044298 PMCID: PMC10837381 DOI: 10.1002/advs.202303264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Indexed: 12/05/2023]
Abstract
Owing to the advancement of interdisciplinary concepts, for example, wearable electronics, bioelectronics, and intelligent sensing, during the microelectronics industrial revolution, nowadays, extensively mature wearable sensing devices have become new favorites in the noninvasive human healthcare industry. The combination of wearable sensing devices with bionics is driving frontier developments in various fields, such as personalized medical monitoring and flexible electronics, due to the superior biocompatibilities and diverse sensing mechanisms. It is noticed that the integration of desired functions into wearable device materials can be realized by grafting biomimetic intelligence. Therefore, herein, the mechanism by which biomimetic materials satisfy and further enhance system functionality is reviewed. Next, wearable artificial sensory systems that integrate biomimetic sensing into portable sensing devices are introduced, which have received significant attention from the industry owing to their novel sensing approaches and portabilities. To address the limitations encountered by important signal and data units in biomimetic wearable sensing systems, two paths forward are identified and current challenges and opportunities are presented in this field. In summary, this review provides a further comprehensive understanding of the development of biomimetic wearable sensing devices from both breadth and depth perspectives, offering valuable guidance for future research and application expansion of these devices.
Collapse
Affiliation(s)
- Donglei Pan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Jiawang Hu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Bin Wang
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Xuanjie Xia
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Yifan Cheng
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng‐Hua Wang
- College of Light Industry and Food EngineeringGuangxi UniversityNanningGuangxi530004China
| | - Yuan Lu
- Key Laboratory of Industrial BiocatalysisMinistry of EducationDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
10
|
Liu H, Guo L, Dai Y, Li M, Wang D, Li Y, Qi H. Facile fabrication of cellulose-based hydrophobic paper via Michael addition reaction. Int J Biol Macromol 2023; 253:127513. [PMID: 37865371 DOI: 10.1016/j.ijbiomac.2023.127513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The inherent highly hydrophilic feature of cellulose-based paper hinders its application in many fields. Herein, a cellulose-based hydrophobic paper was fabricated based on surface chemical modification. Firstly, the hydrophobic acrylate components were bonded to the cellulose acetoacetate (CAA) fibers to obtain CAA graft acrylate (CAA-X) fibers through Michael addition reaction. Subsequently, CAA-X fibers were processed into paper via wet papermaking technology. The resulting paper exhibited good hydrophobic performance (water contact angle was up to 135°) with an air permeability of 24.8 μm/Pa·s. The hydrophobicity of paper was very stable and remained even after treating with different solvents. Moreover, the hydrophobic properties of this paper could be adjusted by changing the type of acrylate component. It should be noted that the surface modification strategy has no obvious effects on the whiteness (79.8%), writing, and printing properties of the cellulose fibers. Thus, it is a simple, benign, and efficient strategy for the construction of cellulose-based hydrophobic paper, which has great potential to be used in paper tableware, oil-water separation, watercolor protection, and food packaging fields.
Collapse
Affiliation(s)
- Hongchen Liu
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China.
| | - Lei Guo
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yamin Dai
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Mengya Li
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Dongwei Wang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China
| | - Yun Li
- Guangdong Yunzhao Medical Technology Co., Ltd., Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
11
|
Deng B, Wang Z, Liu W, Hu B. Multifunctional Motion Sensing Enabled by Laser-Induced Graphene. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6363. [PMID: 37834499 PMCID: PMC10573838 DOI: 10.3390/ma16196363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
The development of flexible sensors based on laser-induced graphene (LIG) has recently attracted much attention. It was commonly generated by laser-ablating commercial polyimide (PI). However, the weak mechanical extensibility of PI limits the development and diversified applications of LIG-based sensors. In this work, we adopted medical polyurethane (PU) tapes to peel off the LIG generated on PI and developed flexible and wearable sensors based on the proposed LIG/PU composite structure. Compared with other methods for LIG transfer, PU tape has many advantages, including a simplified process and being less time-consuming. We characterized the LIG samples generated under different laser powers and analyzed the property differences introduced by the transfer operation. We then studied the impact of fabrication mode on the strain sensitivity of the LIG/PU and optimized the design of a LIG/PU-based strain sensor, which possessed a gauge factor (GF) of up to 263.6 in the strain range of 75-90%. In addition, we designed a capacitive pressure sensor for tactile sensing, which is composed of two LIG/PU composite structures and a PI space layer. These LIG flexible devices can be used for human motion monitoring and tactile perception in sports events. This work provides a simple, fast, and low-cost way for the preparation of multifunctional sensor systems with good performance, which has a broad application prospect in human motion monitoring.
Collapse
Affiliation(s)
| | | | | | - Bin Hu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (B.D.); (Z.W.); (W.L.)
| |
Collapse
|
12
|
Yun T, Du J, Ji X, Tao Y, Cheng Y, Lv Y, Lu J, Wang H. Waterproof and ultrasensitive paper-based wearable strain/pressure sensor from carbon black/multilayer graphene/carboxymethyl cellulose composite. Carbohydr Polym 2023; 313:120898. [PMID: 37182981 DOI: 10.1016/j.carbpol.2023.120898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Huge electronic wastes motivated the flourishing of biodegradable electrically conductive cellulosic paper-based functional materials as flexible wearable devices. However, the relatively low sensitivity and unstable output in combination with poor wet strength under high moisture circumstances impeded the practical application. Herein, a superhydrophobic cellulosic paper with ultrahigh sensitivity was proposed by innovatively employing ionic sodium carboxymethyl cellulose (CMC) as bridge to reinforce the interfacial interaction between carbon black (CB) and multilayer graphene (MG) and SiO2 nanoparticles as superhydrophobic layer. The resultant paper-based (PB) sensor displayed excellent strain sensing behaviors, wide working range (-1.0 %-1.0 %), ultrahigh sensitivity (gauge factor, GF = 70.2), and satisfied durability (>10,000 cycles). Moreover, the superhydrophobic surface offered well waterproof and self-cleaning properties, even stable running data without encapsulation under extremely high moisture conditions. Impressively, when the fabricated PB sensor was applied for electronic-skin (E-skin), the signal capture of spatial strain of E-skin upon bodily motion was breezily achieved. Thus, our work not only provides a new pathway for reinforcing the interfacial interaction of electrically conductive carbonaceous materials, but also promises a category of unprecedentedly superhydrophobic cellulosic paper-based strain sensors with ultra-sensitivity in human-machine interfaces field.
Collapse
Affiliation(s)
- Tongtong Yun
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Cheng
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and Biomaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
13
|
Xue Y, Wang Z, Dutta A, Chen X, Gao P, Li R, Yan J, Niu G, Wang Y, Du S, Cheng H, Yang L. Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 465:142774. [PMID: 37484163 PMCID: PMC10361402 DOI: 10.1016/j.cej.2023.142774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wearable electronics with applications in healthcare, human-machine interfaces, and robotics often explore complex manufacturing procedures and are not disposable. Although the use of conductive pencil patterns on cellulose paper provides inexpensive, disposable sensors, they have limited stretchability and are easily affected by variations in the ambient environment. This work presents the combination of pencil-on-paper with the hydrophobic fumed SiO2 (Hf-SiO2) coating and stretchable kirigami structures from laser cutting to prepare a superhydrophobic, stretchable pencil-on-paper multifunctional sensing platform. The resulting sensor exhibits a large response to NO2 gas at elevated temperature from self-heating, which is minimally affected by the variations in the ambient temperature and relative humidity, as well as mechanical deformations such as bending and stretching states. The integrated temperature sensor and electrodes with the sensing platform can accurately detect temperature and electrophysiological signals to alert for adverse thermal effects and cardiopulmonary diseases. The thermal therapy and electrical stimulation provided by the platform can also deliver effective means to battle against inflammation/infection and treat chronic wounds. The superhydrophobic pencil-onpaper multifunctional device platform provides a low-cost, disposable solution to disease diagnostic confirmation and early treatment for personal and population health.
Collapse
Affiliation(s)
- Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zihan Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA
| | - Xue Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Peng Gao
- Department of Electronic Information, Hebei University of Technology, Tianjin, 300130, China
| | - Runze Li
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jiayi Yan
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guangyu Niu
- Department of Architecture and Art, Hebei University of Technology, Tianjin, 300130, China
| | - Ya Wang
- State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuaijie Du
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Key Laboratory of Bioelectromagnetics and Neuroengineering of Hebei Province, School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA
| | - Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
14
|
Wang YF, Yoshida A, Takeda Y, Sekine T, Kumaki D, Tokito S. Printed Directional Bending Sensor with High Sensitivity and Low Hysteresis for Human Motion Detection and Soft Robotic Perception. SENSORS (BASEL, SWITZERLAND) 2023; 23:5041. [PMID: 37299768 PMCID: PMC10255501 DOI: 10.3390/s23115041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
We present a high-performance flexible bending strain sensor for directional motion detection of human hands and soft robotic grippers. The sensor was fabricated using a printable porous conductive composite composed of polydimethylsiloxane (PDMS) and carbon black (CB). The utilization of a deep eutectic solvent (DES) in the ink formulation induced a phase segregation between the CB and PDMS and led to a porous structure inside the printed films after being vapored. This simple and spontaneously formed conductive architecture provided superior directional bend-sensing characteristics compared to conventional random composites. The resulting flexible bending sensors displayed high bidirectional sensitivity (gauge factor of 45.6 under compressive bending and 35.2 under tensile bending), negligible hysteresis, good linearity (>0.99), and excellent bending durability (over 10,000 cycles). The multifunctional applications of these sensors, including human motion detection, object-shape monitoring, and robotic perceptions, are demonstrated as a proof-of-concept.
Collapse
Affiliation(s)
- Yi-Fei Wang
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Yamagata, Japan
| | | | | | | | | | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16, Jonan, Yonezawa 992-8510, Yamagata, Japan
| |
Collapse
|
15
|
Davis D, Narayanan SK, Ajeev A, Nair J, Jeeji J, Vijayan A, Viyyur Kuttyadi M, Nelliparambil Sathian A, Arulraj AK. Flexible Paper-Based Room-Temperature Acetone Sensors with Ultrafast Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37075219 DOI: 10.1021/acsami.2c21712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Paper-based lightweight, degradable, low-cost, and eco-friendly substrates are extensively used in wearable biosensor applications, albeit to a lesser extent in sensing acetone and other gas-phase analytes. Generally, rigid substrates with heaters have been employed to develop acetone sensors due to the high operating/recovery temperature (typically above 200 °C), limiting the use of papers as substrates in such sensing applications. In this work, we proposed fabricating the paper-based, room-temperature-operatable acetone sensor using ZnO-polyaniline-based acetone-sensing inks by a facile fabrication method. The fabricated paper-based electrodes showed good electrical conductivity (80 S/m) and mechanical stability (∼1000 bending cycles). The acetone sensors showed a sensitivity of 0.02/100 ppm and 0.6/10 μL with an ultrafast response (4 s) and recovery time (15 s) at room temperature. The sensors delivered a broad sensitivity over a physiological range of 260 to >1000 ppm with R2 > 0.98 under atmospheric conditions. Further, the role of the surface, interfacial, microstructure, electrical, and electromechanical properties of the paper-based sensor devices has been correlated with the sensitivity and room-temperature recovery observed in our system. These versatile, green, flexible electronic devices would be ideal for low-cost, highly regenerative, room-/low-temperature-operable wearable sensor applications.
Collapse
Affiliation(s)
- Disiya Davis
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Swathi Krishna Narayanan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arya Ajeev
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jayashree Nair
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Jithin Jeeji
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Ananthu Vijayan
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Midhun Viyyur Kuttyadi
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arun Nelliparambil Sathian
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| | - Arul Kashmir Arulraj
- Centre for Materials for Electronics Technology (C-MET), Shornur Road, Athani, MG Kavu Post, Thrissur 680581, Kerala, India
| |
Collapse
|
16
|
Li J, Yang F, Liu D, Han S, Li J, Sui G. Graphene composite paper synergized with micro/nanocellulose-fiber and silk fibroin for flexible strain sensor. Int J Biol Macromol 2023; 240:124439. [PMID: 37062378 DOI: 10.1016/j.ijbiomac.2023.124439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
The fabrication of uniform and strong graphene-based conductive paper is challenging due to easy aggregation and poor film formability of graphene. Herein, on the basis of good dispersing effect of nanocellulose, high content graphene (50 wt%) composite paper with micro/nanocellulose fibers and silk fibroin (SF) was manufactured via simple casting method. The synergistic effects of cellulose microfibers (CMFs), cellulose nanofibers (CNFs) and SF result in the paper with ideal combination of flexibility, electrical conductivity and mechanical strength, where CNFs, CMFs and SF act as dispersing and film forming for GNPs, dimensional stability, and interfacial binding agents, respectively. Extraordinarily, by adding SF, graphene nanosheets are tightly coated on the surface of CMFs. The composite paper shows a tensile strength of 49.29 MPa, surface resistance of 39.0-42.1 Ω and good joints bend sensing performance. Additionally, it is found that CMFs can hinder the micro-cracks from propagating during the cyclic elbow bending test. The graphene-based conductive paper is helpful for the development of smart clothing wearable biosensing devices.
Collapse
Affiliation(s)
- Jun Li
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Fei Yang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Dongyan Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Sensen Han
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Junsheng Li
- Engineering Center of National New Raw Material Base Construction of Liaoning Province, Shenyang 110031, China
| | - Guoxin Sui
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
17
|
Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydr Polym 2023; 305:120570. [PMID: 36737208 DOI: 10.1016/j.carbpol.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Cellulose is the cheapest and mostly widespread green raw material on earth. Due to the easy and versatile developed modification of cellulose, many cellulosic paper-based sustainable materials and their multifunctional applications have attained increasing interest under the background of the implementation of the "plastic ban" policy. However, intrinsic cellulose paper is hydrophilic and non-water-proof, which highly limited its application, thus becoming a bottleneck for the development of "cellulosic paper-based plastic replacement". Unquestioningly, the superhydrophobic modification of cellulosic paper-based materials and the extension of their high value-added applications are highly desired, which is the main content of this review. More importantly, we presented the comprehensive discussion of the functionalized applications of superhydrophobic cellulosic paper-based materials ranging from conventional products to high value-added functional materials such as paper straw and paper mulch film for the first time, which have great industrialization potential and value. This review would offer the valuable guidance and insightful information for the rational construction of sustainable superhydrophobic cellulosic paper for advanced functional devices.
Collapse
|
18
|
Ye Z, Yuan Y, Zhan S, Liu W, Fang L, Li T. Paper-based microfluidics in sweat detection: from design to application. Analyst 2023; 148:1175-1188. [PMID: 36861489 DOI: 10.1039/d2an01818g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Sweat, as a sample that includes a lot of biochemical information, is good for non-invasive monitoring. In recent years, there have been an increasing number of studies on in situ monitoring of sweat. However, there are still some challenges for the continuous analysis of samples. As a hydrophilic, easy-to-process, environmentally friendly, inexpensive and easily accessible material, paper is an ideal substrate material for making in situ sweat analysis microfluidics. This review introduces the development of paper as a sweat analysis microfluidic substrate material, focusing on the advantages of the structural characteristics of paper, trench design and equipment integration applications to expand the design and research ideas for the development of in situ sweat detection technology.
Collapse
Affiliation(s)
- Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China.,School of Medicine, Zhejiang University, Hangzhou 310028, China
| | - Yuyang Yuan
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China. .,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China.,School of Medicine, Zhejiang University, Hangzhou 310028, China
| | - Shaowei Zhan
- School of Medicine, Zhejiang University, Hangzhou 310028, China.,Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310028, China
| | - Wei Liu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310028, China
| | - Lu Fang
- Department of Automation, Hangzhou Dianzi University, Hangzhou 310028, China.
| | - Tianyu Li
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China. .,National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
19
|
Tuli A, Singh AP. Polymer-based wearable nano-composite sensors: a review. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2023. [DOI: 10.1080/1023666x.2022.2161737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Aashish Tuli
- Mechanical Engineering, UIET Panjab University, Chandigarh, India
| | | |
Collapse
|
20
|
He H, Guo Z. Fabric-based superhydrophobic MXene@ polypyrrole heater with superior dual-driving energy conversion. J Colloid Interface Sci 2023; 629:508-521. [DOI: 10.1016/j.jcis.2022.08.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
|
21
|
Rius-Ayra O, Biserova-Tahchieva A, Llorca-Isern N. Removal of dyes, oils, alcohols, heavy metals and microplastics from water with superhydrophobic materials. CHEMOSPHERE 2023; 311:137148. [PMID: 36351466 DOI: 10.1016/j.chemosphere.2022.137148] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/19/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A wide variety of pollutants can be currently found in water that are extremely difficult to remove due to their chemical composition and properties. A lot of effort has been made to tackle this issue that directly affects the environment. In this scenario, superhydrophobic surfaces, which have a water contact angle >150°, have emerged as an innovative technology that could be applied in different ways. Their environmental applications show promise in removing emerging pollutants from water. While the number of publications on superhydrophobic materials has remained largely unchanged since 2019, the number of articles on the environmental applications of superhydrophobic surfaces is still rising, corroborating the interest in this area. Herein, we briefly present the basis of superhydrophobicity and show the different materials that have been used to remove pollutants from water. We have identified five types of emerging pollutants that are efficiently removed by superhydrophobic materials: oils, microplastics, dyes, heavy metals, and ethanol. Finally, the future challenges of these applications are also discussed, considering the state of the art of the environmental applications of superhydrophobic materials.
Collapse
Affiliation(s)
- Oriol Rius-Ayra
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain.
| | - Alisiya Biserova-Tahchieva
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Nuria Llorca-Isern
- CPCM Departament de Ciència dels Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
22
|
Lu CC, Gao WC, Li P, Wu W, Li RKY, Zhao H. Utilizing Multilayer Design of Organic-Inorganic Hybrids to Enhance Wearable Strain Sensor in Humid Environment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-023-2905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Peng Y, Zhou J, Yang Y, Lai JC, Ye Y, Cui Y. An Integrated 3D Hydrophilicity/Hydrophobicity Design for Artificial Sweating Skin (i-TRANS) Mimicking Human Body Perspiration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204168. [PMID: 35975584 DOI: 10.1002/adma.202204168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Artificial skins reproducing properties of human skin are emerging and significant for study in various areas, such as robotics, medicine, and textiles. Perspiration, as one of the most imperative thermoregulation functions of human skin, is gaining increasing attention, but how to realize ideal artificial skin for perspiration simulation remains challenging. Here, an integrated 3D hydrophilicity/hydrophobicity design is proposed for artificial sweating skin (i-TRANS). Based on normal fibrous wicking materials, the selective surface modification with gradient of poly(dimethylsiloxane) (PDMS) creates hydrophilicity/hydrophobicity contrast in both lateral and vertical directions. With the additional help of bottom hydrophilic Nylon 6 nanofibers, the constructed i-TRANS is able to transport "sweat" directionally without trapping undesired excess water and attain uniform "secretion" of sweat droplets on the top surface, decently mimicking human skin perspiration situation. This fairly comparable simulation not only presents new insights for replicating skin properties, but also provides proper in vitro testing platforms for perspiration-relevant research, greatly avoiding unwanted interference from the "skin" layer. In addition, the facile, fast, and cost-effective fabrication approach and versatile usage of i-TRANS can further facilitate its application.
Collapse
Affiliation(s)
- Yucan Peng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jiawei Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| |
Collapse
|
24
|
Tang J, Wu Y, Ma S, Yan T, Pan Z. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials. iScience 2022; 25:105162. [PMID: 36212024 PMCID: PMC9535124 DOI: 10.1016/j.isci.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, various strain-sensing yarns have been developed without ideal stitchability. Herein, we used spherical carbon black particles (CBs), linear carbon nanotubes (CNTs), and lamellar graphene flakes (GRs) as conductive nanofillers to construct multi-element conductive networks inside a thermoplastic polyurethane (TPU) matrix. First, a highly stretchable and conductive multidimensional carbon-based nanomaterial/TPU composite nanofiber yarn was fabricated using electrospinning, which could be used as a flexible strain sensor without post-processing. Accordingly, the effects of nanomaterials’ dimensionality and synergy on yarns’ conductivity, mechanical properties, and strain sensing performances were explored. The yarn containing multiple networks formed by CB/CNT/GR ternary hybrid networks, CNT and GR auxiliary networks exhibited the best performances. Subsequently, the structural evolution of the ternary conductive network under stretching was revealed to further analyze the sensing mechanism. Finally, the yarn endowed a medicated plaster with an intelligent function to detect motions in the rehabilitation of joint pain by simple sewing. An anti-interference and washable strain-sensing composite nanofiber yarn Synergy of carbon black particles, carbon nanotubes, and graphene flakes Strain-sensing mechanism of ternary conductive networks are revealed A smart medicated plaster can detect motions in the rehabilitation of joint pain
Collapse
Affiliation(s)
- Jian Tang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yuting Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Shidong Ma
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Tao Yan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
- Corresponding author
| | - Zhijuan Pan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
- Corresponding author
| |
Collapse
|
25
|
Preparation of superhydrophobic conductive CNT/PDMS film on paper by foam spraying method. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Shen Z, Liu F, Huang S, Wang H, Yang C, Hang T, Tao J, Xia W, Xie X. Progress of flexible strain sensors for physiological signal monitoring. Biosens Bioelectron 2022; 211:114298. [DOI: 10.1016/j.bios.2022.114298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
|
27
|
Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci Bull (Beijing) 2022; 67:1669-1678. [PMID: 36546046 DOI: 10.1016/j.scib.2022.07.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Wearable electronic devices have received increasing interests because of their excellent flexibility, stretchability, and human friendliness. As the core components, flexible strain sensors integrated with wide working range, high sensitivity, and environment stability, especially in moisture or corrosive environments, remain a huge challenge. Herein, synergistic carbon nanotubes (CNTs)/reduced graphene oxide (rGO) dual conductive layer decorated elastic rubber band (RB) was successfully developed and treated with hydrophobic fumed silica (Hf-SiO2) for preparing superhydrophobic strain sensor. As expected, stable entangled CNTs layer and ultrasensitive microcracked rGO layer endow the sensor with extremely low detection limit (0.1%), high sensitivity (gauge factor is 685.3 at 482% strain), wide workable strain range (0-482%), fast response/recovery (200 ms/200 ms) and favorable reliability and reproducibility over 1000 cycles. Besides, the constructed Hf-SiO2 coating also makes the sensor exhibit excellent superhydrophobicity, self-cleaning property, and corrosion-resistance. As a proof of concept, our prepared high-performance strain sensor can realize the full-range monitoring of human motions and physiological signals even in the water environment, including pulse, vocalization, joint bending, running, and gesture recognition. Interestingly, it can also be knitted into a tactile electronic textile for spatial pressure distribution measurement. Thus, this study provides a universal technique for the preparation of high-performance strain sensors with great potential applications in the field of next-generation intelligent wearable electronics.
Collapse
|
28
|
Zhang D, Li X, Liang T, Niu S, He Y, Song P, Wang R. Construction of antibacterial fabrics with polymer cationic broccolo‐shaped nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duoxin Zhang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Xuemei Li
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Tingyu Liang
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Shiquan Niu
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
29
|
Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin-Interfaced Sensors and Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200260. [PMID: 36176721 PMCID: PMC9514151 DOI: 10.1002/adfm.202200260] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 05/05/2023]
Abstract
The practical applications of skin-interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bio-inspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health-relevant information and sustained energy for next-generation stretchable self-powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on-body electronics. In this review, we first summarize the commonly used approaches to tune the surface wettability for target applications toward stretchable self-powered devices. By considering the existing challenges, we also discuss the opportunities as a small fraction of potential future developments, which can lead to a new class of skin-interfaced devices for use in digital health and personalized medicine.
Collapse
Affiliation(s)
- Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
30
|
Szewczyk J, Aguilar-Ferrer D, Coy E. Polydopamine films: Electrochemical growth and sensing applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Liu S, Chen K, Salim A, Li J, Bottone D, Seeger S. Printable and Versatile Superhydrophobic Paper via Scalable Nonsolvent Armor Strategy. ACS NANO 2022; 16:9442-9451. [PMID: 35611949 PMCID: PMC9245351 DOI: 10.1021/acsnano.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Despite great scientific and industrial interest in waterproof cellulosic paper, its real world application is hindered by complicated and costly fabrication processes, limitations in scale-up production, and use of organic solvents. Furthermore, simultaneously achieving nonwetting properties and printability on paper surfaces still remains a technical and chemical challenge. Herein, we demonstrate a nonsolvent strategy for scalable and fast fabrication of waterproofing paper through in situ surface engineering with polysilsesquioxane nanorods (PSNRs). Excellent superhydrophobicity is attained on the functionalized paper surface with a water contact angle greater than 160°. Notably, the engineered paper features outstanding printability and writability, as well as greatly enhanced strength and integrity upon prolonged exposure to water (tensile strength ≈ 9.0 MPa). Additionally, the PSNRs concurrently armor paper-based printed items and artwork with waterproofing, self-cleaning, and antimicrobial functionalities without compromising their appearance, readability, and mechanical properties. We also demonstrate that the engineered paper holds the additional advantages of easy processing, low cost, and mechanochemical robustness, which makes it particularly promising for real world applications.
Collapse
|
32
|
Zhou Y, Li H. A Scientometric Review of Soft Robotics: Intellectual Structures and Emerging Trends Analysis (2010–2021). Front Robot AI 2022; 9:868682. [PMID: 35603081 PMCID: PMC9117729 DOI: 10.3389/frobt.2022.868682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Within the last decade, soft robotics has attracted an increasing attention from both academia and industry. Although multiple literature reviews of the whole soft robotics field have been conducted, there still appears to be a lack of systematic investigation of the intellectual structure and evolution of this field considering the increasing amount of publications. This paper conducts a scientometric review of the progressively synthesized network derived from 10,504 bibliographic records using a topic search on soft robotics from 2010 to 2021 based on the Web of Science (WoS) core database. The results are presented from both the general data analysis of included papers (e.g., relevant journals, citation, h-index, year, institution, country, disciplines) and the specific data analysis corresponding to main disciplines and topics, and more importantly, emerging trends. CiteSpace, a data visualization software, which can construct the co-citation network maps and provide citation bursts, is used to explore the intellectual structures and emerging trends of the soft robotics field. In addition, this paper offers a demonstration of an effective analytical method for evaluating enormous publication citation and co-citation data. Findings of this review can be used as a reference for future research in soft robotics and relevant topics.
Collapse
|
33
|
Huang Y, Wang X, Xiang W, Wang T, Otis C, Sarge L, Lei Y, Li B. Forward-Looking Roadmaps for Long-Term Continuous Water Quality Monitoring: Bottlenecks, Innovations, and Prospects in a Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5334-5354. [PMID: 35442035 PMCID: PMC9063115 DOI: 10.1021/acs.est.1c07857] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 05/29/2023]
Abstract
Long-term continuous monitoring (LTCM) of water quality can bring far-reaching influences on water ecosystems by providing spatiotemporal data sets of diverse parameters and enabling operation of water and wastewater treatment processes in an energy-saving and cost-effective manner. However, current water monitoring technologies are deficient for long-term accuracy in data collection and processing capability. Inadequate LTCM data impedes water quality assessment and hinders the stakeholders and decision makers from foreseeing emerging problems and executing efficient control methodologies. To tackle this challenge, this review provides a forward-looking roadmap highlighting vital innovations toward LTCM, and elaborates on the impacts of LTCM through a three-hierarchy perspective: data, parameters, and systems. First, we demonstrate the critical needs and challenges of LTCM in natural resource water, drinking water, and wastewater systems, and differentiate LTCM from existing short-term and discrete monitoring techniques. We then elucidate three steps to achieve LTCM in water systems, consisting of data acquisition (water sensors), data processing (machine learning algorithms), and data application (with modeling and process control as two examples). Finally, we explore future opportunities of LTCM in four key domains, water, energy, sensing, and data, and underscore strategies to transfer scientific discoveries to general end-users.
Collapse
Affiliation(s)
- Yuankai Huang
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Xingyu Wang
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wenjun Xiang
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Tianbao Wang
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Clifford Otis
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Logan Sarge
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yu Lei
- Department
of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Baikun Li
- Department
of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
34
|
Lipase induced highly hydrophobic nanofibrillated cellulose film for strain sensor application. Carbohydr Polym 2022; 284:119193. [DOI: 10.1016/j.carbpol.2022.119193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/02/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022]
|
35
|
Li X, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, Preparation Strategies, and Wearable Sensor Applications of Conductive Fibers: A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:3028. [PMID: 35459012 PMCID: PMC9032468 DOI: 10.3390/s22083028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 05/07/2023]
Abstract
The recent advances in wearable sensors and intelligent human-machine interfaces have sparked a great many interests in conductive fibers owing to their high conductivity, light weight, good flexibility, and durability. As one of the most impressive materials for wearable sensors, conductive fibers can be made from a variety of raw sources via diverse preparation strategies. Herein, to offer a comprehensive understanding of conductive fibers, we present an overview of the recent progress in the materials, the preparation strategies, and the wearable sensor applications related. Firstly, the three types of conductive fibers, including metal-based, carbon-based, and polymer-based, are summarized in terms of their principal material composition. Then, various preparation strategies of conductive fibers are established. Next, the primary wearable sensors made of conductive fibers are illustrated in detail. Finally, a robust outlook on conductive fibers and their wearable sensor applications are addressed.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Zhong
- School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China; (X.L.); (S.C.); (Y.P.); (Z.Z.); (J.L.)
| |
Collapse
|
36
|
Liu L, Niu S, Zhang J, Mu Z, Li J, Li B, Meng X, Zhang C, Wang Y, Hou T, Han Z, Yang S, Ren L. Bioinspired, Omnidirectional, and Hypersensitive Flexible Strain Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200823. [PMID: 35231144 DOI: 10.1002/adma.202200823] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Sensors are widely used in various fields, among which flexible strain sensors that can sense minuscule mechanical signals and are easy to adapt to many irregular surfaces are attractive for structure health monitoring, early detection, and failure prevention in humans, machines, or buildings. In practical applications, subtle and abnormal vibrations generated from any direction are highly desired to detect and even orientate their directions initially to eliminate potential hazards. However, it is challenging for flexible strain sensors to achieve hypersensitivity and omnidirectionality simultaneously due to the restrictions of many materials with anisotropic mechanical/electrical properties and some micro/nanostructures they employed. Herein, it is revealed that the vision-degraded scorpion detects subtle vibrations spatially and omnidirectionally using a slit sensillum with fan-shaped grooves. A bioinspired flexible strain sensor consisting of curved microgrooves arranged around a central circle is devised, exhibiting an unprecedented gauge factor of over 18 000 and stability over 7000 cycles. It can sense and recognize vibrations of diverse input waveforms at different locations, bouncing behaviors of a free-falling bead, and human wrist pulses regardless of sensor installation angles. The geometric designs can be translated to other material systems for potential applications including human health monitoring and engineering failure detection.
Collapse
Affiliation(s)
- Linpeng Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jing Li
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bo Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Yueqiao Wang
- College of Communication Engineering, Jilin University, Changchun, 130022, China
| | - Tao Hou
- College of Communication Engineering, Jilin University, Changchun, 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| |
Collapse
|
37
|
Liu Y, Sheng Z, Huang J, Liu W, Ding H, Peng J, Zhong B, Sun Y, Ouyang X, Cheng H, Wang X. Moisture-resistant MXene-sodium alginate sponges with sustained superhydrophobicity for monitoring human activities. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 432:134370. [PMID: 35110969 PMCID: PMC8803272 DOI: 10.1016/j.cej.2021.134370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Wearable mechanical sensors are easily influenced by moisture resulting in inaccuracy for monitoring human health and body motions. Though the superhydrophobic barrier has been extensively explored as passive water repel strategy on the sensor surface, the dense superhydrophobic surface not only limits the sensor working under large deformations but also inevitable degradation in high humidity or saturation water vapor environments. This work reports a superhydrophobic MXene-sodium alginate sponge (SMSS) pressure sensor with a low voltage Joule heating effect to provide sustain moisture-insensitive property for both sensing performance and superhydrophobicity by heating-driven water molecules away. Because of the positive temperature coefficient under pressure applied, the Joule heating can provides a stable temperature to the moisture-insensitivity property during the whole dynamic pressure cycled. Therefore, the pressure sensor with a simple spray-coating superhydrophobic coating on the outer layer demonstrates key capabilities even in extreme use scenarios with high humidity or water vapor and also provides stable and reliable bio-signal monitoring.
Collapse
Affiliation(s)
- Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Zhong Sheng
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jielong Huang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Weiyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongyan Ding
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Bowen Zhong
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yuhui Sun
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
38
|
Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation. NANOMATERIALS 2022; 12:nano12050761. [PMID: 35269248 PMCID: PMC8912305 DOI: 10.3390/nano12050761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Although sundry superhydrophobic filtrating materials have been extensively exploited for remediating water pollution arising from frequent oil spills and oily wastewater emission, the expensive reagents, rigorous reaction conditions, and poor durability severely restrict their water purification performance in practical applications. Herein, we present a facile and cost-effective method to fabricate highly hydrophobic onion-like candle soot (CS)-coated mesh for versatile oil/water separation with excellent reusability and durability. Benefiting from a superglue acting as a binder, the sub-micron CS coating composed of interconnected and intrinsic hydrophobic carbon nanoparticles stably anchors on the surface of porous substrates, which enables the mesh to be highly hydrophobic (146.8 ± 0.5°)/superoleophilic and resist the harsh environmental conditions, including acid, alkali, and salt solutions, and even ultrasonic wear. The as-prepared mesh can efficiently separate light or heavy oil/water mixtures with high separation efficiency (>99.95%), among which all the water content in filtrates is below 75 ppm. Besides, such mesh retains excellent separation performance and high hydrophobicity even after 20 cyclic tests, demonstrating its superior reusability and durability. Overall, this work not only makes the CS-coated mesh promising for durable oil/water separation, but also develops an eco-friendly approach to construct robust superhydrophobic surfaces.
Collapse
|
39
|
Wang J, Zhu Y, Wu Z, Zhang Y, Lin J, Chen T, Liu H, Wang F, Sun L. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. MICROSYSTEMS & NANOENGINEERING 2022; 8:16. [PMID: 35186321 PMCID: PMC8821641 DOI: 10.1038/s41378-022-00349-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/27/2021] [Indexed: 05/25/2023]
Abstract
Pulse diagnosis is an irreplaceable part of traditional Chinese medical science. However, application of the traditional pulse monitoring method was restricted in the modernization of Chinese medical science since it was difficult to capture real signals and integrate obscure feelings with a modern data platform. Herein, a novel multichannel pulse monitoring platform based on traditional Chinese medical science pulse theory and wearable electronics was proposed. The pulse sensing platform simultaneously detected pulse conditions at three pulse positions (Chi, Cun, and Guan). These signals were fitted to smooth surfaces to enable 3-dimensional pulse mapping, which vividly revealed the shape of the pulse length and width and compensated for the shortcomings of traditional single-point pulse sensors. Moreover, the pulse sensing system could measure the pulse signals from different individuals with different conditions and distinguish the differences in pulse signals. In addition, this system could provide full information on the temporal and spatial dimensions of a person's pulse waveform, which is similar to the true feelings of doctors' fingertips. This innovative, cost-effective, easily designed pulse monitoring platform based on flexible pressure sensor arrays may provide novel applications in modernization of Chinese medical science or intelligent health care.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
- Micro Nano System Research Center, Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province & College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024 China
| | - Yirun Zhu
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Zhiyong Wu
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Yunlin Zhang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Jian Lin
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123 China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Huicong Liu
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Fengxia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| | - Lining Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou, 215123 China
| |
Collapse
|
40
|
He H, Guo Z. A fabric-based superhydrophobic ACNTs/Cu/PDMS heater with an excellent electrothermal effect and deicing performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj04026c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fabric not only has good electrical conductivity, chemical stability and mechanical durability, but also exhibits excellent electrothermal effects and de-icing properties. In addition, it can be used to monitor various movements of the human body.
Collapse
Affiliation(s)
- Hua He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
41
|
Ouyang K, Zhuang J, Chen C, Wang X, Xu M, Xu Z. Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Biomacromolecules 2021; 22:5033-5041. [PMID: 34813283 DOI: 10.1021/acs.biomac.1c01003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, because of the unique properties of anisotropic and isotropic structures, there are more research studies on anisotropic hydrogels. We prepared a gradient anisotropic carboxymethyl cellulose hydrogel (CMC-Al3+) by directionally diffusing aluminum chloride solution. The orientation of carboxymethyl cellulose (CMC) chains is perpendicular to the direction of aluminum ion diffusion. The degree of cross-linking and orientation gradually decrease along the direction of aluminum ion diffusion. Compared with anisotropic hydrogels prepared by other methods, the hydrogels prepared by directionally diffusing aluminum ion solution have a gradient lamellar structure. Because of the large amount of aluminum ions in CMC-Al3+, the hydrogel shows good sensing performance. CMC-Al3+ is packaged with PVC electrical flame retardant tape to produce a strain sensor used to detect human tiny movements, which can accurately and stably monitor tiny movements. Hydrogel-based strain sensors can be widely used in the fields of human-computer intelligence, human-computer interaction, and wearable devices in the future.
Collapse
Affiliation(s)
- Kangwen Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Zhuang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chuchu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xuerong Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengting Xu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.,College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
42
|
|
43
|
Peng Z, Huang J, Guo Z. Anisotropic Janus materials: from micro-/nanostructures to applications. NANOSCALE 2021; 13:18839-18864. [PMID: 34757351 DOI: 10.1039/d1nr05499f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Janus materials have led to great achievements in recent years owing to their unique asymmetric structures and properties. In this review, recent advances of Janus materials including Janus particles and Janus membranes are summarized, and then the microstructures and applications of Janus materials are emphasized. The asymmetric wettability of Janus materials is related to their microstructures; hence, the microstructures of Janus materials were analyzed, compared and summarized. Also presented are current and potential applications in sensing, drug delivery, oil-water separation and so on. Finally, a perspective on the research prospects and development of Janus materials in more fields is given.
Collapse
Affiliation(s)
- Zhouliang Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
44
|
Zhang M, Gao X, Lu C, Yao D, Wu L, Li D, Fang H, A S, Sun Y. Ultrathin Superhydrophobic Flexible Tactile Sensors for Normal and Shear Force Discrimination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55735-55746. [PMID: 34761892 DOI: 10.1021/acsami.1c17391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible tactile sensors, with the ability to sense and even discriminate between different mechanical stimuli, can enable real-time and precise monitoring of dexterous and complex robotic motions. However, making them ultrathin and superhydrophobic for practical applications is still a great challenge. Here, superhydrophobic flexible tactile sensors with hierarchical micro- and nanostructures, that is, warped graphene nanosheets adhered to micron-height wrinkled surfaces, were constructed using ultrathin medical tape (40 μm) and graphene. The tactile sensor enables the discrimination of normal and shear forces and senses sliding friction and airflow. Moreover, the tactile sensor exhibits high sensitivity to normal and shear forces, extremely low detection limits (15 Pa for normal forces and 6.4 mN for shear forces), and cyclic robustness. Based on the abovementioned characteristics, the tactile sensor enables real-time and accurate monitoring of the robotic arm's motions, such as moving, gripping, and lifting, during the process of picking up objects. The superhydrophobicity even allows the sensor to monitor the motions of the robotic arm underwater in real time. Our tactile sensors have potential applications in the fields of intelligent robotics and smart prosthetics.
Collapse
Affiliation(s)
- Mengpei Zhang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Chang Lu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dahu Yao
- College of Chemical Engineering & Pharmaceutics, National United Engineer Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Lanlan Wu
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Dongxue Li
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Hanqing Fang
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Shiwei A
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| | - Yafei Sun
- College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, P. R. China
| |
Collapse
|
45
|
Kim J, Jung H, Kim M, Bae H, Lee Y. Conductive Polymer Composites for Soft Tactile Sensors. Macromol Res 2021. [DOI: 10.1007/s13233-021-9092-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Wang P, Chen T, Zhang X, Duan W, Zhang C, Han H, Xie Q. A Superhydrophobic Hydrogel for
Self‐Healing
and Robust Strain Sensor with Liquid Impalement Resistance. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Peng Wang
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Tao Chen
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Xuesong Zhang
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Wei Duan
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Chongyuan Zhang
- School of Electrical and Electronic Engineering North China Electric Power University Baoding Hebei 071003 China
| | - Huilong Han
- School of Energy, Power and Mechanical Engineering North China Electric Power University Baoding Hebei 071003 China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention North China Electric Power University Baoding Hebei 071003 China
| | - Qing Xie
- School of Electrical and Electronic Engineering North China Electric Power University Baoding Hebei 071003 China
| |
Collapse
|
47
|
Facile preparation of superhydrophobic conductive textiles and the application of real-time sensor of joint motion sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Das S, Singh R, Das A, Bag S, Paily RP, Manna U. Abrasion tolerant, non-stretchable and super-water-repellent conductive & ultrasensitive pattern for identifying slow, fast, weak and strong human motions under diverse conditions. MATERIALS HORIZONS 2021; 8:2851-2858. [PMID: 34498655 DOI: 10.1039/d1mh01071a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The conversion of mechanical deformation into electrical signals is a widely used principle for various relevant applications. Facile & scalable fabrication, ultrahigh-sensitivity, low-response time and uninterrupted performance under severe conditions are hallmarks of an efficient strain-sensor that would be suitable for realistic application. In the past, various approaches were introduced to achieve high gauge factor-mainly associated with a large tensile deformation. But, in reality, a flexible strain sensor that displays a high gauge factor at low applied strain and remains efficient under practically relevant diverse and challenging conditions would be more appropriate for unambiguous and effective monitoring of human motions and other relevant applications. But, a low-strain sensor with ultrahigh sensitivity and durability is yet to be introduced in the literature. Here, a metal-free, chemically reactive and conductive ink is unprecedentedly introduced following a 1,4-conjugate addition reaction. Furthermore, a strategic integration of a chemically reactive porous paper with the prepared conductive ink allowed the development of a chemically reactive and conductive interface that allowed desired post covalent modification with selected alkylamines under ambient conditions. Taking advantage of the spatially selective deposition of the prepared ink on chemically recative paper and the ability of post covalent modification of the prepared ink, an abrasion tolerant superhydrophobic & conductive patterned interface was developed for achieving a low-strain (below 0.2%) based flexible strain sensor with an ultrahigh sensitivity (gauge factor ∼18 300) and low response time (8 ms). The external low-strain induced cracks on the flexible & durable superhydrophobic and conductive patterned interface provided a facile basis for real-time & wireless monitoring of slow, fast, weak and strong human motions & expressions-under diverse conditions, including continuous aqueous exposures, physical abrasions etc.
Collapse
Affiliation(s)
- Supriya Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Rajan Singh
- Department of Electronics and Electrical Engineering, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Avijit Das
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Sudipta Bag
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Roy P Paily
- Department of Electronics and Electrical Engineering, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- School of Healthcare Science & Technology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
- School of Healthcare Science & Technology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| |
Collapse
|
49
|
Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti 3C 2T x MXene/paper for human-motion monitoring and E-skin. Sci Bull (Beijing) 2021; 66:1849-1857. [PMID: 36654394 DOI: 10.1016/j.scib.2021.04.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 02/03/2023]
Abstract
With the rapid development of wearable intelligent devices, low-cost wearable strain sensors with high sensitivity and low detection limit are urgently demanded. Meanwhile, sensing stability of sensor in wet or corrosive environments should also be considered in practical applications. Here, superhydrophobic microcracked conductive paper-based strain sensor was fabricated by coating conductive Ti3C2Tx MXene on printing paper via dip-coating process and followed by depositing superhydrophobic candle soot layer on its surface. Owing to the ultrasensitive microcrack structure in the conductive coating layer induced by the mismatch of elastic modulus and thermal expansion coefficient between conductive coating layer and paper substrate during the drying process, the prepared paper-based strain sensor exhibited a high sensitivity (gauge factor, GF = 17.4) in the strain range of 0-0.6%, ultralow detection limit (0.1% strain) and good fatigue resistance over 1000 cycles towards bending deformation. Interestingly, it was also applicable for torsion deformation detection, showing excellent torsion angle dependent, repeatable and stable sensing performances. Meanwhile, it displayed brilliant waterproof, self-cleaning and corrosion-resistant properties due to the existence of micro/nano-structured and the low surface energy candle soot layer. As a result, the prepared paper-based strain sensor can effectively monitor a series of large-scale and small-scale human motions even under water environment, showing the great promising in practical harsh outdoor environments. Importantly, it also demonstrated good applicability for spatial strain distribution detection of skin upon body movement when assembled into electronic-skin (E-skin). This study will provide great guidance for the design of next generation wearable strain sensor.
Collapse
|
50
|
Zhang H, Xia C, Feng G, Fang J. Hospitals and Laboratories on Paper-Based Sensors: A Mini Review. SENSORS 2021; 21:s21185998. [PMID: 34577205 PMCID: PMC8472957 DOI: 10.3390/s21185998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
With characters of low cost, portability, easy disposal, and high accuracy, as well as bulky reduced laboratory equipment, paper-based sensors are getting increasing attention for reliable indoor/outdoor onsite detection with nonexpert operation. They have become powerful analysis tools in trace detection with ultra-low detection limits and extremely high accuracy, resulting in their great popularity in medical detection, environmental inspection, and other applications. Herein, we summarize and generalize the recently reported paper-based sensors based on their application for mechanics, biomolecules, food safety, and environmental inspection. Based on the biological, physical, and chemical analytes-sensitive electrical or optical signals, extensive detections of a large number of factors such as humidity, pressure, nucleic acid, protein, sugar, biomarkers, metal ions, and organic/inorganic chemical substances have been reported via paper-based sensors. Challenges faced by the current paper-based sensors from the fundamental problems and practical applications are subsequently analyzed; thus, the future directions of paper-based sensors are specified for their rapid handheld testing.
Collapse
|