1
|
Yin X, Zhao X, Shen Y, Xie W, He C, Guo J, Li Z, Xuan F, Zeng S, Zeng X, Fang C. Nanoparticle-mediated dual targeting of stromal and immune components to overcome fibrotic and immunosuppressive barriers in hepatocellular carcinoma. J Control Release 2025; 383:113783. [PMID: 40306574 DOI: 10.1016/j.jconrel.2025.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are key drivers of hepatocellular carcinoma (HCC) through their promotion of fibrosis and immune suppression activity. To overcome this stroma-immune barrier, we developed D/F@MRL, a stroma-immune co-targeting nanoplatform that enables the spatiotemporal coordination of CAF reprogramming and immune activation. In D/F@MRL, MMP-2-responsive hybrid liposomes (MRL) was employed to co-load digoxin (Dig) and PD-L1-degrading nanofibers (NFs). Upon encountering the MMP-2-enriched HCC stroma, D/F@MRL undergoes enzymatic cleavage, thereby enabling the targeted release of Dig and NFs within the HCC microenvironment. Mechanistically, Dig inhibits the phosphorylation of SMAD3 in CAFs, while PD-L1 degradation destabilizes the TGFβ receptor, synergistically silencing TGF-β/Smad signaling to reprogram CAFs. This combination not only disrupts the fibrotic barrier but also creates a feed-forward loop that further enhances drug penetration, while reinforcing the immune activation driven by Dig-induced immunogenic cell death (ICD) and PD-L1 degradation. In the humanized immune PDX model, D/F@MRL successfully reprogrammed CAFs and robustly remodeled the stromal and immune microenvironments without causing systemic toxicity, highlighting its promising potential for clinical translation. By integrating CAF reprogramming with ICD and immune checkpoint inhibition, this strategy overcame the limitations of single-target therapies, induced robust immune activation, further provided a clinic-transformative approach for fibrotic malignancies.
Collapse
Affiliation(s)
- Xiangyi Yin
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xingyang Zhao
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiming Shen
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weizhong Xie
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Cheng He
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianan Guo
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zirong Li
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Feichao Xuan
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Silue Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaojun Zeng
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- First Department of Hepatobiliary Surgery, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Institute of Digital Intelligent Minimally Invasive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Guangdong Provincial Clinical and Engineering Center of Digital Medicine, Guangzhou 510280, China; South China Institute of National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Guangzhou 510280, China.
| |
Collapse
|
2
|
Borges J, Zeng J, Liu XQ, Chang H, Monge C, Garot C, Ren K, Machillot P, Vrana NE, Lavalle P, Akagi T, Matsusaki M, Ji J, Akashi M, Mano JF, Gribova V, Picart C. Recent Developments in Layer-by-Layer Assembly for Drug Delivery and Tissue Engineering Applications. Adv Healthc Mater 2024; 13:e2302713. [PMID: 38116714 PMCID: PMC11469081 DOI: 10.1002/adhm.202302713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Surfaces with biological functionalities are of great interest for biomaterials, tissue engineering, biophysics, and for controlling biological processes. The layer-by-layer (LbL) assembly is a highly versatile methodology introduced 30 years ago, which consists of assembling complementary polyelectrolytes or biomolecules in a stepwise manner to form thin self-assembled films. In view of its simplicity, compatibility with biological molecules, and adaptability to any kind of supporting material carrier, this technology has undergone major developments over the past decades. Specific applications have emerged in different biomedical fields owing to the possibility to load or immobilize biomolecules with preserved bioactivity, to use an extremely broad range of biomolecules and supporting carriers, and to modify the film's mechanical properties via crosslinking. In this review, the focus is on the recent developments regarding LbL films formed as 2D or 3D objects for applications in drug delivery and tissue engineering. Possible applications in the fields of vaccinology, 3D biomimetic tissue models, as well as bone and cardiovascular tissue engineering are highlighted. In addition, the most recent technological developments in the field of film construction, such as high-content liquid handling or machine learning, which are expected to open new perspectives in the future developments of LbL, are presented.
Collapse
Grants
- GA259370 ERC "BIOMIM"
- GA692924 ERC "BioactiveCoatings"
- GA790435 ERC "Regenerbone"
- ANR-17-CE13-022 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-18-CE17-0016 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- 192974 Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR-20-CE19-022 BIOFISS Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- ANR22-CE19-0024 SAFEST Agence Nationale de la Recherche "CODECIDE", "OBOE", "BuccaVac"
- DOS0062033/0 FUI-BPI France
- 883370 European Research Council "REBORN"
- 2020.00758.CEECIND Portuguese Foundation for Science and Technology
- UIDB/50011/2020,UIDP/50011/2020,LA/P/0006/2020 FCT/MCTES (PIDDAC)
- 751061 European Union's Horizon 2020 "PolyVac"
- 11623 Sidaction
- 20H00665 JSPS Grant-in-Aid for Scientific Research
- 3981662 BPI France Aide Deep Tech programme
- ECTZ60600 Agence Nationale de Recherches sur le Sida et les Hépatites Virales
- 101079482 HORIZON EUROPE Framework Programme "SUPRALIFE"
- 101058554 Horizon Europe EIC Accelerator "SPARTHACUS"
- Sidaction
- Agence Nationale de Recherches sur le Sida et les Hépatites Virales
Collapse
Affiliation(s)
- João Borges
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Jinfeng Zeng
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Xi Qiu Liu
- School of PharmacyTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Chang
- Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouZhejiang310022China
| | - Claire Monge
- Laboratory of Tissue Biology and Therapeutic Engineering (LBTI)UMR5305 CNRS/Universite Claude Bernard Lyon 17 Passage du VercorsLyon69367France
| | - Charlotte Garot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Ke‐feng Ren
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Paul Machillot
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| | - Nihal E. Vrana
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
| | - Philippe Lavalle
- SPARTHA Medical1 Rue Eugène BoeckelStrasbourg67000France
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Takami Akagi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2‐1 YamadaokaSuitaOsaka565–0871Japan
| | - Jian Ji
- Department of Polymer Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Mitsuru Akashi
- Building Block Science Joint Research ChairGraduate School of Frontier BiosciencesOsaka University1–3 YamadaokaSuitaOsaka565–0871Japan
| | - João F. Mano
- CICECO – Aveiro Institute of MaterialsDepartment of ChemistryUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche MédicaleInserm UMR_S 1121 Biomaterials and BioengineeringCentre de Recherche en Biomédecine de Strasbourg1 rue Eugène BoeckelStrasbourg67000France
- Université de StrasbourgFaculté de Chirurgie Dentaire1 place de l'HôpitalStrasbourg67000France
| | - Catherine Picart
- Université de Grenoble AlpesCEAINSERM U1292 BiosantéCNRS EMR 5000 Biomimetism and Regenerative Medicine (BRM)17 avenue des MartyrsGrenobleF‐38054France
| |
Collapse
|
3
|
Roy AM, Iyer R, Chakraborty S. The extracellular matrix in hepatocellular carcinoma: Mechanisms and therapeutic vulnerability. Cell Rep Med 2023; 4:101170. [PMID: 37652015 PMCID: PMC10518608 DOI: 10.1016/j.xcrm.2023.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
The tumor microenvironment (TME) is influenced by a "disorganized" extracellular matrix (ECM) that sensitizes cancer cells toward mechanical stress, signaling, and structural alterations. In hepatocellular carcinoma (HCC), lack of knowledge about key ECM proteins driving the TME refractory to targeted therapies poses a barrier to the identification of new therapeutic targets. Herein, we discuss the contributions of various ECM components that impact hepatocytes and their surrounding support network during tumorigenesis. In addition, the underpinnings by which ECM proteins transduce mechanical signals to the liver TME are detailed. Finally, in view of the bidirectional feedback between the ECM, transformed hepatocytes, and immune cells, we highlight the potential role of the ECM disorganization process in shaping responses to immune checkpoint inhibitors and targeted therapies. Our comprehensive characterization of these ECM components may provide a roadmap for innovative therapeutic approaches to restrain HCC.
Collapse
Affiliation(s)
- Arya Mariam Roy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sayan Chakraborty
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263.
| |
Collapse
|
4
|
Tang RZ, Liu XQ. Biophysical cues of in vitro biomaterials-based artificial extracellular matrix guide cancer cell plasticity. Mater Today Bio 2023; 19:100607. [PMID: 36960095 PMCID: PMC10027567 DOI: 10.1016/j.mtbio.2023.100607] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Clinical evidence supports a role for the extracellular matrix (ECM) in cancer plasticity across multiple tumor types. The lack of in vitro models that represent the native ECMs is a significant challenge for cancer research and drug discovery. Therefore, a major motivation for developing new tumor models is to create the artificial ECM in vitro. Engineered biomaterials can closely mimic the architectural and mechanical properties of ECM to investigate their specific effects on cancer progression, offering an alternative to animal models for the testing of cancer cell behaviors. In this review, we focused on the biomaterials from different sources applied in the fabrication of the artificial ECM and their biophysical cues to recapitulate key features of tumor niche. Furthermore, we summarized how the distinct biophysical cues guided cell behaviors of cancer plasticity, including morphology, epithelial-to-mesenchymal transition (EMT), enrichment of cancer stem cells (CSCs), proliferation, migration/invasion and drug resistance. We also discuss the future opportunities in using the artificial ECM for applications of tumorigenesis research and precision medicine, as well as provide useful messages of principles for designing suitable biomaterial scaffolds.
Collapse
Affiliation(s)
- Rui-Zhi Tang
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
5
|
Wu LC, Tada S, Isoshima T, Serizawa T, Ito Y. Photo-reactive polymers for the immobilisation of epidermal growth factors. J Mater Chem B 2023. [PMID: 36655770 DOI: 10.1039/d2tb02040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photo-reactive polymers are important for biomaterials, including devices with a 3D-structure. Here, different types of photo-reactive polymers were prepared and utilised for immobilisation of growth factors. They were synthesised by conjugation of gelatin with the azidophenyl group or by copolymerisation of the azidophenyl group-coupled methacrylate with poly(ethylene glycol) methacrylate. The azidophenyl content and the zeta potential of the prepared polymers were measured. After spin coating of polymers, the thickness and the water contact angle of coated layers were measured. The amount of the immobilised epidermal growth factor (EGF) was determined using fluorescence labelling. Cell adhesion responded to the nature of photo-reactive polymers but did not depend on the immobilised EGF. However, cell growth was dependent on the amount of immobilised EGF and was significantly affected by the nature of photo-reactive polymers. The study shows that the properties of the photo-immobilisation matrix significantly influence the biological activity.
Collapse
Affiliation(s)
- Liang-Chun Wu
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takeshi Serizawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. .,Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Li M, Zhang X, Wang M, Wang Y, Qian J, Xing X, Wang Z, You Y, Guo K, Chen J, Gao D, Zhao Y, Zhang L, Chen R, Cui J, Ren Z. Activation of Piezo1 contributes to matrix stiffness-induced angiogenesis in hepatocellular carcinoma. Cancer Commun (Lond) 2022; 42:1162-1184. [PMID: 36181398 PMCID: PMC9648387 DOI: 10.1002/cac2.12364] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/23/2022] [Accepted: 09/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite integrin being highlighted as a stiffness-sensor molecule in matrix stiffness-driven angiogenesis, other stiffness-sensor molecules and their mechanosensory pathways related to angiogenesis in hepatocellular carcinoma (HCC) remain obscure. Here, we explored the interplay between Piezo1 and integrin β1 in the mechanosensory pathway and their effects on HCC angiogenesis to better understand matrix stiffness-induced angiogenesis. METHODS The role of Piezo1 in matrix stiffness-induced angiogenesis was investigated using orthotopic liver cancer SD rat models with high liver stiffness background, and its clinical significance was evaluated in human HCC tissues. Matrix stiffness-mediated Piezo1 upregulation and activation were assayed using an in vitro fibronectin (FN)-coated cell culture system with different stiffness, Western blotting and Ca2+ probe. The effects of shPiezo1-conditioned medium (CM) on angiogenesis were examined by tube formation assay, wound healing assay and angiogenesis array. The underlying mechanism by which Piezo1 participated in matrix stiffness-induced angiogenesis was analyzed by microRNA quantitative real-time polymerase chain reaction (qRT-PCR), matrix stiffness measurement, dual-luciferase reporter assay, ubiquitination assay and co-immunoprecipitation. RESULTS Increased matrix stiffness significantly upregulated Piezo1 expression at both cellular and tissue levels, and high expression of Piezo1 indicated an unfavorable prognosis. High matrix stiffness also noticeably enhanced the activation level of Piezo1, similar to its expression level. Piezo1 knockdown significantly suppressed tumor growth, angiogenesis, and lung metastasis of HCC rat models with high liver stiffness background. shPiezo1-CM from HCC cells attenuated tube formation and migration abilities of vascular endothelial cells remarkably, and analysis of differentially expressed pro-angiogenic factors revealed that Piezo1 promoted the expression and secretion of vascular endothelial growth factor (VEGF), CXC chemokine ligand 16 (CXCL16) and insulin-like growth factor binding protein 2 (IGFBP2). Matrix stiffness-caused Piezo1 upregulation/activation restrained hypoxia inducible factor-1α (HIF-1α) ubiquitination, subsequently enhanced the expression of downstream pro-angiogenic factors to accelerate HCC angiogenesis. Besides, collagen 1 (COL1)-reinforced tissue stiffening resulted in more expression of Piezo1 via miR-625-5p. CONCLUSIONS This study unravels a new mechanism by which the integrin β1/Piezo1 activation/Ca2+ influx/HIF-1α ubiquitination/VEGF, CXCL16 and IGFBP2 pathway participates in matrix stiffness-driven HCC angiogenesis. Simultaneously, a positive feedback regulation loop as stiff matrix/integrin β1/miR-625-5p/Piezo1 and COL1/stiffer matrix mediates matrix stiffness-caused Piezo1 upregulation.
Collapse
Affiliation(s)
- Miao Li
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Xi Zhang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Mimi Wang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Yaohui Wang
- Department of RadiologyShanghai Cancer CenterFudan UniversityShanghai200032P. R. China
| | - Jiali Qian
- Department of EndocrinologyHuashan HospitalFudan UniversityShanghai200032P. R. China
| | - Xiaoxia Xing
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Zhiming Wang
- Department of OncologyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yang You
- Department of OncologyZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Kun Guo
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Jie Chen
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Dongmei Gao
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Yan Zhao
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Lan Zhang
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Rongxin Chen
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Jiefeng Cui
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| | - Zhenggang Ren
- Liver Cancer InstituteZhongshan HospitalFudan University & Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghai200032P. R. China
| |
Collapse
|
7
|
Zhu JQ, Wu H, Li ZL, Xu XF, Xing H, Wang MD, Jia HD, Liang L, Li C, Sun LY, Wang YG, Shen F, Huang DS, Yang T. Responsive Hydrogels Based on Triggered Click Reactions for Liver Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201651. [PMID: 35583434 DOI: 10.1002/adma.202201651] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Globally, liver cancer, which is one of the major cancers worldwide, has attracted the growing attention of technological researchers for its high mortality and limited treatment options. Hydrogels are soft 3D network materials containing a large number of hydrophilic monomers. By adding moieties such as nitrobenzyl groups to the network structure of a cross-linked nanocomposite hydrogel, the click reaction improves drug-release efficiency in vivo, which improves the survival rate and prolongs the survival time of liver cancer patients. The application of a nanocomposite hydrogel drug delivery system can not only enrich the drug concentration at the tumor site for a long time but also effectively prevents the distant metastasis of residual tumor cells. At present, a large number of researches have been working toward the construction of responsive nanocomposite hydrogel drug delivery systems, but there are few comprehensive articles to systematically summarize these discoveries. Here, this systematic review summarizes the synthesis methods and related applications of nanocomposite responsive hydrogels with actions to external or internal physiological stimuli. With different physical or chemical stimuli, the structural unit rearrangement and the controlled release of drugs can be used for responsive drug delivery in different states.
Collapse
Affiliation(s)
- Jia-Qi Zhu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Zhen-Li Li
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Hang-Dong Jia
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Lei Liang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Li-Yang Sun
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yu-Guang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Tian Yang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200438, China
| |
Collapse
|
8
|
Tang X, Zhang Y, Mao J, Wang Y, Zhang Z, Wang Z, Yang H. Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:560-569. [PMID: 35860456 PMCID: PMC9263554 DOI: 10.3762/bjnano.13.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/03/2022] [Indexed: 06/07/2023]
Abstract
The stiffness of the extracellular matrix of tumour cells plays a key role in tumour cell metastasis. However, it is unclear how mechanical properties regulate the cellular response to the environmental matrix. In this study, atomic force microscopy (AFM) and laser confocal imaging were used to qualitatively evaluate the relationship between substrate stiffness and migration of prostate cancer (PCa) cells. Cells cultured on stiff substrates (35 kPa) undergone several interesting phenomena compared to those on soft substrates (3 kPa). Here, the stimulation generated by the stiff substrates triggered the F-actin skeleton to bundle its filaments, increasing the polarity index of the external contour of PCa cells. Analysis of AFM force-distance curves indicated that the elasticity of the cells cultured on 35 kPa substrates increased while the viscosity decreased. Wound-healing experiments showed that PCa cells cultured on 35 kPa substrates have higher migration potential. These phenomena suggested that the mechanical properties may be correlated with the migration of PCa cells. After actin depolymerisation, the elasticity of the PCa cells decreased while the viscosity increased, and the migration ability was correspondingly decreased. In conclusion, this study clearly demonstrated the relationship between substrate stiffness and the mechanical properties of cells in prostate tumour metastasis, providing a basis for understanding the changes in the biomechanical properties at a single-cell level.
Collapse
Affiliation(s)
- Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yan Zhang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jiangbing Mao
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Yuhua Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Zhenghong Zhang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
9
|
Wang ML, Xu NY, Tang RZ, Liu XQ. A 3D-printed scaffold-based osteosarcoma model allows to investigate tumor phenotypes and pathogenesis in an in vitro bone-mimicking niche. Mater Today Bio 2022; 15:100295. [PMID: 35665234 PMCID: PMC9161108 DOI: 10.1016/j.mtbio.2022.100295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Mei-Ling Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Nian-Yuan Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Rui-Zhi Tang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
10
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
11
|
Zhou Y, Zhang Q, Liao B, Qiu X, Hu S, Xu Q. Circ_0006089 promotes gastric cancer growth, metastasis, glycolysis and angiogenesis by regulating miR‐361‐3p/TGFB1. Cancer Sci 2022; 113:2044-2055. [PMID: 35347818 PMCID: PMC9207367 DOI: 10.1111/cas.15351] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Circular RNA (circRNA) participates in a variety of pathophysiological processes, including the development of gastric cancer (GC). However, the role of circ_0006089 in GC progression and its underlying molecular mechanism need to be further revealed. Quantitative real‐time PCR was utilized for detecting circ_0006089, microRNA (miR)‐361‐3p and transforming growth factor‐β1 (TGFB1) expression. The interaction between miR‐361‐3p and circ_0006089 or TGFB1 was confirmed using a dual‐luciferase reporter assay and an RNA immunoprecipitation (RIP) assay. Cell proliferation, metastasis, apoptosis, and angiogenesis were determined using colony formation assay, EdU assay, transwell assay, flow cytometry, and tube formation assay. Cell glycolysis was evaluated by detecting glucose consumption, lactate production, and ATP levels. In addition, western blot (WB) analysis was used to measure protein expression. Xenograft tumor models were used to assess the effect of circ_0006089 knockdown on GC tumorigenesis. circ_0006089 had been found to be upregulated in GC tissues and cells, and it could act as an miR‐361‐3p sponge. circ_0006089 knockdown suppressed GC proliferation, metastasis, glycolysis, angiogenesis, and increased apoptosis, while this effect could be revoked by miR‐361‐3p inhibitor. TGFB1 was targeted by miR‐361‐3p, and its overexpression reversed the effects of miR‐361‐3p on GC cell function. Also, circ_0006089 promoted TGFB1 expression via sponging miR‐361‐3p. Animal experiments showed that silenced circ_0006089 inhibited GC tumorigenesis through the miR‐361‐3p/TGFB1 pathway. Our results revealed that the circ_0006089/miR‐361‐3p/TGFB1 axis contributed to GC progression, confirming that circ_0006089 might be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qilin Zhang
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Bingling Liao
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Xiaofeng Qiu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Sheng Hu
- Department of General Surgery Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| | - Qihua Xu
- Department of Gastroenterology Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine Shanghai 200120 China
| |
Collapse
|
12
|
Yang S, Cai C, Wang H, Ma X, Shao A, Sheng J, Yu C. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun Signal 2022; 20:26. [PMID: 35248060 PMCID: PMC8898478 DOI: 10.1186/s12964-021-00796-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
AbstractHepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with high rates of recurrence and death. Surgical resection and ablation therapy have limited efficacy for patients with advanced HCC and poor liver function, so pharmacotherapy is the first-line option for those patients. Traditional antitumor drugs have the disadvantages of poor biological distribution and pharmacokinetics, poor target selectivity, high resistance, and high toxicity to nontargeted tissues. Recently, the development of nanotechnology has significantly improved drug delivery to tumor sites by changing the physical and biological characteristics of drugs and nanocarriers to improve their pharmacokinetics and biological distribution and to selectively accumulate cytotoxic agents at tumor sites. Here, we systematically review the tumor microenvironment of HCC and the recent application of nanotechnology in HCC.
Collapse
|
13
|
Huang K, Liu J, Chen Q, Feng D, Wu H, Aldanakh A, Jian Y, Xu Z, Wang S, Yang D. The effect of mechanical force in genitourinary malignancies. Expert Rev Anticancer Ther 2021; 22:53-64. [PMID: 34726963 DOI: 10.1080/14737140.2022.2000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Mechanical force is attributed to the formation of tumor blood vessels, influences cancer cell invasion and metastasis, and promotes reprogramming of the energy metabolism. Currently, therapy strategies for the tumor microenvironment are being developed progressively. The purpose of this article is to discuss the molecular mechanism, diagnosis, and treatment of mechanical force in urinary tract cancers and outline the medications used in the mechanical microenvironment. AREAS COVERED This review covers the complex mechanical elements in the microenvironment of urinary system malignancies, focusing on mechanical molecular mechanisms for diagnosis and treatment. EXPERT OPINION The classification of various mechanical forces, such as matrix stiffness, shear force, and other forces, is relatively straightforward. However, little is known about the molecular process of mechanical forces in urinary tract malignancies. Because mechanical therapy is still controversial, it is critical to understand the molecular basis of mechanical force before adding mechanical therapy solutions.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Junqiang Liu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiwei Chen
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China.,School of Information Science and Technology, Dalian Maritime University, Dalian City, China
| | - Dan Feng
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Haotian Wu
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Aldanakh
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuli Jian
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhongyang Xu
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Shujing Wang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Deyong Yang
- Department of Urology, First Affifiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Chitosan-anthracene hydrogels as controlled stiffening networks. Int J Biol Macromol 2021; 185:165-175. [PMID: 34146562 DOI: 10.1016/j.ijbiomac.2021.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
In this study, we report the synthesis of single and dual-crosslinked anthracene-functional chitosan-based hydrogels in the absence of toxic initiators. Single crosslinking was achieved through dimerization of anthracene, whereas dual-crosslinked hydrogel was formed through dimerization of anthracene and free radical photopolymerization of methacrylated-chitosan in the presence of non-toxic initiator riboflavin, a well-known vitamin B2. Both single and dual-crosslinked hydrogels were found to be elastic, as was determined through rheological analysis. We observed that the dual-crosslinked hydrogels exhibited higher Young's modulus than the single-crosslinked hydrogels, where the modulus for single and dual-crosslinked hydrogels were measured as 9.2 ± 1.0 kPa and 26 ± 2.8 kPa, respectively resulting in significantly high volume of cells in dual-crosslinked hydrogel (2.2 × 107 μm3) compared to single-crosslinked (4.9 × 106 μm3). Furthermore, we investigated the cytotoxicity of both hydrogels towards 3T3-J2 fibroblast cells through CellTiter-Glo assay. Finally, immunofluorescence staining was carried out to evaluate the impact of hydrogel modulus on cell morphology. This study comprehensively presents functionalization of chitosan with anthracene, uses nontoxic initiator riboflavin, modulates the degree of crosslinking through dimerization of anthracene and free radical photopolymerization, and further modulates cell behavior through the alterations of hydrogel properties.
Collapse
|
15
|
Wu S, Xing X, Wang Y, Zhang X, Li M, Wang M, Wang Z, Chen J, Gao D, Zhao Y, Chen R, Ren Z, Zhang K, Cui J. The pathological significance of LOXL2 in pre-metastatic niche formation of HCC and its related molecular mechanism. Eur J Cancer 2021; 147:63-73. [PMID: 33618200 DOI: 10.1016/j.ejca.2021.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The mechanisms underlying the contribution of primary tumour to pre-metastatic niche formation remains largely unknown in hepatocellular carcinoma (HCC). We previously reported that the released LOXL2 from HCC cells under higher stiffness stimulation facilitated the formation of lung pre-metastatic niche. Here, we further clarified the pathological role of LOXL2 in promoting lung pre-metastatic niche formation and lung metastasis occurrence in HCC and its relevant molecular mechanism. METHODS Using two different animal models and an in vitro system of mechanically tuneable gel mirroring lung tissue stiffness, we explored the underlying mechanism of LOXL2 in pre-metastatic niche formation. RESULTS We applied tail vein injection of CM-LV-LOXL2-OEsimulating tumour-released soluble factors to induce lung pre-metastatic niche formation and found that the injected LOXL2 remarkably enhanced CD11b+/CD45+ bone marrow-derived cells (BMDCs) recruitment and fibronectin expression in lung. Subsequently, LOXL2-overexpressed xenograft HCC models validated that tumour-secreted LOXL2 significantly promoted the occurrence of pulmonary metastasis. In vitro, LOXL2 and LOXL2-caused matrix stiffening not only obviously upregulated the expressions of MMP9 and fibronectin in lung fibroblasts, but also evidently increased the number of adherent HCC cells and the expression of chemokine CXCL12. The activation of PI3K-AKT pathway mediated LOXL2-upregulated fibronectin. HCC patients in High-LOXL2 group had higher ratio of tumour recurrence than HCC patients in Low-LOXL2 group, supporting a significance of LOXL2 in HCC progression and unfavourable outcome. CONCLUSION Primary tumour-released LOXL2 promotes lung pre-metastatic niche formation and lung metastasis occurrence. LOXL2-caused matrix stiffening synergistically regulates lung pre-metastatic niche formation. Targeting LOXL2-induced lung pre-metastatic niche may be a novel intervention approach against HCC metastasis.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, PR China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China
| | - Kezhi Zhang
- Department of Hepatobiliary Surgery, Taizhou People's Hospital, Taizhou, 225300, Jiangsu Province, PR China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 180 Feng Lin Road, Shanghai, 200032, PR China.
| |
Collapse
|
16
|
Ji J, Chen L, Zhuang Y, Han Y, Tang W, Xia F. Fibronectin 1 inhibits the apoptosis of human trophoblasts by activating the PI3K/Akt signaling pathway. Int J Mol Med 2020; 46:1908-1922. [PMID: 33000176 PMCID: PMC7521556 DOI: 10.3892/ijmm.2020.4735] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022] Open
Abstract
The excessive apoptosis of human trophoblasts can cause pregnancy-related diseases. It has been reported that fibronectin 1 (FN1) is closely associated with the invasion of human trophoblasts. The aim of the present study was to examine the effects of FN1 on the apoptosis of human trophoblasts and to investigate the underlying molecular mechanisms. It was found that FN1, a differentially expressed gene (DEG) in the GSE127170 dataset, was identified as the hub gene in a protein-protein interaction (PPI) network generated using the cytoHubba plug-in of Cytoscape software. The Metascape website was used to perform GO enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to perform KEGG pathway analysis. Experimental analyses revealed that FN1 expression was downregulated in the chorionic villus tissues of patients diagnosed with and mice subjected to spontaneous abortion (SA). CCK-8 and flow cytometric assays revealed that the knockdown of FN1 decreased the viability and promoted the apoptosis of JEG-3 and BeWo cells. In vivo experiments demonstrated that the knockdown of FN1 promoted the apoptosis of trophoblasts in the chorionic villus tissues obtained from mice subjected to SA, whereas FN1 overexpression increased cell viability and inhibited cell apoptosis. The protein levels of cleaved caspase-3 and Bax were increased by the silencing of FN1 and decreased by FN1 overexpression. The protein expression levels of Bcl-2, proliferating cell nuclear antigen (PCNA) and Ki67 were decreased by the silencing of FN1; however, the overexpression of FN1 increased these levels. The results of western blot analysis revealed that the knockdown of FN1 inhibited the PI3K/Akt signaling pathway, while the overexpression of FN1 activated the PI3K/Akt signaling pathway. Consistently, the apoptosis-inhibiting effect of FN1 overexpression was reversed by a PI3K/Akt signaling pathway inhibitor, and the apoptosis-promoting effect of FN1 silencing was reversed by a PI3K/Akt signaling pathway activator. On the whole, the findings of the present study demonstrate that the inhibition of FN1 induces the apoptosis of JEG-3 and BeWo cells, and the overexpression of FN1 inhibits cell apoptosis by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jinlong Ji
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liping Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yanyan Zhuang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yun Han
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Weichun Tang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Xia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
17
|
Liu XQ, Chen XT, Liu ZZ, Gu SS, He LJ, Wang KP, Tang RZ. Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomater Sci Eng 2020; 6:3994-4004. [DOI: 10.1021/acsbiomaterials.0c00669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xin-Ting Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Zhen-Zhen Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Sai-Sai Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Li-Jie He
- Graphitene Ltd., Flixborough, North Lincolnshire DN15 8SJ, United Kingdom
| | - Kai-Ping Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Rui-Zhi Tang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P. R. China
| |
Collapse
|
18
|
van Tienderen GS, Groot Koerkamp B, IJzermans JNM, van der Laan LJW, Verstegen MMA. Recreating Tumour Complexity in a Dish: Organoid Models to Study Liver Cancer Cells and their Extracellular Environment. Cancers (Basel) 2019; 11:E1706. [PMID: 31683901 PMCID: PMC6896153 DOI: 10.3390/cancers11111706] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Primary liver cancer, consisting predominantly of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), remains one of the most lethal malignancies worldwide. This high malignancy is related to the complex and dynamic interactions between tumour cells, stromal cells and the extracellular environment. Novel in vitro models that can recapitulate the tumour are essential in increasing our understanding of liver cancer. Herein, primary liver cancer-derived organoids have opened up new avenues due to their patient-specificity, self-organizing ability and potential recapitulation of many of the tumour properties. Organoids are solely of epithelial origin, but incorporation into co-culture models can enable the investigation of the cellular component of the tumour microenvironment. However, the extracellular component also plays a vital role in cancer progression and representation is lacking within current in vitro models. In this review, organoid technology is discussed in the context of liver cancer models through comparisons to other cell culture systems. In addition, the role of the tumour extracellular environment in primary liver cancer will be highlighted with an emphasis on its importance in in vitro modelling. Converging novel organoid-based models with models incorporating the native tumour microenvironment could lead to experimental models that can better recapitulate liver tumours in vivo.
Collapse
Affiliation(s)
- Gilles S van Tienderen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| | - Monique M A Verstegen
- Department of Surgery, Erasmus MC-University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|