1
|
Lv M, Wan X, Wang Y, Jiang H, Qin X, Wang Z, Yang C, Shuai J, Lu Q, Xu F, Liu Y. Combined gut microbiome and metabolomics to reveal the mechanism of proanthocyanidins from the roots of Ephedra sinica Stapf on the treatment of ulcerative colitis. J Pharm Biomed Anal 2024; 249:116351. [PMID: 39018720 DOI: 10.1016/j.jpba.2024.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16 S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.
Collapse
Affiliation(s)
- Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| | - Xiayun Wan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Houli Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiaogang Qin
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, Jiangsu 226300, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Changshui Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jinhao Shuai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Qianwen Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), China Pharmaceutical University, Nanjing 210009, China.
| | - Yanqin Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China.
| |
Collapse
|
2
|
Zhang Q, Deng H, Luo R, Qi H, Lei Y, Yang L, Pang H, Fu C, Liu F. Oral food-derived whey protein isolate-Tremella fuciformis polysaccharides pickering emulsions with adhesive ability to delivery magnolol for targeted treatment of ulcerative colitis. Int J Biol Macromol 2024:135585. [PMID: 39270912 DOI: 10.1016/j.ijbiomac.2024.135585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Magnolol (Mag) is a promising natural compound with therapeutic potential for ulcerative colitis (UC). Here we designed and fabricated an oral food-grade whey protein isolate-Tremella fuciformis polysaccharides (WPI-TFPS) stabilized pickering emulsions to encapsulate Mag (Mag-WPI-TFPS) for targeted treatment of UC. With the assistance of the WPI-TFPS, pickering emulsions were well encapsulated and formed stable microparticles with a particle size of approximately 9.49 ± 0.047 μm, a 93.63 ± 0.21 % encapsulation efficiency and a loading efficiency of 21.53 ± 0.01 %. In vitro, the formulation exhibited sustained-release properties in simulated colon fluid with a cumulative release rate of 60.78 % at 48 h. In vivo, the Mag-WPI-TFPS specifically accumulated in the colon tissue for 24 h with stronger fluorescence intensity, which demonstrated that TFPS and WPI had a good adherence ability to inflamed mucosa by electrostatic attraction and ligand-receptor interactions. As expected, compared with Free-Mag, the oral administration of Mag-WPI-TFPS remarkably alleviated the symptoms of UC and protected the colon tissue in DSS-induced UC mice. More importantly, WPI-TFPS enhanced gut microbiota balance by increasing the diversity and relative abundances of Lactobacillaceae and Firmicutes. Overall, this study presents a convenient, eco-friendly, food-derived oral formulation with potential as a dietary supplement for targeted UC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yicheng Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Zeng Y, Zhao L, Hao M, Maimaiti M, Li Z, Zhang M, Ma X. Analysis of an Aqueous Extract from Turkish Galls Based on Multicomponent Qualitative and Quantitative Analysis Combined with Network Pharmacology and Chemometric Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:9962574. [PMID: 38817340 PMCID: PMC11139529 DOI: 10.1155/2024/9962574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
The current quality control method for Turkish gall (TG) is limited to assessing total tannin or gallic acid (GA), which offers a basic level of quality control but does not fully capture the true quality of TG. Therefore, it is essential to establish a comprehensive method that utilizes multiple indicators to assess the intrinsic quality of TG. This research utilized UPLC-Q-TOF-MS/MS technology to qualitatively analyze the chemical composition of TG. Subsequently, the potential main active ingredients, targets, and pathways of TG in treating recurrent aphthous ulcers (RAU) were explored and analyzed using network pharmacology technology. Quantitative analysis of multicomponents by single marker (QAMS) was then employed to quantify the primary pharmacodynamic components in TG. Finally, chemometrics analysis was utilized to interpret the measured results and identify the markers of scavenging quality. The study identified 36 chemical components in TG, highlighting ellagic acid (EA), GA, and so on as key components in treating RAU. A method for simultaneously determining GA, EA, 1,2,3,6-tetra-O-galloyl-β-D-glucose (TEGG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PEGG) in TG was established. Statistical analysis revealed significant differences in the content of these 4 components across 14 batches of TG, with GA and PEGG identified as the primary contributors to the variations. This study determined a quality index for TG, providing a reference for quality evaluation and introducing a cost-effective and efficient quality control method. Furthermore, it addressed the challenge of developing new Chinese medicine by overcoming the lack of reference substances.
Collapse
Affiliation(s)
- Ya Zeng
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Lu Zhao
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Meng Hao
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
| | - Mirzat Maimaiti
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
| | - Zhi Li
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
| | - Minghui Zhang
- Xinjiang Qimu Pharmaceutical Research Institute (Co., Ltd.), Urumqi 830011, Xinjiang, China
| | - Xuan Ma
- New Cicon Pharmaceutical Co., Ltd., Urumqi 830011, Xinjiang, China
- Xinjiang Key Laboratory of Generic Technology of Traditional Chinese Medicine (Ethnic Medicine) Pharmacy, Urumqi 830002, Xinjiang, China
| |
Collapse
|
4
|
Wang J, Liu J, Yuan C, Yang B, Pang H, Chen K, Feng J, Deng Y, Zhang X, Li W, Wang C, Xie J, Zhang J. Palmitic acid-activated GPRs/KLF7/CCL2 pathway is involved in the crosstalk between bone marrow adipocytes and prostate cancer. BMC Cancer 2024; 24:75. [PMID: 38221626 PMCID: PMC10789002 DOI: 10.1186/s12885-024-11826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.
Collapse
Affiliation(s)
- Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Jie Liu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Chenggang Yuan
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Bingqi Yang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Huai Pang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Wei Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, 832000, Xinjiang, China.
- Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
5
|
Banc R, Rusu ME, Filip L, Popa DS. Phytochemical Profiling and Biological Activities of Quercus sp. Galls (Oak Galls): A Systematic Review of Studies Published in the Last 5 Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:3873. [PMID: 38005770 PMCID: PMC10674842 DOI: 10.3390/plants12223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Quercus species have been widely used in traditional medicine, and recently, researchers' attention has focused on galls of the genus Quercus as a source of health-promoting phytochemicals. This review presents a summary of the most recent findings on the phytochemistry and bioactivity of oak galls, following the screening of scientific papers published in two relevant databases, PubMed and Embase, between January 2018 and June 2023. The oak galls are rich in active compounds, mostly gallotannins and phenolic acids. Due to these secondary metabolites, the reviewed studies have demonstrated a wide range of biological activities, including antioxidant and anti-inflammatory actions, antimicrobial properties, tissue-protective effects, and antitumor, anti-aging, and hypoglycemic potential. Thus, oak galls are a promising natural matrix, to be considered in obtaining pharmaceutical and cosmetic preparations used in anti-aging strategies and, together with medications, in the management of age-related diseases. In further evaluations, the valuable functional properties of oak galls, reported mostly in preclinical studies, should be confirmed with clinical studies that would also take into account the potential health risks of their use.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangǎ Street, 400010 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Fan J, Yu H, Lu X, Xue R, Guan J, Xu Y, Qi Y, He L, Yu W, Abay S, Li Z, Huo S, Li L, Lv M, Li W, Chen W, Han B. Overlooked Spherical Nanoparticles Exist in Plant Extracts: From Mechanism to Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8854-8871. [PMID: 36757908 DOI: 10.1021/acsami.2c19065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To date, plant medicine research has focused mainly on the chemical compositions of plant extracts and their medicinal effects. However, the therapeutic or toxic effects of nanoparticles in plant extracts remain unclear. In this study, large numbers of spherical nanoparticles were discovered in some plant extracts. Nanoparticles in Turkish galls extracts were used as an example to examine their pH responsiveness, free radical scavenging, and antibacterial capabilities. By utilizing the underlying formation mechanism of these nanoparticles, a general platform to produce spherical nanoparticles via direct self-assembly of Turkish gall extracts and various functional proteins was developed. The results showed that the nanoparticles retained both the antibacterial ability and intracellular carrier ability of the original protein or catechol. This work introduces a new member of the plant-derived edible nanoparticle (PDEN) family, establishes a simple and versatile platform for mass production nanoparticles, and provides new insight into the formation mechanism of nanoparticles during plant extraction.
Collapse
Affiliation(s)
- Jingmin Fan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Hang Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Xin Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Rui Xue
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Yu Xu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Yunyun Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Linyun He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Wei Yu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Sirapil Abay
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Zhijian Li
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Shixia Huo
- Xinjiang Institute of Traditional Uygur Medicine, Urumqi 830049, China
| | - Le Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Mengying Lv
- Department of Pharmacy/The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wenxin Li
- Laboratory of Nano-biology and Medicine, Shanghai Institute of Applied Physics, Shanghai 201800, China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832002, China
| |
Collapse
|
7
|
Pu Y, Fan X, Zhang Z, Guo Z, Pan Q, Gao W, Luo K, He B. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Control Release 2023; 354:1-18. [PMID: 36566845 DOI: 10.1016/j.jconrel.2022.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.
Collapse
Affiliation(s)
- Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Qi Y, Yang J, Chi Y, Wen P, Wang Z, Yu S, Xue R, Fan J, Li H, Chen W, Wang X, Zhang Y, Guo G, Han B. Natural polyphenol self-assembled pH-responsive nanoparticles loaded into reversible hydrogel to inhibit oral bacterial activity. MOLECULAR BIOMEDICINE 2022; 3:28. [PMID: 36109447 PMCID: PMC9478017 DOI: 10.1186/s43556-022-00082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Periodontitis is one of the most prevalent chronic inflammatory diseases and Polyphenols isolated from Turkish gall play a major role in the treatment of inflammatory diseases for their antibacterial, anti-inflammatory and antioxidant activities. In this work, Turkish Galls effective constituent (TGEC, T) was prepared into nanoparticles (T-NPs) by principle of oxidative self-polymerization. The pH-sensitive T-NPs was encapsulated into thermosensitive type in-situ hydrogel, and 42.29 ± 1.12% of effective constituent from T-NPs were continuously released within 96 h under the periodontitis environment. In addition, the weakly alkaline oral micro-environment of patients with periodontitis is more conducive to the sustained release of effective constituent, which is 10.83% more than that of healthy periodontal environment. The bacteriostatic test showed that T-NPs had stronger antibacterial activity on oral pathogens than that of TGEC. Compared with TGEC, the minimum inhibitory concentration (MIC) of T-NPs against P. gingivalis and A. viscosus was reduced by 50% and 25%, respectively. Interestingly, T-NPs induced bacteria lysis by promoting the excessive production of ROS without periodontal tissue damage caused by excessive oxidation reaction. In conclusion, a simple method of preparing microspheres with natural polyphenols was developed, which provides beneficial reference for one-step prepared drug carriers from effective components of natural product, likewise the method offers a green and effective solution to synthesis a new adjuvant therapy drugs for treatment of gingivitis associated with periodontal pockets.
Collapse
|
9
|
He HF. Recognition of Gallotannins and the Physiological Activities: From Chemical View. Front Nutr 2022; 9:888892. [PMID: 35719149 PMCID: PMC9198600 DOI: 10.3389/fnut.2022.888892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Gallotannins, characterized with the glycosidic core and galloyl unit, are seemed as vital components of hydrolyzable tannins. Benefit from the more and more discoveries of their bioactivities and edibility, application of gallotannins in food industry, pharmacy industry, and other fields is increasing. Inheriting previous study achievements, chemical structure of gallotannins was illustrated and degradation as well as synthetic routes to gallotannins were summarized. On this basis, distribution in the nature also including the distinction of gallotannins was discussed. More than that, activities involving in antioxidant, anti-inflammatory, enzyme inhibitions, protein binding, and so on, as well as applications in the field of food industry, biopharmaceutical science, agricultural production, etc., were combed. Finally, improvement of bioavailability, chemical modification of the structure, and accurate determination of new gallotannins were pointed out to be the orientation in the future.
Collapse
Affiliation(s)
- Hua-Feng He
- College of Pharmacy, Jining Medical University, Jining, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Geng H, Zhong QZ, Li J, Lin Z, Cui J, Caruso F, Hao J. Metal Ion-Directed Functional Metal-Phenolic Materials. Chem Rev 2022; 122:11432-11473. [PMID: 35537069 DOI: 10.1021/acs.chemrev.1c01042] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metal ions are ubiquitous in nature and play significant roles in assembling functional materials in fields spanning chemistry, biology, and materials science. Metal-phenolic materials are assembled from phenolic components in the presence of metal ions through the formation of metal-organic complexes. Alkali, alkali-earth, transition, and noble metal ions as well as metalloids interacting with phenolic building blocks have been widely exploited to generate diverse hybrid materials. Despite extensive studies on the synthesis of metal-phenolic materials, a comprehensive summary of how metal ions guide the assembly of phenolic compounds is lacking. A fundamental understanding of the roles of metal ions in metal-phenolic materials engineering will facilitate the assembly of materials with specific and functional properties. In this review, we focus on the diversity and function of metal ions in metal-phenolic material engineering and emerging applications. Specifically, we discuss the range of underlying interactions, including (i) cation-π, (ii) coordination, (iii) redox, and (iv) dynamic covalent interactions, and highlight the wide range of material properties resulting from these interactions. Applications (e.g., biological, catalytic, and environmental) and perspectives of metal-phenolic materials are also highlighted.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qi-Zhi Zhong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
11
|
Wang Q, Xu Y, Xue R, Fan J, Yu H, Guan J, Wang H, Li M, Yu W, Xie Z, Qi R, Jia X, Han B. All-in-One Theranostic Platform Based on Hollow Microcapsules for Intragastric-Targeting Antiulcer Drug Delivery, CT Imaging, and Synergistically Healing Gastric Ulcer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104660. [PMID: 35132787 DOI: 10.1002/smll.202104660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Bismuth-containing therapies are suggested as first-line and rescue alternatives for gastric ulcer (GU) treatment and Helicobacter pylori eradication. The current treatment strategy is called quadruple therapy and includes proton pump inhibitors, bismuth, and two broad-band antibiotics. This fact may affect medication compliance, leading to a resistance rate of more than 25% to clarithromycin or metronidazole. To counter this, from the perspective of natural products, an intragastric-targeting all-in-one theranostic platform is established: a drug carrier microcapsule composed of multiple synergistic antiulcer drugs, including bismuth, gallotannin, and antibiotics is obtained (BiG@MCs), and the therapeutic effects of BiG@MCs in rodent models are further evaluated. The results show that the BiG@MCs are spherical with homogeneous particle size (3 ± 0.5 µm) and can be response-released to the acidic environment of the stomach (pH 2.0-3.0), preventing the premature release of the BiG@MCs in physiological conditions. It is worth noting that the bismuth component can be easily identified by computed tomography and other detection instruments, which provide the possibility for drug tracing. In summary, these results indicate that BiG@MCs provide a versatile intragastric-targeting drug delivery platform for GU therapeutics.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Yu Xu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Rui Xue
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Jingmin Fan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Hang Yu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Hongzheng Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Min Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Wei Yu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Rong Qi
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Institute of Cardiovascular Sciences Peking University Health Science Center, 38 Xueyuan Rode, Beijing, 100191, P. R. China
| | - Xin Jia
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University School of Chemistry and Chemical Engineering, Shihezi, 832003, P. R. China
| | - Bo Han
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| |
Collapse
|
12
|
Liu Z, Yu W, Sheng W, Li R, Guo H, Feng X, Li Q, Wang R, Li W, Jia X. Controllable Synthesis of Polyphenol Spheres via Amine-Catalyzed Polymerization-Induced Self-Assembly. Biomacromolecules 2021; 23:140-149. [PMID: 34910461 DOI: 10.1021/acs.biomac.1c01158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A facile and general strategy for preparing uniform and multifunctional polyphenol-based colloidal particles through amine-catalyzed polymerization-induced self-assembly is described. The size and interfacial adhesion of polyphenol spheres can be easily controlled over a wide range via adjusting the concentration of the cosolvent and monomer. Moreover, the polyphenol spheres showed excellent thermal and chemical stability and highly active properties and could efficiently deplete the reactive oxygen species (ROS), which are helpful for in vivo ROS regulation for inflammatory therapeutic. The accessible and versatile method provides a feasible way for the rational engineering of multifunctional polyphenol spheres, which have great potential in many fields.
Collapse
Affiliation(s)
- Zhiqing Liu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Rui Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Helin Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Xiantao Feng
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Rongjie Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | - Wei Li
- Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden Mommsenstrasse 4, 01069 Dresden, Germany
| | - Xin Jia
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| |
Collapse
|
13
|
Xian J, Zhong X, Gu H, Wang X, Li J, Li J, Wu Y, Zhang C, Zhang J. Colonic Delivery of Celastrol-Loaded Layer-by-Layer Liposomes with Pectin/Trimethylated Chitosan Coating to Enhance Its Anti-Ulcerative Colitis Effects. Pharmaceutics 2021; 13:pharmaceutics13122005. [PMID: 34959287 PMCID: PMC8703354 DOI: 10.3390/pharmaceutics13122005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Herein, a flexible oral colon-targeting delivery system, mediated by electrostatic layer-by-layer alternate deposition with pectin-trimethyl chitosan (TMC) onto liposomes-loading celastrol (Cel/PT-LbL Lipo), was fabricated to enhance anti-UC efficacy. Along with layer-by-layer coating, Cel/Lipo exhibited surface charge reversal, a slight increase in particle size, and a sustained drug release profile in a simulative gastrointestinal tract medium. Based on its bilayer coating of polysaccharides, Cel/PT-LbL Lipo alleviated cytotoxicity of celastrol in colon epithelial NCM460 cells. Due to the strong mucoadhesion of TMC with mucin, PT-LbL Lipo benefited colon localization and prolonged retention ability of its payloads. Ultimately, Cel/PT-LbL Lipo significantly mitigated colitis symptoms and accelerated colitis repair in DSS-treated mice by regulating the levels of pro-inflammatory factors related to the TLR4/MyD88/NF-κB signaling pathway. Collectively, this study demonstrates that the pectin/trimethylated chitosan coating may allow for Cel/PT-LbL Lipo to function as a more beneficial therapeutic strategy for UC treatment.
Collapse
|
14
|
Liu Y, Zang J, Lv M, Xue R, Liu X, Hu Y, Yu W, Wang X, Han B. ROS-responsive microcapsule assembly from Turkish galls for ulcerative colitis therapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01303c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the preparation process of GTA–FeIII MCPs (B) and the ROS-responsive drug release at inflammation sites (A).
Collapse
Affiliation(s)
- Yonghao Liu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Jie Zang
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Mengying Lv
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 210000, P. R. China
| | - Rui Xue
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Xuetao Liu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Yuting Hu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Wei Yu
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
| | - Xinjun Wang
- Sinopharm Xinjiang Pharmaceutical Co., Ltd, Urumqi 830000, P. R. China
| | - Bo Han
- School of Pharmacy/Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi 832003, P. R. China
- Sinopharm Xinjiang Pharmaceutical Co., Ltd, Urumqi 830000, P. R. China
| |
Collapse
|
15
|
Luo R, Lin M, Zhang C, Shi J, Zhang S, Chen Q, Hu Y, Zhang M, Zhang J, Gao F. Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem 2020; 330:127241. [DOI: 10.1016/j.foodchem.2020.127241] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/24/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
|
16
|
Wang X, Guo S, Zhou Y, Shen H, Wang L, Wang G. Easy Fabrication of Bovine Serum Albumin/Astragalus Membranaceus Oil Microcapsules through a Sonochemical Method. ChemistrySelect 2020. [DOI: 10.1002/slct.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Wang
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Sheng‐Wei Guo
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Yi Zhou
- Center for Joint SurgerySouthwest Hospital Third Military Medical University (Army Medical University) Chongqing 400038 P. R. China
| | - Hong‐Fang Shen
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Liang Wang
- School of Materials Science & EngineeringNorth Minzu University Yinchuan 750021 P. R. China
- Key Lab. of Powder Material & Advanced CeramicsNorth Minzu University Yinchuan 750021 P. R. China
- International Scientific & Technological Cooperation Base of Industrial Waste Recycling and Advanced MaterialsNorth Minzu University Yinchuan 750021 P. R. China
| | - Gu‐Xia Wang
- School of Chemistry & Chemical EngineeringNorth Minzu University Yinchuan 750021 P. R. China
| |
Collapse
|