1
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Ma H, Guo Y, Xu X, Ye L, Cheng Y, Wang X. Janus micro/nanomotors for enhanced disease treatment through their deep penetration capability. Acta Biomater 2025; 196:50-77. [PMID: 40015356 DOI: 10.1016/j.actbio.2025.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Nanotherapeutic systems have provided an innovative means for the treatment of a wide range of diseases in modern medicine. However, the limited penetration of nanoparticles into focal tissues still greatly hampered their clinical application. With their unique two-sided structure and superior motility, Janus micro/nanomotors are expected to significantly improve the penetration of nanocarriers into organisms, thereby enhancing the therapeutic effects of diseases. This review introduces Janus micro/nanomotors with different morphologies and focuses on their propulsion mechanisms, including chemical field-driven, external physical field-driven, biologically-driven, and hybrid-driven mechanisms. We explore the research progress of Janus micro/nanomotors in various disease treatment areas (including cancer, cardiovascular diseases, neurological diseases, bacterial/fungal infections, and chronic inflammatory diseases) and elucidate the implementation strategies of Janus micro/nanomotors in facilitating disease therapies. Finally, we discuss the biosafety and biocompatibility of Janus micro/nanomotor, while exploring current challenges and opportunities in the field. We look forward to the Janus micro/nanomotor therapeutic platform demonstrating surprising therapeutic effects in the clinical treatment of diseases. STATEMENT OF SIGNIFICANCE: Micro/nanomotors are the highly promising nanotherapeutic systems due to their self-propelled motion capability. Janus micro/nanomotors possess an asymmetric structure with different physical or chemical properties on both sides. The flexibility of this bifunctional surface allows them to hold promise for improving the penetration of nanotherapeutic systems and enhancing therapeutic efficacy for complex diseases. This review focuses on the latest advancements in Janus micro/nanomotors for enhanced disease treatment, including the structural types and driving mechanisms, the enhancement effect to cope with different disease treatments, the biocompatibility and safety, the current challenges and possible solutions. These insights inform the design of deep-penetrating nanotherapeutic systems and the strategies of enhanced disease treatment.
Collapse
Affiliation(s)
- Haoran Ma
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuxuan Guo
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xia Xu
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Lei Ye
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yuanyuan Cheng
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Xiaoxiao Wang
- Biochemical Engineering Research Center, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China.
| |
Collapse
|
3
|
Wang S, Liu Y, Sun S, Gui Q, Liu W, Long W. Living material-derived intelligent micro/nanorobots. Biomater Sci 2025; 13:1379-1397. [PMID: 39927456 DOI: 10.1039/d4bm01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Living materials, which include various types of cells, organelles, and biological components from animals, plants, and microorganisms, have become central to recent investigations in micro and nanorobotics. Living material-derived intelligent micro/nanorobots (LMNRs) are self-propelled devices that combine living materials with synthetic materials. By harnessing energy from external physical fields or biological sources, LMNRs can move autonomously and perform various biomedical functions, such as drug delivery, crossing biological barriers, medical imaging, and disease treatment. This review, from a biomimetic strategy perspective, summarized the latest advances in the design and biomedical applications of LMNRs. It provided a comprehensive overview of the living materials used to construct LMNRs, including mammalian cells, plants, and microorganisms while highlighting their biological properties and functions. Lastly, the review discussed the major challenges in this field and offered suggestions for future research that may help facilitate the clinical application of LMNRs in the near future.
Collapse
Affiliation(s)
- Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Shuangjiao Sun
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Qinyi Gui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
4
|
Chen Y, Gonçalves JM, Ferrer Campos R, Villa K. Dual-Energy Integration in Photoresponsive Micro/Nanomotors: From Strategic Design to Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410901. [PMID: 39716841 PMCID: PMC11817945 DOI: 10.1002/smll.202410901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 12/25/2024]
Abstract
Micro/nanomotors (MNMs) are highly versatile small-scale devices capable of converting external energy inputs into active motion. Among the various energy sources, light stands out due to its abundance and ability to provide spatiotemporal control. However, the effectiveness of light-driven motion in complex environments, such as biological tissues or turbid water, is often limited by light scattering and reduced penetration. To overcome these challenges, recent innovations have integrated light-based actuation with other external stimuli-such as magnetic, acoustic, and electrical fields-broadening the functional range and control of MNMs. This review highlights the cutting-edge developments in dual-energy powered MNMs, emphasizing examples where light is paired with secondary energy sources for enhanced propulsion and task performance. Furthermore, insights are offered into the fabrication techniques, biomedical applications, and the future directions of such hybrid MNMs, while addressing the remaining challenges in this rapidly evolving field.
Collapse
Affiliation(s)
- Yufen Chen
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - João Marcos Gonçalves
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Rebeca Ferrer Campos
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| | - Katherine Villa
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST)Av. Països Catalans, 16TarragonaE‐43007Spain
| |
Collapse
|
5
|
Mao M, Wu Y, He Q. Breaking Through Physiological Barriers: Nanorobotic Strategies for Active Drug Delivery. Bioconjug Chem 2025; 36:1-14. [PMID: 39729406 DOI: 10.1021/acs.bioconjchem.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Self-propelled micro/nanomotors (MNMs) represent a groundbreaking advancement in precision drug delivery, offering potential solutions to persistent challenges such as systemic toxicity, limited bioavailability, and nonspecific distribution. By transforming various energy sources into mechanical motion, MNMs are able to autonomously navigate through complex physiological environments, facilitating targeted delivery of therapeutic agents to previously inaccessible regions. However, to achieve efficient in vivo drug delivery, biomedical MNMs must demonstrate their ability to overcome crucial physiological barriers encompassing mucosal surfaces, blood flow dynamics, vascular endothelium, and cellular membrane. This review provides a comprehensive overview of the latest strategies developed to address these obstacles while also analyzing the broader challenges and opportunities associated with clinical translation. Our objective is to establish a solid foundation for future research in medical MNMs by focusing on enhancing drug delivery efficiency and advancing precision medicine, ultimately paving the way for practical theragnostic applications and wider clinical adoption.
Collapse
Affiliation(s)
- Meng Mao
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
6
|
Zarepour A, Khosravi A, Iravani S, Zarrabi A. Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology. Adv Healthc Mater 2024; 13:e2402102. [PMID: 39373299 DOI: 10.1002/adhm.202402102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkiye, 34959
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkiye, 34396
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
7
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Ma B, Yu Y, Li J, Zhang Y, Sun B, Ji A, Song K, Shi L, Hu H, Gao S, Cheng H. Temperature-Sensitive Polymer-Driven Nanomotors for Enhanced Tumor Penetration and Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403800. [PMID: 39163609 DOI: 10.1002/smll.202403800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/02/2024] [Indexed: 08/22/2024]
Abstract
Self-propelled nanomotors possess strong propulsion and penetration abilities, which can increase the efficiency of cellular uptake of nanoparticles and enhance their cytotoxicity against tumor cells, opening a new path for treating major diseases. In this study, the concept of driving nanomotors by alternately stretching and contracting a temperature-sensitive polymer (TS-P) chain is proposed. The TS-Ps are successfully linked to one side of Cu2-xSe@Au (CS@Au) nanoparticles to form a Janus structure, which is designated as Cu2-xSe@Au-polymer (CS@Au-P) nanomotors. Under near-infrared (NIR) light irradiation, Cu2-xSe nanoparticles generate photothermal effects that change the system temperature, triggering the alternation of the TS-P structure to generate a mechanical force that propels the motion of CS@Au-P nanomotors. The nanomotor significantly improved the cellular uptake of nanoparticles and enhanced their penetration and accumulation in tumor. Furthermore, the exceptional photothermal conversion efficiency of CS@Au-P nanomotors suggests their potential as nanomaterials for photothermal therapy (PTT). The prepared material exhibited good biocompatibility and anti-tumor effects both in vivo and in vitro, providing new research insights into the design and application of nanomotors in tumor therapy.
Collapse
Affiliation(s)
- Beng Ma
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Ying Yu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Jiayi Li
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Yunqi Zhang
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Bo Sun
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Anqi Ji
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Kexing Song
- Henan Academy of Sciences, Zhengzhou, 450002, P. R. China
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Hao Hu
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471023, P. R. China
| | - Haoyan Cheng
- School of Materials Science and Engineering, The First Affiliated Hospital of Henan University of Science and Technology, Henan University of Science and Technology, Luoyang, 471023, P. R. China
| |
Collapse
|
9
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
11
|
Sun Y, Zhang W, Lu Y, He Y, Yahaya B, Liu Y, Lin J. An artificial signaling pathway primitive-based intelligent biomimetic nanoenzymes carrier platform for precise treatment of Her2 (+) tumors. Mater Today Bio 2024; 26:101105. [PMID: 38933416 PMCID: PMC11201151 DOI: 10.1016/j.mtbio.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
In tumor treatment, the deposition of nanoenzymes in normal tissues and cause potential side effects are unavoidable. Here, we designed an intelligent biomimetic nanoenzymes carrier platform (MSCintelligent) that endows the carrier platform with "wisdom" by introducing Affibody-Notch(core)-VP64-GAL4/UAS-HSV-TK artificial signal pathways to mesenchymal stem cells (MSCs). This intelligent nanoenzymes carrier platform is distinguished from the traditional targeting tumor microenvironment or enhancing affinity with tumor, which endue MSCintelligent with tumor signal recognition capacity, so that MSCintelligent can autonomously distinguish tumor from normal tissue cells and feedback edited instructions. In this study, MSCintelligent can convert tumor signals into HSV-TK instructions through artificial signal pathway after recognizing Her2 (+) tumor. Subsequently, the synthesized HSV-TK can rupture MSCintelligent under the mediation of ganciclovir, and release the preloaded Cu/Fe nanocrystal clusters to kill the tumor accurately. Meanwhile, MSCintelligent without recognizing tumors will not initiate the HSV-TK instructions, thus being unresponsive to GCV and blocking the release of nanoenzymes in normal tissues. Consequently, MSCintelligent is the first intelligent biomimetic nanoenzymes carrier platform, which represents a new biomimetic nanoenzymes targeting mode.
Collapse
Affiliation(s)
- Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Wenlong Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanan He
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Badrul Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, SAINS@BERTAM, 13200, Kepala Batas, Penang, Malaysia
- Breast Cancer Translational Research Program (BCTRP), Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| |
Collapse
|
12
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
13
|
Zhang Q, Zeng Y, Zhao Y, Peng X, Ren E, Liu G. Bio-Hybrid Magnetic Robots: From Bioengineering to Targeted Therapy. Bioengineering (Basel) 2024; 11:311. [PMID: 38671732 PMCID: PMC11047666 DOI: 10.3390/bioengineering11040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic robots possess an innate ability to navigate through hard-to-reach cavities in the human body, making them promising tools for diagnosing and treating diseases minimally invasively. Despite significant advances, the development of robots with desirable locomotion and full biocompatibility under harsh physiological conditions remains challenging, which put forward new requirements for magnetic robots' design and material synthesis. Compared to robots that are synthesized with inorganic materials, natural organisms like cells, bacteria or other microalgae exhibit ideal properties for in vivo applications, such as biocompatibility, deformability, auto-fluorescence, and self-propulsion, as well as easy for functional therapeutics engineering. In the process, these organisms can provide autonomous propulsion in biological fluids or external magnetic fields, while retaining their functionalities with integrating artificial robots, thus aiding targeted therapeutic delivery. This kind of robotics is named bio-hybrid magnetic robotics, and in this mini-review, recent progress including their design, engineering and potential for therapeutics delivery will be discussed. Additionally, the historical context and prominent examples will be introduced, and the complexities, potential pitfalls, and opportunities associated with bio-hybrid magnetic robotics will be discussed.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Yun Zeng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - Yang Zhao
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
| | - Xuqi Peng
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| | - En Ren
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- Key Laboratory of Advanced Drug Delivery Systems, Zhejiang Province College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gang Liu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China; (Q.Z.); (Y.Z.); (Y.Z.); (G.L.)
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Liu W, Nie H, Li H, Liu Y, Tian M, Wang S, Yang Y, Long W. Engineered platelet cell motors for boosted cancer radiosensitization. J Colloid Interface Sci 2024; 658:540-552. [PMID: 38128197 DOI: 10.1016/j.jcis.2023.12.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Design of engineered cells to target and deliver nanodrugs to the hard-to-reach regions has become an exciting research area. However, the limited penetration and retention of cell-based carriers in tumor tissue restricted their therapeutic efficiency. Inspired by the enhanced delivery behavior of mobile micro/nanomotors, herein, urease-powered platelet cell motors (PLT@Au@Urease) capable of active locomotion, tumor targeting, and radiosensitizers delivery were designed for boosting radiosensitization. The engineered platelet cell motors were constructed by in situ synthesis and loading of radiosensitizers gold nanoparticles in platelets, and then conjugation with urease as the engine. Under physiological concentration of urea, thrust around PLT@Au@Urease motors can be generated via the biocatalytic reactions of urease, leading to rapid tumor cell targeting and enhanced cellular uptake of radiosensitizers. Encouragingly, in comparison with engineered PLT without propulsion capability (PLT@Au), the self-propelled PLT@Au@Urease motors could significantly increase intracellular ROS level and exacerbate nuclear DNA damage induced by γ-radiation, resulting in a remarkably high sensitization enhancement rate (1.89) than that of PLT@Au (1.08). In vivo experiments with 4 T1-bearing mice demonstrated that PLT@Au@Urease in combination with radiation therapy possessed good antitumor performance. Such an intelligent cell motor would provide a promising approach to enhance radiosensitization and broaden the applications of cell motor-based delivery systems.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Hongmei Nie
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - He Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ya Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Maoye Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Shuhuai Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuwei Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wei Long
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
15
|
Bo Y, Wang H, Niu H, He X, Xue Q, Li Z, Yang H, Niu F. Advancements in materials, manufacturing, propulsion and localization: propelling soft robotics for medical applications. Front Bioeng Biotechnol 2024; 11:1327441. [PMID: 38260727 PMCID: PMC10800571 DOI: 10.3389/fbioe.2023.1327441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024] Open
Abstract
Soft robotics is an emerging field showing immense potential for biomedical applications. This review summarizes recent advancements in soft robotics for in vitro and in vivo medical contexts. Their inherent flexibility, adaptability, and biocompatibility enable diverse capabilities from surgical assistance to minimally invasive diagnosis and therapy. Intelligent stimuli-responsive materials and bioinspired designs are enhancing functionality while improving biocompatibility. Additive manufacturing techniques facilitate rapid prototyping and customization. Untethered chemical, biological, and wireless propulsion methods are overcoming previous constraints to access new sites. Meanwhile, advances in tracking modalities like computed tomography, fluorescence and ultrasound imaging enable precision localization and control enable in vivo applications. While still maturing, soft robotics promises more intelligent, less invasive technologies to improve patient care. Continuing research into biocompatibility, power supplies, biomimetics, and seamless localization will help translate soft robots into widespread clinical practice.
Collapse
Affiliation(s)
- Yunwen Bo
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haochen Wang
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hui Niu
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyang He
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Quhao Xue
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zexi Li
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hao Yang
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, China
| | - Fuzhou Niu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
16
|
Chen B, Sun H, Zhang J, Xu J, Song Z, Zhan G, Bai X, Feng L. Cell-Based Micro/Nano-Robots for Biomedical Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304607. [PMID: 37653591 DOI: 10.1002/smll.202304607] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Micro/nano-robots are powerful tools for biomedical applications and are applied in disease diagnosis, tumor imaging, drug delivery, and targeted therapy. Among the various types of micro-robots, cell-based micro-robots exhibit unique properties because of their different cell sources. In combination with various actuation methods, particularly externally propelled methods, cell-based microrobots have enormous potential for biomedical applications. This review introduces recent progress and applications of cell-based micro/nano-robots. Different actuation methods for micro/nano-robots are summarized, and cell-based micro-robots with different cell templates are introduced. Furthermore, the review focuses on the combination of cell-based micro/nano-robots with precise control using different external fields. Potential challenges, further prospects, and clinical translations are also discussed.
Collapse
Affiliation(s)
- Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Junjie Xu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Zeyu Song
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Guangdong Zhan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Xue Bai
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
17
|
Wang H, Gao J, Xu C, Jiang Y, Liu M, Qin H, Ye Y, Zhang L, Luo W, Chen B, Du L, Peng F, Li Y, Tu Y. Light-Driven Biomimetic Nanomotors for Enhanced Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306208. [PMID: 37670543 DOI: 10.1002/smll.202306208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 09/07/2023]
Abstract
Nanotechnology-based strategy has recently drawn extensive attention for the therapy of malignant tumors due to its distinct strengths in cancer diagnosis and treatment. However, the limited intratumoral permeability of nanoparticles is a major hurdle to achieving the desired effect of cancer treatment. Due to their superior cargo towing and reliable penetrating property, micro-/nanomotors (MNMs) are considered as one of the most potential candidates for the coming generation of drug delivery platforms. Here, near-infrared (NIR)-actuated biomimetic nanomotors (4T1-JPGSs-IND) are fabricated successfully and we demonstrate that 4T1-JPGSs-IND selectively accumulate in homologous tumor regions due to the effective homing ability. Upon laser irradiation, hyperthermia generated by 4T1-JPGSs-IND leads to self-thermophoretic motion and photothermal therapy (PTT) to ablate tumors with a deep depth, thereby improving the photothermal therapeutic effect for cancer management. The developed nanomotor system with multifunctionalities exhibits promising potential in biomedical applications to fight against various diseases.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junbin Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Cong Xu
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuejun Jiang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meihuan Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hanfeng Qin
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhang
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bin Chen
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lingli Du
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yingjia Li
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
18
|
Zheng J, Huang R, Lin Z, Chen S, Yuan K. Nano/Micromotors for Cancer Diagnosis and Therapy: Innovative Designs to Improve Biocompatibility. Pharmaceutics 2023; 16:44. [PMID: 38258055 PMCID: PMC10821023 DOI: 10.3390/pharmaceutics16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Nano/micromotors are artificial robots at the nano/microscale that are capable of transforming energy into mechanical movement. In cancer diagnosis or therapy, such "tiny robots" show great promise for targeted drug delivery, cell removal/killing, and even related biomarker sensing. Yet biocompatibility is still the most critical challenge that restricts such techniques from transitioning from the laboratory to clinical applications. In this review, we emphasize the biocompatibility aspect of nano/micromotors to show the great efforts made by researchers to promote their clinical application, mainly including non-toxic fuel propulsion (inorganic catalysts, enzyme, etc.), bio-hybrid designs, ultrasound propulsion, light-triggered propulsion, magnetic propulsion, dual propulsion, and, in particular, the cooperative swarm-based strategy for increasing therapeutic effects. Future challenges in translating nano/micromotors into real applications and the potential directions for increasing biocompatibility are also described.
Collapse
Affiliation(s)
- Jiahuan Zheng
- Department of Chemistry, Shantou University Medical College, Shantou 515041, China;
| | - Rui Huang
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Zhexuan Lin
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
| | - Shaoqi Chen
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaisong Yuan
- Bio-Analytical Laboratory, Shantou University Medical College, Shantou 515041, China; (R.H.); (Z.L.)
- Department of Ultrasound, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
19
|
Wang Q, Jermyn S, Quashie D, Gatti SE, Katuri J, Ali J. Magnetically actuated swimming and rolling erythrocyte-based biohybrid micromotors. RSC Adv 2023; 13:30951-30958. [PMID: 37876656 PMCID: PMC10591291 DOI: 10.1039/d3ra05844a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Erythrocytes are natural multifunctional biomaterials that can be engineered for use as micro robotic vectors for therapeutic applications. Erythrocyte based micromotors offer several advantages over existing bio-hybrid micromotors, but current control mechanisms are often complex, utilizing multiple external signals, such as tandem magnetic and acoustic fields to achieve both actuation and directional control. Further, existing actuation methods rely on proximity to a substrate to achieve effective propulsion through symmetry breaking. Alternatively, control mechanisms only requiring the use of a single control input may aid in the translational use of these devices. Here, we report a simple scalable technique for fabricating erythrocyte-based magnetic biohybrid micromotors and demonstrate the ability to control two modes of motion, surface rolling and bulk swimming, using a single uniform rotating magnetic field. While rolling exploits symmetry breaking from the proximity of a surface, bulk swimming relies on naturally occurring shape asymmetry of erythrocytes. We characterize swimming and rolling kinematics, including step-out frequencies, propulsion velocity, and steerability in aqueous solutions using open-loop control. The observed dynamics may enable the development of future erythrocyte micromotor designs and control strategies for therapeutic applications.
Collapse
Affiliation(s)
- Qi Wang
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sophie Jermyn
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Sarah Elizabeth Gatti
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
- Department of Biomedical Engineering, Vanderbilt University College of Engineering Nashville Tennessee 37235 USA
| | - Jaideep Katuri
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU Collee of Engineering Tallahassee Florida 32310 USA
- National High Magnetic Field Laboratory Tallahassee Florida 32310 USA
| |
Collapse
|
20
|
Shivalkar S, Roy A, Chaudhary S, Samanta SK, Chowdhary P, Sahoo AK. Strategies in design of self-propelling hybrid micro/nanobots for bioengineering applications. Biomed Mater 2023; 18:062003. [PMID: 37703889 DOI: 10.1088/1748-605x/acf975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Micro/nanobots are integrated devices developed from engineered nanomaterials that have evolved significantly over the past decades. They can potentially be pre-programmed to operate robustly at numerous hard-to-reach organ/tissues/cellular sites for multiple bioengineering applications such as early disease diagnosis, precision surgeries, targeted drug delivery, cancer therapeutics, bio-imaging, biomolecules isolation, detoxification, bio-sensing, and clearing up clogged arteries with high soaring effectiveness and minimal exhaustion of power. Several techniques have been introduced in recent years to develop programmable, biocompatible, and energy-efficient micro/nanobots. Therefore, the primary focus of most of these techniques is to develop hybrid micro/nanobots that are an optimized combination of purely synthetic or biodegradable bots suitable for the execution of user-defined tasks more precisely and efficiently. Recent progress has been illustrated here as an overview of a few of the achievable construction principles to be used to make biomedical micro/nanobots and explores the pivotal ventures of nanotechnology-moderated development of catalytic autonomous bots. Furthermore, it is also foregrounding their advancement offering an insight into the recent trends and subsequent prospects, opportunities, and challenges involved in the accomplishments of the effective multifarious bioengineering applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Pallabi Chowdhary
- Department of Biotechnology, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| |
Collapse
|
21
|
Li J, Zhou H, Liu C, Zhang S, Du R, Deng Y, Zou X. Biomembrane‐inspired design of medical micro/nanorobots: From cytomembrane stealth cloaks to cellularized Trojan horses. AGGREGATE 2023; 4. [DOI: 10.1002/agt2.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractMicro/nanorobots are promising for a wide range of biomedical applications (such as targeted tumor, thrombus, and infection therapies in hard‐to‐reach body sites) because of their tiny size and high maneuverability through the actuation of external fields (e.g., magnetic field, light, ultrasound, electric field, and/or heat). However, fully synthetic micro/nanorobots as foreign objects are susceptible to phagocytosis and clearance by diverse phagocytes. To address this issue, researchers have attempted to develop various cytomembrane‐camouflaged micro/nanorobots by two means: (1) direct coating of micro/nanorobots with cytomembranes derived from living cells and (2) the swallowing of micro/nanorobots by living immunocytes via phagocytosis. The camouflaging with cytomembranes or living immunocytes not only protects micro/nanorobots from phagocytosis, but also endows them with new characteristics or functionalities, such as prolonging propulsion in biofluids, targeting diseased areas, or neutralizing bacterial toxins. In this review, we comprehensively summarize the recent advances and developments of cytomembrane‐camouflaged medical micro/nanorobots. We first discuss how cytomembrane coating nanotechnology has been employed to engineer synthetic nanomaterials, and then we review in detail how cytomembrane camouflage tactic can be exploited to functionalize micro/nanorobots. We aim to bridge the gap between cytomembrane‐cloaked micro/nanorobots and nanomaterials and to provide design guidance for developing cytomembrane‐camouflaged micro/nanorobots.
Collapse
Affiliation(s)
- Jinhua Li
- School of Medical Technology Beijing Institute of Technology Beijing China
| | - Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing China
| | - Chun Liu
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shuailong Zhang
- School of Mechatronical Engineering Beijing Institute of Technology Beijing China
| | - Ran Du
- School of Materials Science & Engineering Key Laboratory of High Energy Density Materials of the Ministry of Education Beijing Institute of Technology Beijing China
| | - Yulin Deng
- School of Life Science Beijing Institute of Technology Beijing China
| | - Xuenong Zou
- Center for Translational Medicine Precision Medicine Institute The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology Department of Spinal Surgery The First Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| |
Collapse
|
22
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
23
|
Niu J, Liu C, Yang X, Liang W, Wang Y. Construction of micro-nano robots: living cells and functionalized biological cell membranes. Front Bioeng Biotechnol 2023; 11:1277964. [PMID: 37781535 PMCID: PMC10539914 DOI: 10.3389/fbioe.2023.1277964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Micro-nano robots have emerged as a promising research field with vast potential applications in biomedicine. The motor is the key component of micro-nano robot research, and the design of the motor is crucial. Among the most commonly used motors are those derived from living cells such as bacteria with flagella, sperm, and algal cells. Additionally, scientists have developed numerous self-adaptive biomimetic motors with biological functions, primarily cell membrane functionalized micromotors. This novel type of motor exhibits remarkable performance in complex media. This paper provides a comprehensive review of the structure and performance of micro-nano robots that utilize living cells and functionalized biological cell membranes. We also discuss potential practical applications of these mirco-nano robots as well as potential challenges that may arise in future development.
Collapse
Affiliation(s)
- Jiawen Niu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chenlu Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaopeng Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenlong Liang
- Department of Breast Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yufu Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Voß J, Wittkowski R. Dependence of the acoustic propulsion of nano- and microcones on their orientation and aspect ratio. Sci Rep 2023; 13:12858. [PMID: 37553408 PMCID: PMC10409789 DOI: 10.1038/s41598-023-39231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Recent research revealed the orientation-dependent propulsion of a cone-shaped colloidal particle that is exposed to a planar traveling ultrasound wave. Here, we extend the previous research by considering nano- and microcones with different aspect ratios and studying how the propulsion of a particle depends on its orientation and aspect ratio. We also study how the orientation-averaged propulsion of a cone-shaped particle, which corresponds to an isotropic ultrasound field, depends on its aspect ratio and identify an aspect ratio of 1/2 where the orientation-averaged propulsion is particularly strong. To make our simulation results easier reusable for follow-up research, we provide a corresponding simple analytic representation.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
26
|
Zeng S, Tang Q, Xiao M, Tong X, Yang T, Yin D, Lei L, Li S. Cell membrane-coated nanomaterials for cancer therapy. Mater Today Bio 2023; 20:100633. [PMID: 37128288 PMCID: PMC10148189 DOI: 10.1016/j.mtbio.2023.100633] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023] Open
Abstract
With the development of nanotechnology, nanoparticles have emerged as a delivery carrier for tumor drug therapy, which can improve the therapeutic effect by increasing the stability and solubility and prolonging the half-life of drugs. However, nanoparticles are foreign substances for humans, are easily cleared by the immune system, are less targeted to tumors, and may even be toxic to the body. As a natural biological material, cell membranes have unique biological properties, such as good biocompatibility, strong targeting ability, the ability to evade immune surveillance, and high drug-carrying capacity. In this article, we review cell membrane-coated nanoparticles (CMNPs) and their applications to tumor therapy. First, we briefly describe CMNP characteristics and applications. Second, we present the characteristics and advantages of different cell membranes as well as nanoparticles, provide a brief description of the process of CMNPs, discuss the current status of their application to tumor therapy, summarize their shortcomings for use in cancer therapy, and propose future research directions. This review summarizes the research progress on CMNPs in cancer therapy in recent years and assesses remaining problems, providing scholars with new ideas for future research on CMNPs in tumor therapy.
Collapse
Affiliation(s)
- Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xinying Tong
- Department of Hemodialysis, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Tao Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Danhui Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
27
|
Wang X, Sun Y, Wangpraseurt D. Engineered photoresponsive biohybrids for tumor therapy. SMART MEDICINE 2023; 2:e20220041. [PMID: 39188274 PMCID: PMC11235730 DOI: 10.1002/smmd.20220041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 08/28/2024]
Abstract
Engineered biohybrids have recently emerged as innovative biomimetic platforms for cancer therapeutic applications. Particularly, engineered photoresponsive biohybrids hold tremendous potential against tumors due to their intriguing biomimetic properties, photoresponsive ability, and enhanced biotherapeutic functions. In this review, the design principles of engineered photoresponsive biohybrids and their latest progresses for tumor therapy are summarized. Representative engineered photoresponsive biohybrids are highlighted including biomolecules-associated, cell membrane-based, eukaryotic cell-based, bacteria-based, and algae-based photoresponsive biohybrids. Representative tumor therapeutic modalities of the engineered photoresponsive biohybrids are presented, including photothermal therapy, photodynamic therapy, synergistic therapy, and tumor therapy combined with tissue regeneration. Moreover, the challenges and future perspectives of these photoresponsive biohybrids for clinical practice are discussed.
Collapse
Affiliation(s)
- Xiaocheng Wang
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Yazhi Sun
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Daniel Wangpraseurt
- Department of NanoEngineeringUniversity of California San DiegoSan DiegoCaliforniaUSA
- Scripps Institution of OceanographyUniversity of California San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
28
|
Yue L, Gao C, Li J, Chen H, Lee SMY, Luo R, Wang R. Chemotaxis-guided Self-propelled Macrophage Motor for Targeted Treatment of Acute Pneumonia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211626. [PMID: 36905923 DOI: 10.1002/adma.202211626] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/07/2023] [Indexed: 05/19/2023]
Abstract
Immune cells exhibit great potential as carriers of nanomedicine, attributed to their high tolerance to internalized nanomaterials and targeted accumulation in inflammatory tissues. However, the premature efflux of internalized nanomedicine during systemic delivery and slow infiltration into inflammatory tissues have limited their translational applications. Herein, a motorized cell platform as a nanomedicine carrier for highly efficient accumulation and infiltration in the inflammatory lungs and effective treatment of acute pneumonia are reported. β-Cyclodextrin and adamantane respectively modified manganese dioxide nanoparticles are intracellularly self-assembled into large aggregates mediated via host-guest interactions, to effectively inhibit the efflux of nanoparticles, catalytically consume/deplete H2 O2 to alleviate inflammation, and generate O2 to propel macrophage movement for rapid tissue infiltration. With curcumin loaded into MnO2 nanoparticles, macrophages carry the intracellular nano-assemblies rapidly into the inflammatory lungs via chemotaxis-guided, self-propelled movement, for effective treatment of acute pneumonia via immunoregulation induced by curcumin and the aggregates.
Collapse
Affiliation(s)
- Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruifeng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, P. R. China
| |
Collapse
|
29
|
Xing Y, Xiu J, Zhou M, Xu T, Zhang M, Li H, Li X, Du X, Ma T, Zhang X. Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy. ACS NANO 2023; 17:6789-6799. [PMID: 36988101 DOI: 10.1021/acsnano.3c00076] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom catalysts with extraordinary catalytic activity have been receiving great attention in tumor therapy. However, most single-atom catalysts lack self-propulsion properties, restricting them from actively approaching cancer cells or penetrating the interior of tumors. Herein, we design N-doped jellyfish-like mesoporous carbon nanomotors coordinated with single-atom copper (Cu-JMCNs). It is a combination of single-atom nanocatalytic medicine and nanomotor self-propulsion for cancer therapy. The Cu single atom can catalyze H2O2 into toxic hydroxyl radical (•OH) for chemodynamic therapy (CDT). Near-infrared light triggers Cu-JMCNs to achieve self-thermophoretic motion because of the jellyfish-like asymmetric structure and photothermal property of carbon, which significantly improves the cellular uptake and the penetration of three-dimensional tumors. In vivo experiments indicate that the combination of single-atom Cu for CDT and near-infrared light propulsion can achieve over 85% tumor inhibition rate. This work sheds light on the development of advanced nanomotors with single-atom catalysts for biomedical applications.
Collapse
Affiliation(s)
- Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Jidong Xiu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Mengyun Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Meiqin Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Hui Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoyu Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing 100190, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Qiao B, Song X, Zhang N, Xu M, Zhuang B, Guo H, Wu W, Yang Z, Xie X, Luan Y, Zhang C. Artificial nano-red blood cells nanoplatform with lysosomal escape capability for ultrasound imaging-guided on-demand pain management. Acta Biomater 2023; 158:798-810. [PMID: 36638944 DOI: 10.1016/j.actbio.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Postoperative pain management would benefit significantly from an anesthetic that could take effect in an on-demand manner. An ultrasound would be an appropriate tool for such nanoplatform because it is widely used in clinical settings for ultrasound-guided anesthesia. Herein, we report a nanoplatform for postoperative on-demand pain management that can effectively enhance their analgesic time while providing ultrasonic imaging. Levobupivacaine and perfluoropentane were put into dendritic mesoporous silica and covered with red blood cell membranes to make the pain relief last longer in living organisms. The generated nanoplatform with gas-producing capability is ultrasonic responsive and can finely escape from the lysosomal in cells under ultrasound irradiation, maximizing the anesthetic effect with minimal toxicity. Using an incision pain model in vivo, levobupivacaine's sustained and controlled release gives pain reduction for approximately 3 days straight. The duration of pain relief is over 20 times greater than with a single injection of free levobupivacaine. Effective pain management was reached in vivo, and the pain reduction was enhanced by repeated ultrasonic irradiation. There was no detectable systemic or tissue injury under either of the treatments. Thus, our results suggest that nanoplatform with lysosomal escape capability can provide a practical ultrasound imaging-guided on-demand pain management strategy. STATEMENT OF SIGNIFICANCE: On-demand pain management is essential to postoperative patients. However, the traditional on-demand pain management strategy is hampered by the limited tissue penetration depth of near-infrared stimuli and the lack of proper imaging guidance. The proposed research is significant because it provides a nanoplatform for deep penetrated ultrasound controlled pain management under clinical applicable ultrasound imaging guidance. Moreover, the nanoplatform with prolonged retention time and lysosomal escape capability can provide long-term pain alleviation. Therefore, our results suggest that nanoplatform with lysosomal escape capability can provide an effective strategy for ultrasound imaging-guided on-demand pain management.
Collapse
Affiliation(s)
- Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xinye Song
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China
| | - Nan Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Huanling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Wenxin Wu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhuyang Yang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Yong Luan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Liaoning 116011, PR China.
| | - Chunyang Zhang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
31
|
Zhu J, Wang J, Li Y. Recent advances in magnetic nanocarriers for tumor treatment. Biomed Pharmacother 2023; 159:114227. [PMID: 36638597 DOI: 10.1016/j.biopha.2023.114227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Magnetic nanocarriers are nano-platforms that integrate multiple moieties based on magnetic nanoparticles for diagnostic and therapeutic purposes. In recent years, they have become an advanced platform for tumor treatment due to their wide application in magnetic resonance imaging (MRI), biocatalysis, magneto-thermal therapy (MHT), and photoresponsive therapy. Drugs loaded into magnetic nanocarriers can efficiently be directed to targeted areas by precisely reshaping their structural properties. Magnetic nanocarriers allow us to track the location of the therapeutic agent, continuously control the therapeutic process and eventually assess the efficacy of the treatment. They are typically used in synergistic therapeutic applications to achieve precise and effective tumor treatment. Here we review their latest applications in tumor treatment, including stimuli-responsive drug delivery, MHT, photoresponsive therapy, immunotherapy, gene therapy, and synergistic therapy. We consider reducing toxicity, improving antitumor efficacy, and the targeting accuracy of magnetic nanocarriers. The challenges of their clinical translation and prospects in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Jianmeng Zhu
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China.
| | - Jian Wang
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| | - Yiping Li
- Clinical Laboratory of Chun'an First People's Hospital, Zhejiang Provincial People's Hospital Chun'an Branch, Hangzhou Medical College Affiliated Chun'an Hospital, Hangzhou, Zhejiang, PR China
| |
Collapse
|
32
|
Singh AK, Awasthi R, Malviya R. Bioinspired microrobots: Opportunities and challenges in targeted cancer therapy. J Control Release 2023; 354:439-452. [PMID: 36669531 DOI: 10.1016/j.jconrel.2023.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Chemotherapy is still the most effective technique to treat many forms of cancer. However, it also carries a high risk of side effects. Numerous nanomedicines have been developed to avoid unintended consequences and significant negative effects of conventional therapies. Achieving targeted drug delivery also has several challenges. In this context, the development of microrobots is receiving considerable attention of formulation scientists and clinicians to overcome such challenges. Due to their mobility, microrobots can infiltrate tissues and reach tumor sites more quickly. Different types of microrobots, like custom-made moving bacteria, microengines powered by small bubbles, and hybrid spermbots, can be designed with complex features that are best for precise targeting of a wide range of cancers. In this review, we mainly focus on the idea of how microrobots can quickly target cancer cells and discuss specific advantages of microrobots. A brief summary of the microrobots' drug loading and release behavior is provided in this manuscript. This manuscript will assist clinicians and other medical professionals in diagnosing and treating cancer without surgery.
Collapse
Affiliation(s)
- Arun Kumar Singh
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, University of Petroleum and Energy Studies (UPES), Energy Acres, P.O. Bidholi, Via-Prem Nagar, Dehradun 248 007, Uttarakhand, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
33
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Zhang Q, Yan Y, Liu J, Wu Y, He Q. Supramolecular colloidal motors via chemical self-assembly. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Zheng BD, Xiao MT. Red blood cell membrane nanoparticles for tumor phototherapy. Colloids Surf B Biointerfaces 2022; 220:112895. [PMID: 36242941 DOI: 10.1016/j.colsurfb.2022.112895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Non-invasive phototherapy includes photodynamic therapy (PDT) and photothermal therapy (PTT), and has garnered special interest in anti-tumor therapy. However, traditional photosensitizers or photothermal agents are faced with major challenges, including easy recognition by immune system, rapid clearance from blood circulation, and low accumulation in target sites. Combining the characteristics of natural cell membrane with the characteristics of photosensitizer or photothermal agent is an important technology to achieve the ideal therapeutic effect of cancer. Red cell membrane (RBMs) coated can disguise phototherapy agents as endogenous substances, thus constructing a new nano bionic therapeutic platform, resisting blood clearance and prolonging circulation time. At present, a variety of phototherapy agents based on Nano-RBMs have been isolated or designed. In this review, firstly, the basic principles of Nano-RBMs and phototherapy are expounded respectively. Then, the latest progress of Nano-RBMs for PDT, PTT and PDT/PTT applications in recent five years has been introduced respectively. Finally, the problems and challenges of Nano-RBMs in the field of phototherapy are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
36
|
Peng X, Urso M, Balvan J, Masarik M, Pumera M. Self-Propelled Magnetic Dendrite-Shaped Microrobots for Photodynamic Prostate Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202213505. [PMID: 36177686 DOI: 10.1002/anie.202213505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Indexed: 11/10/2022]
Abstract
Photocatalytic micromotors that exhibit wireless and controllable motion by light have been extensively explored for cancer treatment by photodynamic therapy (PDT). However, overexpressed glutathione (GSH) in the tumor microenvironment can down-regulate the reactive oxygen species (ROS) level for cancer therapy. Herein, we present dendrite-shaped light-powered hematite microrobots as an effective GSH depletion agent for PDT of prostate cancer cells. These hematite microrobots can display negative phototactic motion under light irradiation and flexible actuation in a defined path controlled by an external magnetic field. Non-contact transportation of micro-sized cells can be achieved by manipulating the microrobot's motion. In addition, the biocompatible microrobots induce GSH depletion and greatly enhance PDT performance. The proposed dendrite-shaped hematite microrobots contribute to developing dual light/magnetic field-powered micromachines for the biomedical field.
Collapse
Affiliation(s)
- Xia Peng
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Mario Urso
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 25250, Vestec, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University, Zemedelska 1, 61300, Brno, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, 40402, Taichung, Taiwan.,Faculty of Electrical Engineering and Computer Science, VSB, Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
37
|
Huang S, Gao Y, Lv Y, Wang Y, Cao Y, Zhao W, Zuo D, Mu H, Hua Y. Applications of Nano/Micromotors for Treatment and Diagnosis in Biological Lumens. MICROMACHINES 2022; 13:mi13101780. [PMID: 36296133 PMCID: PMC9610721 DOI: 10.3390/mi13101780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 06/01/2023]
Abstract
Natural biological lumens in the human body, such as blood vessels and the gastrointestinal tract, are important to the delivery of materials. Depending on the anatomic features of these biological lumens, the invention of nano/micromotors could automatically locomote targeted sites for disease treatment and diagnosis. These nano/micromotors are designed to utilize chemical, physical, or even hybrid power in self-propulsion or propulsion by external forces. In this review, the research progress of nano/micromotors is summarized with regard to treatment and diagnosis in different biological lumens. Challenges to the development of nano/micromotors more suitable for specific biological lumens are discussed, and the overlooked biological lumens are indicated for further studies.
Collapse
Affiliation(s)
- Shandeng Huang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghua Gao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yu Lv
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yun Wang
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yinghao Cao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Bone Tumor Institution, Shanghai 201620, China
| |
Collapse
|
38
|
Abstract
Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility. Microbots have attracted attention due to an ability to reach places and perform tasks which are not possible with conventional techniques in a wide range of applications. Here, the authors review the recent work in the field on the fabrication, application and actuation of 3D printed microbots offering a view of the direction of future microbot research.
Collapse
|
39
|
Zhou C, Liu Q, Meng F, Ding N, Yan J, Liu B. Modification of erythrocytes by internalizing Arg-Gly-Asp (iRGD) in boosting the curative effect of radiotherapy for gastric carcinoma. J Gastrointest Oncol 2022; 13:2249-2258. [PMID: 36388665 PMCID: PMC9660045 DOI: 10.21037/jgo-22-951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Radiation resistance remains the leading cause of radiotherapy (RT) failure. The development of tumor-specific targeted sensitizers is key to overcoming radiation resistance. Our early data showed that cancer cell penetration was simulated by internalizing arginine-glycine-aspartic acid (iRGD), and the irradiation efficacy was improved. The present study aims to design and fabricate iRGD-modified red blood cell (RBCs) for tumor targeting and RT enhancement, and to evaluate its safety and efficacy in vivo. METHODS 1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-poly ethylene glycol-iRGD (DSPE-PEG-iRGD) was used to modify RBCs by a lipid-insertion method without direct chemical bioconjugation. Fluorescent dyes were used to trace the functional RBCs through confocal microscopy examination. In vitro stability evaluation was performed using cell culture medium incubation for 48 h followed by fluorescence decay assay. Furthermore, a subcutaneous cancer cell mouse model was constructed with MKN-45 cells for target efficacy and RT enhancement evaluation with DSPE-PEG-iRGD-modified RBCs (RBC-iRGD). RESULTS Successful construction of RBC-iRGD was verified by the presence of the yellow fluorescence, and an approximately 108 iRGD molecules were labeled on a single RBC. The final RBC-iRGD showed good stability without any hemolytic effects in the cell culture medium. Moreover, higher fluorescence intensity and decreased liver and spleen accumulation could be observed in RBC-iRGD compared to RBC + iRGD in vivo. The RBC-iRGD exerted enhanced radiosensitivity in subcutaneous gastric tumor mice. CONCLUSIONS The RBC-iRGD exerted good tumor-targeting efficacy and favorable effects for RT enhancement in vivo.
Collapse
Affiliation(s)
- Chong Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Naiqing Ding
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Wang Z, Shang L, Gao Z, Chan KK, Gong C, Wang C, Xu T, Liu T, Feng S, Chen YC. Motor-like microlasers functioning in biological fluids. LAB ON A CHIP 2022; 22:3668-3675. [PMID: 36062924 DOI: 10.1039/d2lc00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microlasers integrated with biological systems have received tremendous attention for their intense light intensity and narrow linewidth recently, serving as a powerful tool for studying complex dynamics and interactions in scattered biological micro-environments. However, manipulation of microlasers with controllable motions and versatile functions remains elusive. Herein, we introduce the concept of motor-like microlasers formed by magnetic-doped liquid crystal droplets, in which the direction and velocity could be controlled by altering internal magnetic nanoparticles or external magnetic fields. Both translational and rotatory motions of the lasing resonator could be continually changed in real-time. Lasing-encoded motors carrying different functions and lasing wavelengths were also achieved. Finally, we demonstrate the potential of motor-like microlasers by functioning as a localized stimulation emission light source to stimulate or illuminate living cells, providing a novel approach for switching on/off light emissions and subcellular imaging. Laser emitting micromotors offer a facile system for precise manipulation of microlasers in biological fluids, providing new insight into the development of programmable on-chip laser devices and laser-emitting intelligent systems.
Collapse
Affiliation(s)
- Ziyihui Wang
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Linwei Shang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China.
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangdong 510150, China
| | - Kok Ken Chan
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Chaoyang Gong
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Chenlu Wang
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| | - Tianhua Xu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Tiegen Liu
- School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Science, Shanghai, 200050, China.
| | - Yu-Cheng Chen
- School of Electrical and Electronics Engineering, Nanyang Technological University, 50 Nanyang Ave., Singapore 639798, Singapore.
| |
Collapse
|
41
|
Zhang D, Liu S, Guan J, Mou F. "Motile-targeting" drug delivery platforms based on micro/nanorobots for tumor therapy. Front Bioeng Biotechnol 2022; 10:1002171. [PMID: 36185435 PMCID: PMC9523273 DOI: 10.3389/fbioe.2022.1002171] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Traditional drug delivery systems opened the gate for tumor-targeted therapy, but they generally took advantage of enhanced permeability and retention or ligand-receptor mediated interaction, and thus suffered from limited recognition range (<0.5 nm) and low targeting efficiency (0.7%, median). Alternatively, micro/nanorobots (MNRs) may act as emerging "motile-targeting" drug delivery platforms to deliver therapeutic payloads, thereby making a giant step toward effective and safe cancer treatment due to their autonomous movement and navigation in biological media. This review focuses on the most recent developments of MNRs in "motile-targeting" drug delivery. After a brief introduction to traditional tumor-targeted drug delivery strategies and various MNRs, the representative applications of MNRs in "motile-targeting" drug delivery are systematically streamlined in terms of the propelling mechanisms. Following a discussion of the current challenges of each type of MNR in biomedical applications, as well as future prospects, several promising designs for MNRs that could benefit in "motile-targeting" drug delivery are proposed. This work is expected to attract and motivate researchers from different communities to advance the creation and practical application of the "motile-targeting" drug delivery platforms.
Collapse
Affiliation(s)
| | | | | | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
42
|
Zhang X, Yang T, Wu Y, He Q. Research progress in the application of colloidal motors for precision medicine. NANOSCALE 2022; 14:12547-12559. [PMID: 36018316 DOI: 10.1039/d2nr03963j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal motors have unique capabilities of self-propulsion, cargo loading and active target delivery, and have great potential for precision disease therapy. Currently, colloidal motors with different functions have been designed for diverse disease treatments. However, the application of colloidal motors in precision disease treatment is still in the exploratory stage and faces many practical challenges. This review highlights the therapeutic functions of colloidal motors, such as anti-cancer, anti-bacterial, anti-inflammation, hypoglycemic, immune activation and hemostasis functions. Furthermore, the application progress of multifunctional colloidal motors in various diseases has also been summarized, including cerebral diseases, ophthalmic diseases, gastrointestinal diseases, cardiovascular diseases and bladder diseases. Finally, the current limitations and challenges of colloidal motors as well as future research directions are discussed. This review aims to help readers become clearly acquainted with the achievements of colloidal motors that have been made in disease treatment and to promote the further development of colloidal motors in clinical medicine.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Tingxin Yang
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Yingjie Wu
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| | - Qiang He
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), School of Medicine and Health, Harbin Institute of Technology, No. 92 XiDaZhi Street, Harbin, 150001, China.
| |
Collapse
|
43
|
Dan J, Shi S, Sun H, Su Z, Liang Y, Wang J, Zhang W. Micro/nanomotor technology: the new era for food safety control. Crit Rev Food Sci Nutr 2022; 64:2032-2052. [PMID: 36094420 DOI: 10.1080/10408398.2022.2119935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food poisoning caused by eating contaminated food remains a threat to global public health. Making the situation even worse is the aggravated global environmental pollution, which poses a major threat to the safety of agricultural resources. Food adulteration has been rampant owing to negligent national food safety regulations. The speed at which contaminated food is detected and disposed of determines the extent to which consumers' lives are safeguarded and agricultural economic losses are prevented. Micro/nanomotors offer a high-speed mobile loading platform that substantially increases the chemical reaction rates and, accordingly, exhibit great potential as alternatives to conventional detection and degradation techniques. This review summarizes the propulsion modes applicable to micro/nanomotors in food systems and the advantages of using micro/nanomotors, highlighting examples of their potential use in recent years for the detection and removal of food contaminants. Micro/nanomotors are an emerging technology for food applications that is moving toward mass production, simple preparation, and important functions.
Collapse
Affiliation(s)
- Jie Dan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Zehui Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanmin Liang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
44
|
Voß J, Wittkowski R. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10736-10748. [PMID: 35998334 DOI: 10.1021/acs.langmuir.2c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates how the acoustic propulsion of cone-shaped colloidal particles that are exposed to a traveling ultrasound wave depends on the viscosity of the fluid surrounding the particles. Using acoustofluidic computer simulations, we found that the propulsion of such nano- and microcones decreases strongly and even changes sign for increasing shear viscosity. In contrast, we found only a weak dependence of the propulsion on the bulk viscosity. The obtained results are in line with the findings of previous theoretical and experimental studies.
Collapse
Affiliation(s)
- Johannes Voß
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
45
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
46
|
Wang S, Cheng K, Chen K, Xu C, Ma P, Dang G, Yang Y, Lei Q, Huang H, Yu Y, Fang Y, Tang Q, Jiang N, Miao H, Liu F, Zhao X, Li N. Nanoparticle-based medicines in clinical cancer therapy. NANO TODAY 2022; 45:101512. [DOI: 10.1016/j.nantod.2022.101512] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
|
47
|
Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022; 25:104507. [PMID: 35720266 PMCID: PMC9201018 DOI: 10.1016/j.isci.2022.104507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
48
|
Cong Z, Tang S, Xie L, Yang M, Li Y, Lu D, Li J, Yang Q, Chen Q, Zhang Z, Zhang X, Wu S. Magnetic-Powered Janus Cell Robots Loaded with Oncolytic Adenovirus for Active and Targeted Virotherapy of Bladder Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201042. [PMID: 35452560 DOI: 10.1002/adma.202201042] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/09/2022] [Indexed: 02/05/2023]
Abstract
A unique robotic medical platform is designed by utilizing cell robots as the active "Trojan horse" of oncolytic adenovirus (OA), capable of tumor-selective binding and killing. The OA-loaded cell robots are fabricated by entirely modifying OA-infected 293T cells with cyclic arginine-glycine-aspartic acid tripeptide (cRGD) to specifically bind with bladder cancer cells, followed by asymmetric immobilization of Fe3 O4 nanoparticles (NPs) on the cell surface. OA can replicate in host cells and induce cytolysis to release the virus progeny to the surrounding tumor sites for sustainable infection and oncolysis. The asymmetric coating of magnetic NPs bestows the cell robots with effective movement in various media and wireless manipulation with directional migration in a microfluidic device and bladder mold under magnetic control, further enabling steerable movement and prolonged retention of cell robots in the mouse bladder. The biorecognition of cRGD and robust, controllable propulsion of cell robots work synergistically to greatly enhance their tissue penetration and anticancer efficacy in the 3D cancer spheroid and orthotopic mouse bladder tumor model. Overall, this study integrates cell-based microrobots with virotherapy to generate an attractive robotic system with tumor specificity, expanding the operation scope of cell robots in biomedical community.
Collapse
Affiliation(s)
- Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Leiming Xie
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Ming Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Dongdong Lu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Qingxin Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Qiwei Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Zhiqiang Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518000, P. R. China
- South China Hospital, Shenzhen University, Shenzhen, 518116, P. R. China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515000, P. R. China
| |
Collapse
|
49
|
Nitschke T, Stenhammar J, Wittkowski R. Collective guiding of acoustically propelled nano- and microparticles. NANOSCALE ADVANCES 2022; 4:2844-2856. [PMID: 36132012 PMCID: PMC9417943 DOI: 10.1039/d2na00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
One of the most important potential applications of motile nano- and microdevices is targeted drug delivery. To realize this, biocompatible particles that can be guided collectively towards a target inside a patient's body are required. Acoustically propelled nano- and microparticles constitute a promising candidate for such biocompatible, artificial motile particles. The main remaining obstacle to targeted drug delivery by motile nano- and microdevices is to also achieve a reliable and biocompatible method for guiding them collectively to their target. Here, we propose such a method. As we confirm by computer simulations, it allows for the remote guiding of large numbers of acoustically propelled particles to a prescribed target by combining a space- and time-dependent acoustic field and a time-dependent magnetic field. The method works without detailed knowledge about the particle positions and for arbitrary initial particle distributions. With these features, it paves the way for the future application of motile particles as vehicles for targeted drug delivery in nanomedicine.
Collapse
Affiliation(s)
- Tobias Nitschke
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University SE-221 00 Lund Sweden
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| |
Collapse
|
50
|
Meisami AH, Abbasi M, Mosleh-Shirazi S, Azari A, Amani AM, Vaez A, Golchin A. Self-propelled micro/nanobots: A new insight into precisely targeting cancerous cells through intelligent and deep cancer penetration. Eur J Pharmacol 2022; 926:175011. [PMID: 35568064 DOI: 10.1016/j.ejphar.2022.175011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022]
Abstract
Cancer overlooks are globally one of the most dangerous and life-threatening tribulations. While significant advances have been made in the targeted delivery of anti-cancer medications over the last few years, several challenges, such as low efficacy and strong toxic effects, remain to be addressed. Micro/nanomotors have been thoroughly studied for both effective cancer detection and treatment, as demonstrated by significant advancements in the architecture of smart and functional micro/nanomotor biomedical systems. Able to self-propelled within fluid media, micro/nanomotors have attractive vehicles to maximize the efficacy of tumor delivery. Here, we present the current developments in the delivery, detection, and imaging-guided treatment of micro/nanomotors in the clinical field, including cancer-related specific targeted drug delivery, and then discuss the barriers and difficulties encountered by micro/nanomotors throughout the medical process. Furthermore, this paper addresses the potential growth of micro/nanomotors for medical applications, and sets out the current drawbacks and future research directions for more advancement.
Collapse
Affiliation(s)
- Amir Hossein Meisami
- Department of Emergency Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Abbasi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sareh Mosleh-Shirazi
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Arezo Azari
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|