1
|
Patel HH, Patel T, Jain N, Parekh KH. Enhanced Hyperthermic Response of Dextrose-Coated Mn 0.5Zn 0.5Fe 2O 4 Nanorings Containing Magnetic Fluid and Its Cytotoxicity and Uptake in HeLa Cells. ACS APPLIED BIO MATERIALS 2025. [PMID: 40367502 DOI: 10.1021/acsabm.5c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The present work explores the application of a temperature-sensitive magnetic fluid designed for magnetic fluid hyperthermia (MFH). The nanorings composed of Mn0.5Zn0.5Fe2O4 are an alternative to the traditional superparamagnetic magnetite nanoparticles, since they present superior heating response as compared to even their nanoparticles synthesized using different methods. In addition, the present work demonstrates that the synthesized nanoring has a 155.3 W/gmag heating response for the smallest concentration of 1 mg/mL at a frequency of 332 kHz and a field of 10 kA/m. Thereby, we demonstrate an efficient magnetic hyperthermia strategy in which small but well-stable nanorings can promote an efficient hyperthermic response. The cytotoxicity of the nanorings is observed very low in HeLa cells, while its efficient cellular internalization makes it a promising candidate for the MFH. Upon exposure to MFH treatment on HeLa cells containing these A55-Ring, 55% cells died in a single session of hyperthermia treatment. These findings suggest a promising potential of utilizing Mn0.5Zn0.5Fe2O4 ferrite nanorings for advancing the MFH study.
Collapse
Affiliation(s)
- Hima H Patel
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Tushar Patel
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, Gujarat 388421, India
- P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Neeraj Jain
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| | - Kinnari H Parekh
- Dr. K C Patel R & D Centre, Charotar University of Science and Technology, Changa, Gujarat 388421, India
| |
Collapse
|
2
|
Petru AE, Iacovita C, Fizeșan I, Dudric R, Crestin IV, Lucaciu CM, Loghin F, Kiss B. Evaluating Manganese-Doped Magnetic Nanoflowers for Biocompatibility and In Vitro Magnetic Hyperthermia Efficacy. Pharmaceutics 2025; 17:384. [PMID: 40143047 PMCID: PMC11944501 DOI: 10.3390/pharmaceutics17030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Magnetic hyperthermia (MH) has emerged as a promising alternative to conventional cancer treatments, offering targeted tumor destruction with minimal damage to healthy tissues. In this study, we synthesized manganese-doped magnetic nanoflowers (Mn-NFs) using a polyol-mediated approach to enhance heating efficiency and biocompatibility for MH applications. Our objective was to evaluate their structural, magnetic, and in vitro hyperthermic properties to determine their potential for lung cancer therapy. Methods: Mn-NFs, with the general formula MnxFe3-xO4 (x = 0, 0.3, 0.5, 0.7), were synthesized via a one-step polyol method and characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). Their heating efficiency was assessed through specific absorption rate (SAR) measurements in aqueous and solid environments under an alternating magnetic field (AMF). Cytocompatibility was evaluated using the Alamar Blue assay on A549 lung carcinoma cells. Cellular uptake was quantified via a colorimetric iron determination method, while in vitro MH efficacy was tested by subjecting Mn-NF-loaded A549 cells to AMF exposure at different field strengths and nanoparticle concentrations. Results: Mn-NFs exhibited a flower-like morphology with enhanced magnetic properties, achieving high SAR values, particularly in immobilized conditions. Cytotoxicity assays confirmed high biocompatibility at relevant doses, with Mn-NFs of x = 0.3 showing optimal cellular uptake. MH studies demonstrated significant cancer cell death at AMF intensities of around 30 kA/m, with increased effectiveness following static magnetic field pre-alignment. Conclusions: The results highlight Mn-NFs, particularly those with a Mn content of x = 0.3, as promising candidates for MH-based lung cancer therapy, combining high heating efficiency, biocompatibility, and effective intracellular uptake. Further studies are needed to validate their therapeutic potential in vivo.
Collapse
Affiliation(s)
- Andreea-Elena Petru
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Ionel Fizeșan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Roxana Dudric
- Faculty of Physics, “Babes Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Ionut-Valentin Crestin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Pasteur 6, 400349 Cluj-Napoca, Romania;
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| | - Bela Kiss
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, Pasteur 6A, 400349 Cluj-Napoca, Romania; (A.-E.P.); (I.F.); (I.-V.C.); (F.L.); (B.K.)
| |
Collapse
|
3
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
4
|
Manescu (Paltanea) V, Antoniac I, Paltanea G, Nemoianu IV, Mohan AG, Antoniac A, Rau JV, Laptoiu SA, Mihai P, Gavrila H, Al-Moushaly AR, Bodog AD. Magnetic Hyperthermia in Glioblastoma Multiforme Treatment. Int J Mol Sci 2024; 25:10065. [PMID: 39337552 PMCID: PMC11432100 DOI: 10.3390/ijms251810065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject's importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made.
Collapse
Affiliation(s)
- Veronica Manescu (Paltanea)
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, RO-050094 Bucharest, Romania
| | - Gheorghe Paltanea
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Iosif Vasile Nemoianu
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
- Department of Neurosurgery, Clinical Emergency Hospital Oradea, 65 Gheorghe Doja Street, RO-410169 Oradea, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Rome, Italy;
- Institute of Pharmacy, Department of Analytical, Physical and Colloid Chemistry, I.M. Sechenov First Moscow State Medical University, Trubetskaya St. 8, Build.2, 119048 Moscow, Russia
| | - Stefan Alexandru Laptoiu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (V.M.); (I.A.); (A.A.)
| | - Petruta Mihai
- Faculty of Entrepreneurship, Business Engineering and Management, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania;
| | - Horia Gavrila
- Faculty of Electrical Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, District 6, RO-060042 Bucharest, Romania; (I.V.N.)
- Technical Sciences Academy of Romania, 26 Bulevardul Dacia, RO-030167 Bucharest, Romania
| | | | - Alin Danut Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, RO-410073 Oradea, Romania
| |
Collapse
|
5
|
Faílde D, Ocampo-Zalvide V, Serantes D, Iglesias Ò. Understanding magnetic hyperthermia performance within the "Brezovich criterion": beyond the uniaxial anisotropy description. NANOSCALE 2024; 16:14319-14329. [PMID: 39012312 DOI: 10.1039/d4nr02045f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Careful determination of the heating performance of magnetic nanoparticles under AC fields is critical for magnetic hyperthermia applications. However, most interpretations of experimental data are based on the uniaxial anisotropy approximation, which in the first instance can be correlated with the particle aspect ratio. This is to say, the intrinsic magnetocrystalline anisotropy is discarded, under the assumption that the shape contribution dominates. We show in this work that such a premise, generally valid for large field amplitudes, does not hold for describing hyperthermia experiments carried out under small field values. Specifically, given its relevance for in vivo applications, we focus our analysis on the so-called "Brezovich criterion", H·f = 4.85 × 108 A m-1 s-1. By means of a computational model, we show that the intrinsic magnetocrystalline anisotropy plays a critical role in defining the heat output, determining also the role of the shape and aspect ratio of the particles on the SLP. Our results indicate that even small deviations from spherical shape have an important impact on optimizing the heating performance. The influence of interparticle interactions on the dissipated heat is also evaluated. Our results call, therefore, for an improvement in the theoretical models used to interpret magnetic hyperthermia performance.
Collapse
Affiliation(s)
- Daniel Faílde
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Galicia Supercomputing Center (CESGA), Santiago de Compostela, Spain
| | - Victor Ocampo-Zalvide
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Serantes
- Applied Physics Department, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Materiais (iMATUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Òscar Iglesias
- Departament de Física de la Matèria Condensada and Institut de Nanociència i Nanotecnologia Universitat de Barcelona (IN2UB), Martí i Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
6
|
Li Y, Lv C, Li Z, Chen C, Cheng Y. Magnetic modulation of lysosomes for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1947. [PMID: 38488191 DOI: 10.1002/wnan.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
Lysosomes play a central role in biochemical signal transduction and oxidative stress in cells. Inducing lysosome membrane penetration (LMP) to cause lysosomal-dependent cell death (LCD) in tumor cells is an effective strategy for cancer therapy. Chemical drugs can destroy the stability of lysosomes by neutralizing protons within the lysosomes or enhancing the fragility of the lysosomal membranes. However, there remain several unsolved problems of traditional drugs in LMP induction due to insufficient lysosomal targeting, fast metabolism, and toxicity in normal cells. With the development of nanotechnology, magnetic nanoparticles have been demonstrated to target lysosomes naturally, providing a versatile tool for lysosomal modulation. Combined with excellent tissue penetration and spatiotemporal manipulability of magnetic fields, magnetic modulation of lysosomes progresses rapidly in inducing LMP and LCD for cancer therapy. This review comprehensively discussed the strategies of magnetic modulation of lysosomes for cancer therapy. The intrinsic mechanisms of LMP-induced LCD were first introduced. Then, the modulation of lysosomes by diverse physical outputs of magnetic fields was emphatically discussed. Looking forward, this review will shed the light on the prospect of magnetic modulation of lysosomes, inspiring future research of magnetic modulation strategy in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Lv
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Zhang L, Li Q, Liu J, Deng Z, Zhang X, Alifu N, Zhang X, Yu Z, Liu Y, Lan Z, Wen T, Sun K. Recent advances in functionalized ferrite nanoparticles: From fundamentals to magnetic hyperthermia cancer therapy. Colloids Surf B Biointerfaces 2024; 234:113754. [PMID: 38241891 DOI: 10.1016/j.colsurfb.2024.113754] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
Cancers are fatal diseases that lead to most death of human beings, which urgently require effective treatments methods. Hyperthermia therapy employs magnetic nanoparticles (MNPs) as heating medium under external alternating magnetic field. Among various MNPs, ferrite nanoparticles (FNPs) have gained significant attention for hyperthermia therapy due to their exceptional magnetic properties, high stability, favorable biological compatibility, and low toxicity. The utilization of FNPs holds immense potential for enhancing the effectiveness of hyperthermia therapy. The main hurdle for hyperthermia treatment includes optimizing the heat generation capacity of FNPs and controlling the local temperature of tumor region. This review aims to comprehensively evaluate the magnetic hyperthermia treatment (MHT) of FNPs, which is accomplished by elucidating the underlying mechanism of heat generation and identifying influential factors. Based upon fundamental understanding of hyperthermia of FNPs, valuable insights will be provided for developing efficient nanoplatforms with enhanced accuracy and magnetothermal properties. Additionally, we will also survey current research focuses on modulating FNPs' properties, external conditions for MHT, novel technical methods, and recent clinical findings. Finally, current challenges in MHT with FNPs will be discussed while prospecting future directions.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qifan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Junxiao Liu
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Zunyi Deng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xueliang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China; State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Nuernisha Alifu
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia/School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaofeng Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhong Yu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Tianlong Wen
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610072, PR China.
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
8
|
Beola L, Iturrioz-Rodríguez N, Pucci C, Bertorelli R, Ciofani G. Drug-Loaded Lipid Magnetic Nanoparticles for Combined Local Hyperthermia and Chemotherapy against Glioblastoma Multiforme. ACS NANO 2023; 17:18441-18455. [PMID: 37698887 PMCID: PMC10540267 DOI: 10.1021/acsnano.3c06085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
Glioblastoma multiforme (GBM) is a devastating tumor of the central nervous system, currently missing an effective treatment. The therapeutic gold standard consists of surgical resection followed by chemotherapy (usually with temozolomide, TMZ) and/or radiotherapy. TMZ does not, however, provide significant survival benefit after completion of treatment because of development of chemoresistance and of heavy side effects of systemic administration. Improvement of conventional treatments and complementary therapies are urgently needed to increase patient survival and quality of life. Stimuli-responsive lipid-based drug delivery systems offer promising prospects to overcome the limitations of the current treatments. In this work, multifunctional lipid-based magnetic nanovectors functionalized with the peptide angiopep-2 and loaded with TMZ (Ang-TMZ-LMNVs) were tested to enhance specific GBM therapy on an in vivo model. Exposure to alternating magnetic fields (AMFs) enabled magnetic hyperthermia to be performed, that works in synergy with the chemotherapeutic agent. Studies on orthotopic human U-87 MG-Luc2 tumors in nude mice have shown that Ang-TMZ-LMNVs can accumulate and remain in the tumor after local administration without crossing over into healthy tissue, effectively suppressing tumor invasion and proliferation and significantly prolonging the median survival time when combined with the AMF stimulation. This powerful synergistic approach has proven to be a robust and versatile nanoplatform for an effective GBM treatment.
Collapse
Affiliation(s)
- Lilianne Beola
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Nerea Iturrioz-Rodríguez
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Rosalia Bertorelli
- Translational
Pharmacology, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
9
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Egea-Benavente D, Díaz-Ufano C, Gallo-Cordova Á, Palomares FJ, Cuya Huaman JL, Barber DF, Morales MDP, Balachandran J. Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390112 DOI: 10.1021/acsami.3c03254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Magnetic iron oxide mesocrystals have been reported to exhibit collective magnetic properties and consequently enhanced heating capabilities under alternating magnetic fields. However, there is no universal mechanism to fully explain the formation pathway that determines the particle diameter, crystal size, and shape of these mesocrystals and their evolution along with the reaction. In this work, we have analyzed the formation of cubic magnetic iron oxide mesocrystals by thermal decomposition in organic media. We have observed that a nonclassical pathway leads to mesocrystals via the attachment of crystallographically aligned primary cubic particles and grows through sintering with time to achieve a sizable single crystal. In this case, the solvent 1-octadecene and the surfactant agent biphenyl-4-carboxylic acid seem to be the key parameters to form cubic mesocrystals as intermediates of the reaction in the presence of oleic acid. Interestingly, the magnetic properties and hyperthermia efficiency of the aqueous suspensions strongly depend on the degree of aggregation of the cores forming the final particle. The highest saturation magnetization and specific absorption rate values were found for the less aggregated mesocrystals. Thus, these cubic magnetic iron oxide mesocrystals stand out as an excellent alternative for biomedical applications with their enhanced magnetic properties.
Collapse
Affiliation(s)
- David Egea-Benavente
- Department of Immunology, and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Díaz-Ufano
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Álvaro Gallo-Cordova
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Francisco Javier Palomares
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Jhon Lehman Cuya Huaman
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki aza aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Domingo F Barber
- Department of Immunology, and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - María Del Puerto Morales
- Department of Nanoscience and Nanotechnology, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049 Madrid, Spain
| | - Jeyadevan Balachandran
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki aza aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
11
|
Di Filippo LD, de Carvalho SG, Duarte JL, Luiz MT, Paes Dutra JA, de Paula GA, Chorilli M, Conde J. A receptor-mediated landscape of druggable and targeted nanomaterials for gliomas. Mater Today Bio 2023; 20:100671. [PMID: 37273792 PMCID: PMC10238751 DOI: 10.1016/j.mtbio.2023.100671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Gliomas are the most common type of brain cancer, and among them, glioblastoma multiforme (GBM) is the most prevalent (about 60% of cases) and the most aggressive type of primary brain tumor. The treatment of GBM is a major challenge due to the pathophysiological characteristics of the disease, such as the presence of the blood-brain barrier (BBB), which prevents and regulates the passage of substances from the bloodstream to the brain parenchyma, making many of the chemotherapeutics currently available not able to reach the brain in therapeutic concentrations, accumulating in non-target organs, and causing considerable adverse effects for the patient. In this scenario, nanocarriers emerge as tools capable of improving the brain bioavailability of chemotherapeutics, in addition to improving their biodistribution and enhancing their uptake in GBM cells. This is possible due to its nanometric size and surface modification strategies, which can actively target nanocarriers to elements overexpressed by GBM cells (such as transmembrane receptors) related to aggressive development, drug resistance, and poor prognosis. In this review, an overview of the most frequently overexpressed receptors in GBM cells and possible approaches to chemotherapeutic delivery and active targeting using nanocarriers will be presented.
Collapse
Affiliation(s)
| | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Geanne Aparecida de Paula
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Scale-up approach for the preparation of magnetic ferrite nanocubes and other shapes with benchmark performance for magnetic hyperthermia applications. Nat Protoc 2023; 18:783-809. [PMID: 36707724 DOI: 10.1038/s41596-022-00779-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/28/2023]
Abstract
Magnetic nanoparticles are increasingly used in medical applications, including cancer treatment by magnetic hyperthermia. This protocol describes a solvothermal-based process to prepare, at the gram scale, ferrite nanoparticles with well-defined shape, i.e., nanocubes, nanostars and other faceted nanoparticles, and with fine control of structural/magnetic properties to achieve point-of-reference magnetic hyperthermia performance. This straightforward method comprises simple steps: (i) making a homogeneous alcoholic solution of a surfactant and an alkyl amine; (ii) adding an organometallic metal precursor together with an aldehyde molecule, which acts as the key shape directing agent; and (iii) reacting the mixture in an autoclave for solvothermal crystallization. The shape of the ferrite nanoparticles can be controlled by the structure of the aldehyde ligand. Benzaldehyde and its aromatic derivatives favor the formation of cubic ferrite nanoparticles while aliphatic aldehydes result in spherical nanoparticles. The replacement of the primary amine, used in the nanocubes synthesis, with a secondary/tertiary amine results in nanoparticles with star-like shape. The well-defined control in terms of shape, narrow size distribution (below 5%), compositional tuning and crystallinity guarantees the preparation, at the gram scale, of nanocubes/star-like nanoparticles that possess, under magnetic field conditions of clinical use, specific adsorption rates comparable to or even superior to those obtained through thermal decomposition methods, which are typically prepared at the milligram scale. Here, gram-scale nanoparticle products with benchmark features for magnetic hyperthermia applications can be prepared in ~10 h with an average level of expertise in chemistry.
Collapse
|
13
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Portilla Y, Fernández-Afonso Y, Pérez-Yagüe S, Mulens-Arias V, Morales MP, Gutiérrez L, Barber DF. Different coatings on magnetic nanoparticles dictate their degradation kinetics in vivo for 15 months after intravenous administration in mice. J Nanobiotechnology 2022; 20:543. [PMID: 36578018 PMCID: PMC9795732 DOI: 10.1186/s12951-022-01747-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The surface coating of iron oxide magnetic nanoparticle (MNPs) drives their intracellular trafficking and degradation in endolysosomes, as well as dictating other cellular outcomes. As such, we assessed whether MNP coatings might influence their biodistribution, their accumulation in certain organs and their turnover therein, processes that must be understood in vivo to optimize the design of nanoformulations for specific therapeutic/diagnostic needs. RESULTS In this study, three different MNP coatings were analyzed, each conferring the identical 12 nm iron oxide cores with different physicochemical characteristics: 3-aminopropyl-triethoxysilane (APS), dextran (DEX), and dimercaptosuccinic acid (DMSA). When the biodistribution of these MNPs was analyzed in C57BL/6 mice, they all mainly accumulated in the spleen and liver one week after administration. The coating influenced the proportion of the MNPs in each organ, with more APS-MNPs accumulating in the spleen and more DMSA-MNPs accumulating in the liver, remaining there until they were fully degraded. The changes in the physicochemical properties of the MNPs (core size and magnetic properties) was also assessed during their intracellular degradation when internalized by two murine macrophage cell lines. The decrease in the size of the MNPs iron core was influenced by their coating and the organ in which they accumulated. Finally, MNP degradation was analyzed in the liver and spleen of C57BL/6 mice from 7 days to 15 months after the last intravenous MNP administration. CONCLUSIONS The MNPs degraded at different rates depending on the organ and their coating, the former representing the feature that was fundamental in determining the time they persisted. In the liver, the rate of degradation was similar for all three coatings, and it was faster than in the spleen. This information regarding the influence of coatings on the in vivo degradation of MNPs will help to choose the best coating for each biomedical application depending on the specific clinical requirements.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Yilian Fernández-Afonso
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
| | - Vladimir Mulens-Arias
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain
- Integrative Biomedical Materials and Nanomedicine Laboratory, Department of Medicine and Life Sciences (MELIS), Pompeu Fabra University, Carrer Doctor Aiguader 88, 08003, Barcelona, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de La Cruz 3, 28049, Madrid, Spain
| | - Lucía Gutiérrez
- Departamento de Química Analítica, Instituto de Nanociencia Y Materiales de Aragón (INMA), Universidad de Zaragoza, CSIC and CIBER-BBN, 50018, Zaragoza, Spain.
| | - Domingo F Barber
- Department of Immunology and Oncology and the NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
15
|
Magnetic Iron Nanoparticles: Synthesis, Surface Enhancements, and Biological Challenges. Processes (Basel) 2022. [DOI: 10.3390/pr10112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This review focuses on the role of magnetic nanoparticles (MNPs), their physicochemical properties, their potential applications, and their association with the consequent toxicological effects in complex biologic systems. These MNPs have generated an accelerated development and research movement in the last two decades. They are solving a large portion of problems in several industries, including cosmetics, pharmaceuticals, diagnostics, water remediation, photoelectronics, and information storage, to name a few. As a result, more MNPs are put into contact with biological organisms, including humans, via interacting with their cellular structures. This situation will require a deeper understanding of these particles’ full impact in interacting with complex biological systems, and even though extensive studies have been carried out on different biological systems discussing toxicology aspects of MNP systems used in biomedical applications, they give mixed and inconclusive results. Chemical agencies, such as the Registration, Evaluation, Authorization, and Restriction of Chemical substances (REACH) legislation for registration, evaluation, and authorization of substances and materials from the European Chemical Agency (ECHA), have held meetings to discuss the issue. However, nanomaterials (NMs) are being categorized by composition alone, ignoring the physicochemical properties and possible risks that their size, stability, crystallinity, and morphology could bring to health. Although several initiatives are being discussed around the world for the correct management and disposal of these materials, thanks to the extensive work of researchers everywhere addressing the issue of related biological impacts and concerns, and a new nanoethics and nanosafety branch to help clarify and bring together information about the impact of nanoparticles, more questions than answers have arisen regarding the behavior of MNPs with a wide range of effects in the same tissue. The generation of a consolidative framework of these biological behaviors is necessary to allow future applications to be manageable.
Collapse
|
16
|
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, Hassanpour A. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203567. [PMID: 36296756 PMCID: PMC9611246 DOI: 10.3390/nano12203567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Iron oxide nanoparticle (IONPs) have become a subject of interest in various biomedical fields due to their magnetism and biocompatibility. They can be utilized as heat mediators in magnetic hyperthermia (MHT) or as contrast media in magnetic resonance imaging (MRI), and ultrasound (US). In addition, their high drug-loading capacity enabled them to be therapeutic agent transporters for malignancy treatment. Hence, smartening them allows for an intelligent controlled drug release (CDR) and targeted drug delivery (TDD). Smart magnetic nanoparticles (SMNPs) can overcome the impediments faced by classical chemo-treatment strategies, since they can be navigated and release drug via external or internal stimuli. Recently, they have been synchronized with other modalities, e.g., MRI, MHT, US, and for dual/multimodal theranostic applications in a single platform. Herein, we provide an overview of the attributes of MNPs for cancer theranostic application, fabrication procedures, surface coatings, targeting approaches, and recent advancement of SMNPs. Even though MNPs feature numerous privileges over chemotherapy agents, obstacles remain in clinical usage. This review in particular covers the clinical predicaments faced by SMNPs and future research scopes in the field of SMNPs for cancer theranostics.
Collapse
Affiliation(s)
- Elham Aram
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan 49188-88369, Iran
| | - Masome Moeni
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
| | - Hamid Sadeghi-Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol 47138-18981, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Jabbar Gardy
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| | - Ali Hassanpour
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: (J.G.); (A.H.)
| |
Collapse
|
17
|
Shava B, Ayodeji FD, Rahdar A, Iqbal HM, Bilal M. Magnetic nanoparticles-based systems for multifaceted biomedical applications. J Drug Deliv Sci Technol 2022; 74:103616. [DOI: 10.1016/j.jddst.2022.103616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Gawel AM, Singh R, Debinski W. Metal-Based Nanostructured Therapeutic Strategies for Glioblastoma Treatment-An Update. Biomedicines 2022; 10:1598. [PMID: 35884903 PMCID: PMC9312866 DOI: 10.3390/biomedicines10071598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/29/2022] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most commonly diagnosed and most lethal primary malignant brain tumor in adults. Standard treatments are ineffective, and despite promising results obtained in early phases of experimental clinical trials, the prognosis of GBM remains unfavorable. Therefore, there is need for exploration and development of innovative methods that aim to establish new therapies or increase the effectiveness of existing therapies. One of the most exciting new strategies enabling combinatory treatment is the usage of nanocarriers loaded with chemotherapeutics and/or other anticancer compounds. Nanocarriers exhibit unique properties in antitumor therapy, as they allow highly efficient drug transport into cells and sustained intracellular accumulation of the delivered cargo. They can be infused into and are retained by GBM tumors, and potentially can bypass the blood-brain barrier. One of the most promising and extensively studied groups of nanostructured therapeutics are metal-based nanoparticles. These theranostic nanocarriers demonstrate relatively low toxicity, thus they might be applied for both diagnosis and therapy. In this article, we provide an update on metal-based nanostructured constructs in the treatment of GBM. We focus on the interaction of metal nanoparticles with various forms of electromagnetic radiation for use in photothermal, photodynamic, magnetic hyperthermia and ionizing radiation sensitization applications.
Collapse
Affiliation(s)
- Agata M. Gawel
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
19
|
Fernández-Afonso Y, Asín L, Beola L, Moros M, M. de la Fuente J, Fratila RM, Grazú V, Gutiérrez L. Iron Speciation in Animal Tissues Using AC Magnetic Susceptibility Measurements: Quantification of Magnetic Nanoparticles, Ferritin, and Other Iron-Containing Species. ACS APPLIED BIO MATERIALS 2022; 5:1879-1889. [PMID: 35179873 PMCID: PMC9115797 DOI: 10.1021/acsabm.1c01200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
The simultaneous detection and quantification of several iron-containing species in biological matrices is a challenging issue. Especially in the frame of studies using magnetic nanoparticles for biomedical applications, no gold-standard technique has been described yet and combinations of different techniques are generally used. In this work, AC magnetic susceptibility measurements are used to analyze different organs from an animal model that received a single intratumor administration of magnetic nanoparticles. The protocol used for the quantification of iron associated with the magnetic nanoparticles is carefully described, including the description of the preparation of several calibration standard samples of nanoparticle suspensions with different degrees of dipolar interactions. The details for the quantitative analysis of other endogenous iron-containing species such as ferritin or hemoglobin are also described. Among the advantages of this technique are that tissue sample preparation is minimal and that large amounts of tissue can be characterized each time (up to hundreds of milligrams). In addition, the very high specificity of the magnetic measurements allows for tracking of the nanoparticle transformations. Furthermore, the high sensitivity of the instrumentation results in very low limits of detection for some of the iron-containing species. Therefore, the presented technique is an extremely valuable tool to track iron oxide magnetic nanoparticles in samples of biological origin.
Collapse
Affiliation(s)
- Yilian Fernández-Afonso
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Departamento
de Química Analítica, Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Laura Asín
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
| | - Lilianne Beola
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
| | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
| | - Jesús M. de la Fuente
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
| | - Raluca M. Fratila
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
- Departamento
de Química Orgánica, Universidad
de Zaragoza, Zaragoza 50009, Spain
| | - Valeria Grazú
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
| | - Lucía Gutiérrez
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50018, Spain
- Departamento
de Química Analítica, Universidad
de Zaragoza, Zaragoza 50009, Spain
- Centro
de Investigación Biomédica en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018 Spain
| |
Collapse
|
20
|
Garcés V, González A, Gálvez N, Delgado-López JM, Calvino JJ, Trasobares S, Fernández-Afonso Y, Gutiérrez L, Dominguez-Vera JM. Magneto-optical hyperthermia agents based on probiotic bacteria loaded with magnetic and gold nanoparticles. NANOSCALE 2022; 14:5716-5724. [PMID: 35348133 PMCID: PMC9008706 DOI: 10.1039/d1nr08513a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 05/06/2023]
Abstract
Probiotic bacteria were used as carriers of metallic nanoparticles to develop innovative oral agents for hyperthermia cancer therapy. Two synthetic strategies were used to produce the different therapeutic agents. First, the probiotic bacterium Lactobacillus fermentum was simultaneously loaded with magnetic (MNPs) and gold nanoparticles (AuNPs) of different morphologies to produce AuNP + MNP-bacteria systems with both types of nanoparticles arranged in the same layer of bacterial exopolysaccharides (EPS). In the second approach, the probiotic was first loaded with AuNP to form AuNP-bacteria and subsequently loaded with MNP-EPS to yield AuNP-bacteria-EPS-MNP with the MNP and AuNP arranged in two different EPS layers. This second strategy has never been reported and exploits the presence of EPS-EPS recognition which allows the layer-by-layer formation of structures on the bacteria external wall. The AuNP + MNP-bacteria and AuNP-bacteria-EPS-MNP samples were characterized by scanning (SEM) and transmission electron microscopy (TEM), and UV-vis spectroscopy. The potential of these two heterobimetallic systems as magnetic hyperthermia or photothermal therapy agents was assessed, validating their capacity to produce heat either during exposure to an alternating magnetic field or near-infrared laser light. The probiotic Lactobacillus fermentum has already been proposed as an oral drug carrier, able to overcome the stomach medium and deliver drugs to the intestines, and it is actually marketed as an oral supplement to reinforce the gut microbiota, thus, our results open the way for the development of novel therapeutic strategies using these new heterobimetallic AuNP/MNP-bacteria systems in the frame of gastric diseases, using them, for example, as oral agents for cancer treatment with magnetic hyperthermia and photothermal therapy.
Collapse
Affiliation(s)
- Víctor Garcés
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Ana González
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Natividad Gálvez
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - José M Delgado-López
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| | - Jose J Calvino
- Departamento Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Susana Trasobares
- Departamento Ciencia de Materiales e Ingeniería Metalúrgica y Química Inorgánica, Universidad de Cádiz, 11510 Cádiz, Spain
| | - Yilian Fernández-Afonso
- Departamento de Química Analítica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza and CIBER-BBN, 50018 Zaragoza, Spain.
| | - Lucía Gutiérrez
- Departamento de Química Analítica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza and CIBER-BBN, 50018 Zaragoza, Spain.
| | - José M Dominguez-Vera
- Departamento de Química Inorgánica and Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
21
|
Dhar D, Ghosh S, Das S, Chatterjee J. A review of recent advances in magnetic nanoparticle-based theranostics of glioblastoma. Nanomedicine (Lond) 2022; 17:107-132. [PMID: 35000429 DOI: 10.2217/nnm-2021-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Rapid vascular growth, infiltrative cells and high tumor heterogenicity are some glioblastoma multiforme (GBM) characteristics, making it the most lethal form of brain cancer. Low efficacy of the conventional treatment modalities leads to rampant disease progression and a median survival of 15 months. Magnetic nanoparticles (MNPs), due to their unique physical features/inherent abilities, have emerged as a suitable theranostic platform for targeted GBM treatment. Thus, new strategies are being designed to enhance the efficiency of existing therapeutic techniques such as chemotherapy, radiotherapy, and so on, using MNPs. Herein, the limitations of the current therapeutic strategies, the role of MNPs in mitigating those inadequacies, recent advances in the MNP-based theranostics of GBM and possible future directions are discussed.
Collapse
Affiliation(s)
- Dhruba Dhar
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Swachhatoa Ghosh
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Soumen Das
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Sciences & Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
22
|
Zeinoun M, Domingo-Diez J, Rodriguez-Garcia M, Garcia O, Vasic M, Ramos M, Serrano Olmedo JJ. Enhancing Magnetic Hyperthermia Nanoparticle Heating Efficiency with Non-Sinusoidal Alternating Magnetic Field Waveforms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3240. [PMID: 34947589 PMCID: PMC8704388 DOI: 10.3390/nano11123240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 01/23/2023]
Abstract
For decades now, conventional sinusoidal signals have been exclusively used in magnetic hyperthermia as the only alternating magnetic field waveform to excite magnetic nanoparticles. However, there are no theoretical nor experimental reasons that prevent the use of different waveforms. The only justifiable motive behind using the sinusoidal signal is its availability and the facility to produce it. Following the development of a configurable alternating magnetic field generator, we aim to study the effect of various waveforms on the heat production effectiveness of magnetic nanoparticles, seeking to prove that signals with more significant slope values, such as the trapezoidal and almost-square signals, allow the nanoparticles to reach higher efficiency in heat generation. Furthermore, we seek to point out that the nanoparticle power dissipation is dependent on the waveform's slope and not only the frequency, magnetic field intensity and the nanoparticle size. The experimental results showed a remarkably higher heat production performance of the nanoparticles when exposed to trapezoidal and almost-square signals than conventional sinusoidal signals. We conclude that the nanoparticles respond better to the trapezoidal and almost-square signals. On the other hand, the experimental results were used to calculate the normalized power dissipation value and prove its dependency on the slope. However, adjustments are necessary to the coil before proceeding with in vitro and in vivo studies to handle the magnetic fields required.
Collapse
Affiliation(s)
- Michael Zeinoun
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Javier Domingo-Diez
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Rodriguez-Garcia
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Oscar Garcia
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Miroslav Vasic
- Centro de Electrónica Industrial, Universidad Politécnica de Madrid (UPM), 28006 Madrid, Spain; (O.G.); (M.V.)
| | - Milagros Ramos
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - José Javier Serrano Olmedo
- Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Campus Montegancedo, 28233 Madrid, Spain; (J.D.-D.); (M.R.-G.); (M.R.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
23
|
Ovejero JG, Spizzo F, Morales MP, Del Bianco L. Nanoparticles for Magnetic Heating: When Two (or More) Is Better Than One. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6416. [PMID: 34771940 PMCID: PMC8585339 DOI: 10.3390/ma14216416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/16/2023]
Abstract
The increasing use of magnetic nanoparticles as heating agents in biomedicine is driven by their proven utility in hyperthermia therapeutic treatments and heat-triggered drug delivery methods. The growing demand of efficient and versatile nanoheaters has prompted the creation of novel types of magnetic nanoparticle systems exploiting the magnetic interaction (exchange or dipolar in nature) between two or more constituent magnetic elements (magnetic phases, primary nanoparticles) to enhance and tune the heating power. This process occurred in parallel with the progress in the methods for the chemical synthesis of nanostructures and in the comprehension of magnetic phenomena at the nanoscale. Therefore, complex magnetic architectures have been realized that we classify as: (a) core/shell nanoparticles; (b) multicore nanoparticles; (c) linear aggregates; (d) hybrid systems; (e) mixed nanoparticle systems. After a general introduction to the magnetic heating phenomenology, we illustrate the different classes of nanoparticle systems and the strategic novelty they represent. We review some of the research works that have significantly contributed to clarify the relationship between the compositional and structural properties, as determined by the synthetic process, the magnetic properties and the heating mechanism.
Collapse
Affiliation(s)
- Jesus G. Ovejero
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
- Servicio de Dosimetría y Radioprotección, Hospital General Universitario Gregorio Marañón, E-28007 Madrid, Spain
| | - Federico Spizzo
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| | - M. Puerto Morales
- Departamento de Energía, Medio Ambiente y Salud, Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, E-28049 Madrid, Spain; (J.G.O.); (M.P.M.)
| | - Lucia Del Bianco
- Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy;
| |
Collapse
|
24
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
25
|
Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers (Basel) 2021; 13:cancers13184583. [PMID: 34572810 PMCID: PMC8465027 DOI: 10.3390/cancers13184583] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Magnetic hyperthermia therapy is an alternative treatment for cancer that complements traditional therapies and that has shown great promise in recent years. In this review, we assess the current applications of this therapy in order to understand why its translation from the laboratory to the clinic has been less smooth than was anticipated, identifying the possible bottlenecks and proposing solutions to the problems encountered. Abstract Hyperthermia has emerged as a promising alternative to conventional cancer therapies and in fact, traditional hyperthermia is now commonly used in combination with chemotherapy or surgery during cancer treatment. Nevertheless, non-specific application of hyperthermia generates various undesirable side-effects, such that nano-magnetic hyperthermia has arisen a possible solution to this problem. This technique to induce hyperthermia is based on the intrinsic capacity of magnetic nanoparticles to accumulate in a given target area and to respond to alternating magnetic fields (AMFs) by releasing heat, based on different principles of physics. Unfortunately, the clinical implementation of nano-magnetic hyperthermia has not been fluid and few clinical trials have been carried out. In this review, we want to demonstrate the need for more systematic and basic research in this area, as many of the sub-cellular and molecular mechanisms associated with this approach remain unclear. As such, we shall consider here the biological effects that occur and why this theoretically well-designed nano-system fails in physiological conditions. Moreover, we will offer some guidelines that may help establish successful strategies through the rational design of magnetic nanoparticles for magnetic hyperthermia.
Collapse
|
26
|
Bao J, Guo S, Zu X, Zhuang Y, Fan D, Zhang Y, Shi Y, Ji Z, Cheng J, Pang X. Polypyrrole-Coated Magnetite Vortex Nanoring for Hyperthermia-Boosted Photothermal/Magnetothermal Tumor Ablation Under Photoacoustic/Magnetic Resonance Guidance. Front Bioeng Biotechnol 2021; 9:721617. [PMID: 34395410 PMCID: PMC8363262 DOI: 10.3389/fbioe.2021.721617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Photothermal/magnetothermal-based hyperthermia cancer therapy techniques have been widely investigated, and associated nanotechnology-assisted treatments have shown promising clinical potentials. However, each method has some limitations, which have impeded extensive applications. For example, the penetration ability of the photothermal is not satisfactory, while the heating efficiency of the magnetothermal is very poor. In this study, a novel magnetite vortex nanoring nanoparticle-coated with polypyrrole (denoted as nanoring Fe3O4@PPy-PEG) was first synthesized and well-characterized. By combining photothermal and magnetothermal effects, the performance of the dual-enhanced hyperthermia was significantly improved, and was thoroughly examined in this study. Benefiting from the magnetite vortex nanoring and polypyrrole, Fe3O4@PPy-PEG showed excellent hyperthermia effects (SAR = 1,648 Wg-1) when simultaneously exposed to the alternating magnetic field (300 kHz, 45 A) and near-infrared (808 nm, 1 W cm-2) laser. What is more, nanoring Fe3O4@PPy-PEG showed a much faster heating rate, which can further augment the antitumor effect by incurring vascular disorder. Besides, Fe3O4@PPy-PEG exhibited a high transverse relaxation rate [60.61 mM-1 S-1 (Fe)] at a very low B0 field (0.35 T) and good photoacoustic effect. We believe that the results obtained herein can significantly promote the development of multifunctional nanoparticle-mediated magnetic and photo induced efficient hyperthermia therapy.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuangshuang Guo
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yuchuan Zhuang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Dandan Fan
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yupeng Shi
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ji
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Ali A, Shah T, Ullah R, Zhou P, Guo M, Ovais M, Tan Z, Rui Y. Review on Recent Progress in Magnetic Nanoparticles: Synthesis, Characterization, and Diverse Applications. Front Chem 2021; 9:629054. [PMID: 34327190 PMCID: PMC8314212 DOI: 10.3389/fchem.2021.629054] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Diverse applications of nanoparticles (NPs) have revolutionized various sectors in society. In the recent decade, particularly magnetic nanoparticles (MNPs) have gained enormous interest owing to their applications in specialized areas such as medicine, cancer theranostics, biosensing, catalysis, agriculture, and the environment. Controlled surface engineering for the design of multi-functional MNPs is vital for achieving desired application. The MNPs have demonstrated great efficacy as thermoelectric materials, imaging agents, drug delivery vehicles, and biosensors. In the present review, first we have briefly discussed main synthetic methods of MNPs, followed by their characterizations and composition. Then we have discussed the potential applications of MNPs in different with representative examples. At the end, we gave an overview on the current challenges and future prospects of MNPs. This comprehensive review not only provides the mechanistic insight into the synthesis, functionalization, and application of MNPs but also outlines the limits and potential prospects.
Collapse
Affiliation(s)
- Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Tufail Shah
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Rehmat Ullah
- Key Laboratory of Crop Heterosis and Utilization (MOE)/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Manlin Guo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - YuKui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
28
|
Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy. J Control Release 2021; 336:549-571. [PMID: 34229001 DOI: 10.1016/j.jconrel.2021.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is abnormal cell proliferation of glial cells. GBM is the grade IV glioma brain cancer which is life-threatening to many individuals affected by this cancer. The DNA alkylating agent Temozolomide (TMZ) has the distinctiveness of being FDA approved anticancer drug for the first line treatment for GBM. However, treatment of GBM still remains a challenge. This is attributed to TMZ's toxic nature, severe side effects, and fast degradation in vivo. In addition, the lack of targeting ability increases the chances of systemic toxicities. A nano enabled targeted delivery system not only improves the efficiency of TMZ by making it cross the blood brain barrier, have specificity to target, but also reduces toxicity to healthy tissues. Over the last decade the significant advances in the area of nanotechnology applied to medicine have developed many multifunctional therapeutics. In this context, the present review article comprehends the significant progress in the field of TMZ loaded nanocarriers showing promise for futuristic nanomedicine therapies in treating GBM.
Collapse
|
29
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 484] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
30
|
Fang Y, He Y, Wu C, Zhang M, Gu Z, Zhang J, Liu E, Xu Q, Asrorov AM, Huang Y. Magnetism-mediated targeting hyperthermia-immunotherapy in "cold" tumor with CSF1R inhibitor. Am J Cancer Res 2021; 11:6860-6872. [PMID: 34093858 PMCID: PMC8171105 DOI: 10.7150/thno.57511] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Immunotherapy has profoundly changed the landscape of cancer management and represented the most significant breakthrough. Yet, it is a formidable challenge that the majority of cancers - the so-called “cold” tumors - poorly respond to immunotherapy. To find a general immunoregulatory modality that can be applied to a broad spectrum of cancers is an urgent need. Methods: Magnetic hyperthermia (MHT) possesses promise in cancer therapy. We develop a safe and effective therapeutic strategy by using magnetism-mediated targeting MHT-immunotherapy in “cold” colon cancer. A magnetic liposomal system modified with cell-penetrating TAT peptide was developed for targeted delivery of a CSF1R inhibitor (BLZ945), which can block the CSF1-CSF1R pathway and reduce M2 macrophages. The targeted delivery strategy is characterized by its magnetic navigation and TAT-promoting intratumoral penetration. Results: The liposomes (termed TAT-BLZmlips) can induce ICD and cause excessive CRT exposure on the cell surface, which transmits an “eat-me” signal to DCs to elicit immunity. The combination of MHT and BLZ945 can repolarize M2 macrophages in the tumor microenvironment to relieve immunosuppression, normalize the tumor blood vessels, and promote T-lymphocyte infiltration. The antitumor effector CD8+ T cells were increased after treatment. Conclusion: This work demonstrated that TAT-BLZmlips with magnetic navigation and MHT can remodel tumor microenvironment and activate immune responses and memory, thus inhibiting tumor growth and recurrence.
Collapse
|
31
|
Portilla Y, Mellid S, Paradela A, Ramos-Fernández A, Daviu N, Sanz-Ortega L, Pérez-Yagüe S, Morales MP, Barber DF. Iron Oxide Nanoparticle Coatings Dictate Cell Outcomes Despite the Influence of Protein Coronas. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7924-7944. [PMID: 33587585 DOI: 10.1021/acsami.0c20066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A critical issue in nanomedicine is to understand the complex dynamics that dictate the interactions of nanoparticles (NPs) with their biological milieu. The most exposed part of a nanoparticle is its surface coating, which comes into contact with the biological medium and adsorbs proteins, forming what is known as a protein corona (PC). It is assumed that this PC mainly dictates the nanoparticle-cell interactions. As such, we set out to analyze how different coatings on iron oxide nanoparticles (MNPs) affect the composition of the PC that forms on top of them, and how these newly formed coronas influence the uptake of MNPs by macrophages and tumor cells, their subcellular location upon internalization, and their intracellular degradation. We found that different superficial charges of the coatings did not affect the PC composition, with an enrichment in proteins with affinity for divalent ions regardless of the type of coating. The iron oxide core of the MNP might become exposed to the biological medium, influencing the proteins that constitute the PCs. The presence of enzymes with hydrolase activity in the PC could explain the degradation of the coatings when they come into contact with the biological media. In terms of MNP internalization by cells, coatings mainly determine the endocytic pathways used, especially in terms of receptor-mediated endocytosis. However, the increase in hydrodynamic size provoked by the formation of the associated corona drives uptake mechanisms like macropinocytosis. Once inside the cells, the PC protected the NPs in their intracellular transit to lysosomes, where they were fully degraded. This understanding of how coatings and PCs influence different cellular processes will help design improved NPs for biomedical applications, taking into account the influence of the coating and corona on the biology of the NPs.
Collapse
Affiliation(s)
- Yadileiny Portilla
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Sara Mellid
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Alberto Paradela
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Antonio Ramos-Fernández
- Proteomics Facility, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Neus Daviu
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - Sonia Pérez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| | - María P Morales
- Department of Energy, Environment and Health, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Madrid 28049, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain
| |
Collapse
|
32
|
Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia 2021; 37:76-99. [PMID: 33426989 DOI: 10.1080/02656736.2020.1800831] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.
Collapse
Affiliation(s)
- Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Curso de Licenciatura em Física, Instituto Federal de Goiás, Goiânia, Brasil
| | - Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Campus Fronteira Oeste, Instituto Federal de Mato Grosso, Pontes e Lacerda, Brasil
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
33
|
Zhang YF, Li GL, Gao X, Zhang H, Zhang TB, Jiao WB, Chen XY, Zhu WJ, Liu XL, Fan HM. Method for Ferrite Nanomaterials-Mediated Cellular Magnetic Hyperthermia. ACS Biomater Sci Eng 2020; 6:6652-6660. [PMID: 33320607 DOI: 10.1021/acsbiomaterials.0c01443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic hyperthermia (MH) mediated by magnetic nanoparticles is one of the most promising antitumor modalities. The past several decades have witnessed great progress for MH antitumor therapy in scientific trials and clinic applications since it was initially advanced by Gilchrist et al. The ultimate object of MH in vivo is to efficiently kill cancer cells, and hence, it is of great importance to develop an optimized cellular MH method to evaluate the therapeutic efficiency in vitro. In this study, we systematically studied the considerable affecting factors of cancer cell-killing efficiency during the cellular MH process, including the region of cell vessel positioned inside the alternating magnetic field copper coil, the magnetic field amplitude, the types of cancer cells, etc. Taking all these into account, we introduced a method for standardizing the cellular MH process to evaluate the cell-killing efficiency.
Collapse
Affiliation(s)
- Yi Fan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Ga Long Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; The College of Life Sciences, School of Medicine, Northwest University, Xi'an 710069, China
| | - Xiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; The College of Life Sciences, School of Medicine, Northwest University, Xi'an 710069, China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Ting Bin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Wang Bo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Xiao Yong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Wen Jing Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; The College of Life Sciences, School of Medicine, Northwest University, Xi'an 710069, China
| | - Xiao Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; The College of Life Sciences, School of Medicine, Northwest University, Xi'an 710069, China
| | - Hai Ming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education; The College of Life Sciences, School of Medicine, Northwest University, Xi'an 710069, China
| |
Collapse
|
34
|
Romano E, Netti PA, Torino E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals (Basel) 2020; 13:ph13100319. [PMID: 33086616 PMCID: PMC7603361 DOI: 10.3390/ph13100319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are phospholipid-based particles endogenously produced by both normal and tumor cells. Initially identified as a pathway for shuttling cellular waste, for a long time they were thought to act as “garbage bags”, and only in the past few years have they emerged as a promising drug delivery system. In this review, we provide an overview of the knowledge about exosome architecture and biogenesis and the recent progress in isolation methods. Furthermore, we describe the mechanisms involved in both extra- and intracellular communication with a focus on glioma brain tumors. Glioma is considered a rare disease and is the most prominent aggressive brain malignancy. How exosomes target glial tumoral cells in vivo remains largely unknown. However, they are able to influence numerous physio-pathological aspects. Here, we discuss the role they play in this heterogeneous and complex microenvironment and their potential applications.
Collapse
Affiliation(s)
- Eugenia Romano
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-328-955-8158
| |
Collapse
|
35
|
Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102319. [PMID: 33068745 DOI: 10.1016/j.nano.2020.102319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
The goal of this study was to develop a new method based on Oncothermia with concomitant use of the temozolomide (TMZ)-loaded magnetic nanoparticles conjugated with folic acid (TMZ/MNPs-FA) and alternative magnetic field (AMF) and evaluate its efficacy in the treatment of C6 glioma in rats. TMZ/MNPs-FA were prepared and evaluated for their size, surface charge, magnetic saturation, hemolysis and in vitro AMF-triggered release. The glioma rat models were treated with free TMZ, MNPs-FA and TMZ/MNPs-FA in the presence or absence of AMF (43 °C). The results confirmed that a combinatorial therapy consisting of AFM hyperthermia and thermosensitive TMZ/MNPs-FA could significantly suppress tumor growth, increase survival rate and promote apoptosis (P < 0.0001). Therefore, this treatment strategy may be a powerful modality for treatment of cancer, as the thermal and mechanical effects of magnetic nanoparticles exposed to AMF can increase the therapeutic efficacy of conventional chemotherapy.
Collapse
|
36
|
Beola L, Asín L, Roma-Rodrigues C, Fernández-Afonso Y, Fratila RM, Serantes D, Ruta S, Chantrell RW, Fernandes AR, Baptista PV, de la Fuente JM, Grazú V, Gutiérrez L. The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43474-43487. [PMID: 32870658 DOI: 10.1021/acsami.0c12900] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1-7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.
Collapse
Affiliation(s)
- Lilianne Beola
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Laura Asín
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50009 Zaragoza, Spain
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento de Cičncias da Vida, Faculdade de Cičncias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Yilian Fernández-Afonso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Raluca M Fratila
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50009 Zaragoza, Spain
| | - David Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sergiu Ruta
- Department of Physics, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Roy W Chantrell
- Department of Physics, University of York, Heslington, YO10 5DD York, United Kingdom
| | - Alexandra R Fernandes
- UCIBIO, Departamento de Cičncias da Vida, Faculdade de Cičncias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO, Departamento de Cičncias da Vida, Faculdade de Cičncias e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50009 Zaragoza, Spain
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50009 Zaragoza, Spain
| | - Lucía Gutiérrez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50009 Zaragoza, Spain
- Department of Analytical Chemistry, Universidad de Zaragoza, Edificio I+D, 50018 Zaragoza, Spain
| |
Collapse
|
37
|
Yodsanit N, Wang B, Zhao Y, Guo LW, Kent KC, Gong S. Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials 2020; 265:120406. [PMID: 32979792 DOI: 10.1016/j.biomaterials.2020.120406] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
An abdominal aortic aneurysm (AAA) is a localized dilatation of the aorta that plagues millions. Its rupture incurs high mortality rates (~80-90%), pressing an urgent need for therapeutic methods to prevent this deadly outcome. Judiciously designed nanoparticles (NPs) have displayed a unique potential to fulfill this need. Aneurysms feature excessive inflammation and extracellular matrix (ECM) degradation. As such, typically inflammatory cells and exposed ECM proteins have been targeted with NPs for therapeutic, diagnostic, or theranostic purposes in experimental models. NPs have been used not only for encapsulation and delivery of drugs and biomolecules in preclinical tests, but also for enhanced imaging to monitor aneurysm progression in patients. Moreover, they can be readily modified with various molecules to improve lesion targeting, detectability, biocompatibility, and circulation time. This review updates on the progress, limitations, and prospects of NP applications in the context of AAA.
Collapse
Affiliation(s)
- Nisakorn Yodsanit
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bowen Wang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yi Zhao
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - K Craig Kent
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Shaoqin Gong
- Department of Biomedical Engineering, And Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA; Department of Material Science and Engineering and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53715, USA.
| |
Collapse
|
38
|
Lin Y, Zhang K, Zhang R, She Z, Tan R, Fan Y, Li X. Magnetic nanoparticles applied in targeted therapy and magnetic resonance imaging: crucial preparation parameters, indispensable pre-treatments, updated research advancements and future perspectives. J Mater Chem B 2020; 8:5973-5991. [PMID: 32597454 DOI: 10.1039/d0tb00552e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in cancer treatment as carriers for drug delivery and imaging contrast agents due to their distinctive performances based on their magnetic properties and nanoscale structure. In this review, we aim to comprehensively dissect how the applications of MNPs in targeted therapy and magnetic resonance imaging are achieved and their specificities by focusing on the following aspects: (1) several important preparation parameters (pH, temperature, ratio of the reactive substances, etc.) that have crucial effects on the properties of MNPs, (2) indispensable treatments to improve the biocompatibility, stability, and targeting ability of MNPs and prolong their circulation time for biomedical applications, (3) the mechanism for MNPs to deliver and release medicine to the desired sites and be applied in magnetic hyperthermia as well as related updated research advancements, (4) comparatively promising research directions of MNPs in magnetic resonance imaging, and (5) perspectives in the further optimization of their preparations, pre-treatments and applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yaping Lin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Ruihong Zhang
- Department of Research and Teaching, the Fourth Central Hospital of Baoding City, Baoding 072350, Hebei Province, China
| | - Zhending She
- Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057, China
| | - Rongwei Tan
- Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China. and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
39
|
Li J, Liu M, Gao J, Jiang Y, Wu L, Cheong YK, Ren G, Yang Z. AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats. Brain Behav Immun 2020; 87:645-659. [PMID: 32097763 PMCID: PMC7126810 DOI: 10.1016/j.bbi.2020.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.
Collapse
Affiliation(s)
- Junyang Li
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Meicen Liu
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jin Gao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Limin Wu
- Institute of Laser and Optoelectronics, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yuen-Ki Cheong
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Guogang Ren
- Science and Technology Research Institute, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
40
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
41
|
Castellanos-Rubio I, Rodrigo I, Olazagoitia-Garmendia A, Arriortua O, Gil de Muro I, Garitaonandia JS, Bilbao JR, Fdez-Gubieda ML, Plazaola F, Orue I, Castellanos-Rubio A, Insausti M. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27917-27929. [PMID: 32464047 PMCID: PMC8489799 DOI: 10.1021/acsami.0c03222] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Local heat generation from magnetic nanoparticles (MNPs) exposed to alternating magnetic fields can revolutionize cancer treatment. However, the application of MNPs as anticancer agents is limited by serious drawbacks. Foremost among these are the fast uptake and biodegradation of MNPs by cells and the unpredictable magnetic behavior of the MNPs when they accumulate within or around cells and tissues. In fact, several studies have reported that the heating power of MNPs is severely reduced in the cellular environment, probably due to a combination of increased viscosity and strong NP agglomeration. Herein, we present an optimized protocol to coat magnetite (Fe3O4) NPs larger than 20 nm (FM-NPs) with high molecular weight PEG molecules that avoid collective coatings, prevent the formation of large clusters of NPs and keep constant their high heating performance in environments with very different ionic strengths and viscosities (distilled water, physiological solutions, agar and cell culture media). The great reproducibility and reliability of the heating capacity of this FM-NP@PEG system in such different environments has been confirmed by AC magnetometry and by more conventional calorimetric measurements. The explanation of this behavior has been shown to lie in preserving as much as possible the magnetic single domain-type behavior of nearly isolated NPs. In vitro endocytosis experiments in a colon cancer-derived cell line indicate that FM-NP@PEG formulations with PEGs of higher molecular weight (20 kDa) are more resistant to endocytosis than formulations with smaller PEGs (5 kDa), showing quite large uptake mean-life (τ > 5 h) in comparison with other NP systems. The in vitro magnetic hyperthermia was performed at 21 mT and 650 kHz during 1 h in a pre-endocytosis stage and complete cell death was achieved 48 h posthyperthermia. These optimal FM-NP@PEG formulations with high resistance to endocytosis and predictable magnetic response will aid the progress and accuracy of the emerging era of theranostics.
Collapse
Affiliation(s)
- Idoia Castellanos-Rubio
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
- (I.C.-R.)
| | - Irati Rodrigo
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
- BC Materials, Basque Center for Materials, Applications, and Nanostructures, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ane Olazagoitia-Garmendia
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
| | - Oihane Arriortua
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Izaskun Gil de Muro
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - José S. Garitaonandia
- Departamento de Física
Aplicada II, Facultad de Ciencia y Tecnología,
UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Jose Ramón Bilbao
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic
Diseases (CIBERDEM), 28029 Madrid, Spain
| | - M. Luisa Fdez-Gubieda
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
| | - Fernando Plazaola
- Department of Electricidad
y Electrónica, Facultad de Ciencia
y Tecnología, UPV/EHU, Barrio
Sarriena s/n, 48940, Leioa, Spain
| | - Iñaki Orue
- SGIker, Servicios
Generales de Investigación, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
| | - Ainara Castellanos-Rubio
- Departamento de
Genética, Antropología Física y Fisiología
Animal, Facultad de Medicina y Enfermería, Barrio Sarriena s/n, 48940, Leioa, Spain
- Biocruces Bizkaia
Health Research Institute, Cruces Plaza, 48903, Barakaldo, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic
Diseases (CIBERDEM), 28029 Madrid, Spain
- IKERBASQUE Basque Foundation for Science, 48013, Bilbao, Spain
| | - Maite Insausti
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, UPV/EHU, Barrio Sarriena s/n, 48940, Leioa, Spain
- BC Materials, Basque Center for Materials, Applications, and Nanostructures, Barrio Sarriena s/n, 48940, Leioa, Spain
- (M.I.)
| |
Collapse
|
42
|
Zheng D, Chen D, Lin F, Wang X, Lu L, Luo S, Chen J, Xu X. LncRNA NNT-AS1 promote glioma cell proliferation and metastases through miR-494-3p/PRMT1 axis. Cell Cycle 2020; 19:1621-1631. [PMID: 32420808 DOI: 10.1080/15384101.2020.1762037] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are key players in cancer progression. However, the function of lncRNA NNT-AS1 on glioma is unclear. In the present study, a total of 73 tumor tissues and matched adjacent non-tumor tissues were collected, and glioma cell lines were cultured in vitro. mRNA expression was tested using RT-qPCR. The protein expression level was determined using the western blot assay, cell proliferation was measured using the CCK-8 and BrdU proliferation assay, and the cell cycle, cell migration and invasion were determined using flow cytometry analysis, the wound healing assay and transwell, respectively. The results showed that lncNNT-AS1 is significantly up-regulated during the early stages of glioma. In particular, high levels of NNT-AS1 are observed in glioma cell lines compared to human astrocyte (HA) cells. Furthermore, the inhibition of lnc-NNT-AS1 by siRNA interfere attenuates the cell viability, proliferation, migration and invasion of glioma cell lines. Mechanistically, the inhibition of NNT-AS1 directly interacted with miRNA-494-3p, and positively regulated the downstream target PRMT1 in vitro. Further study proved that the overexpression of miRNA-494-3p and the inhibition of PRMT1 could attenuate both glioma cell proliferation and metastases. Collectively, our results indicated that the miR-494-3p-PRMT1 axis is involved the tumor-suppressive effects of NNT-AS1 inhibition, which sheds new light on lncRNA-directed diagnostics and the therapeutics of glioma.
Collapse
Affiliation(s)
- Dahai Zheng
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Daliang Chen
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Famu Lin
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Xiang Wang
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Lenian Lu
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Shi Luo
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Jianmin Chen
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital of Southern Medical University (The First People's Hospital of Shunde Foshan) , Foshan, Guangdong, China
| |
Collapse
|
43
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
44
|
Therapeutic Efficiency of Multiple Applications of Magnetic Hyperthermia Technique in Glioblastoma Using Aminosilane Coated Iron Oxide Nanoparticles: In Vitro and In Vivo Study. Int J Mol Sci 2020; 21:ijms21030958. [PMID: 32023985 PMCID: PMC7038138 DOI: 10.3390/ijms21030958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetic hyperthermia (MHT) has been shown as a promising alternative therapy for glioblastoma (GBM) treatment. This study consists of three parts: The first part evaluates the heating potential of aminosilane-coated superparamagnetic iron oxide nanoparticles (SPIONa). The second and third parts comprise the evaluation of MHT multiple applications in GBM model, either in vitro or in vivo. The obtained heating curves of SPIONa (100 nm, +20 mV) and their specific absorption rates (SAR) stablished the best therapeutic conditions for frequencies (309 kHz and 557 kHz) and magnetic field (300 Gauss), which were stablished based on three in vitro MHT application in C6 GBM cell line. The bioluminescence (BLI) signal decayed in all applications and parameters tested and 309 kHz with 300 Gauss have shown to provide the best therapeutic effect. These parameters were also established for three MHT applications in vivo, in which the decay of BLI signal correlates with reduced tumor and also with decreased tumor glucose uptake assessed by positron emission tomography (PET) images. The behavior assessment showed a slight improvement after each MHT therapy, but after three applications the motor function displayed a relevant and progressive improvement until the latest evaluation. Thus, MHT multiple applications allowed an almost total regression of the GBM tumor in vivo. However, futher evaluations after the therapy acute phase are necessary to follow the evolution or tumor total regression. BLI, positron emission tomography (PET), and spontaneous locomotion evaluation techniques were effective in longitudinally monitoring the therapeutic effects of the MHT technique.
Collapse
|
45
|
Sharma HS, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Tian ZR, Sahib S, Bryukhovetskiy I, Bryukhovetskiy A, Buzoianu AD, Patnaik R, Wiklund L, Sharma A. Pathophysiology of blood-brain barrier in brain tumor. Novel therapeutic advances using nanomedicine. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:1-66. [PMID: 32448602 DOI: 10.1016/bs.irn.2020.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|