1
|
Yan Q, Xiao J, Gui R, Chen Z, Li Y, Zhu T, Wang Q, Xin Y. Mechanistic Insight into the Promotion of the Low-Temperature NH 3-SCR Activity over NiMnFeO x LDO Catalysts: A Combined Experimental and DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20708-20717. [PMID: 38032314 DOI: 10.1021/acs.est.3c06849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Mn-based catalysts have attracted much attention in the field of the low-temperature NH3 selective catalytic reduction (NH3-SCR) of NO. However, their poor SO2 resistance, low N2 selectivity, and narrow operation window limit the industrial application of Mn-based oxide catalysts. In this work, NiMnFeOx catalysts were prepared by the layered double hydroxide (LDH)-derived oxide method, and the optimized Ni0.5Mn0.5Fe0.5Ox catalyst had the best denitration activity, excellent N2 selectivity, a wider active temperature range (100-250 °C), higher thermal stability, and better H2O and/or SO2 resistance. A transient reaction revealed that Ni0.5Mn0.5Fe0.5Ox inhibited the NH3 + O2 + NOx pathway to generate N2O, which may be the main reason for its improved N2 selectivity. Combining experimental measurements and density functional theory (DFT) calculations, we elucidated at the atomic level that sulfated NiMnFeOx (111) induces the adjustment of the acidity/basicity of up and down spins and the ligand field reconfiguration of the Mn sites, which improves the overall reactivity of NiMnFeOx catalysts. This work provides atomic-level insights into the promotion of NH3-SCR activity by NiMnFeOx composite oxides, which are important for the practical design of future low-temperature SCR technologies.
Collapse
Affiliation(s)
- Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Jiewen Xiao
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Rongrong Gui
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Zhenyu Chen
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P.R. China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, P.R. China
| |
Collapse
|
2
|
Zhang T, Zheng Y, Zhao X, Lin M, Yang B, Yan J, Zhuang Z, Yu Y. Scalable Synthesis of Holey Deficient 2D Co/NiO Single-Crystal Nanomeshes via Topological Transformation for Efficient Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206873. [PMID: 36609921 DOI: 10.1002/smll.202206873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Preparation of holey, single-crystal, 2D nanomaterials containing in-plane nanosized pores is very appealing for the environment and energy-related applications. Herein, an in situ topological transformation is showcased of 2D layered double hydroxides (LDHs) allows scalable synthesis of holey, single-crystal 2D transition metal oxides (TMOs) nanomesh of ultrathin thickness. As-synthesized 2D Co/NiO-2 nanomesh delivers superior photocatalytic CO2 -syngas conversion efficiency (i.e., VCO of 32460 µmol h-1 g-1 CO and V H 2 ${V_{{{\rm{H}}_2}}}$ of 17840 µmol h-1 g-1 H2 ), with VCO about 7.08 and 2.53 times that of NiO and 2D Co/NiO-1 nanomesh containing larger pore size, respectively. As revealed in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the high performance of Co/NiO-2 nanomesh primarily originates from the edge sites of nanopores, which carry more defect structures (e.g., atomic steps or vacancies) than basal plane for CO2 adsorption, and from its single-crystal structure adept at charge transport. Theoretical calculation shows the topological transformation from 2D hydroxide to holey 2D oxide can be achieved, probably since the trace Co dopant induces a lattice distortion and thus a sharp decrease of the dehydration energy of hydroxide precursor. The findings can advance the design of intriguing holey 2D materials with well-defined geometric and electronic properties.
Collapse
Affiliation(s)
- Tingshi Zhang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yanting Zheng
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Xin Zhao
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Mingxiong Lin
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Bixia Yang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Jiawei Yan
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Zanyong Zhuang
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| | - Yan Yu
- College of Materials Science and Engineering Fuzhou University, New Campus, Minhou, Fujian, 350108, China
- Key Laboratory of Advanced Materials Technology, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
3
|
Wang L, Liu M, Ren S, Li X, Chen Z, Wang M, Chen T, Yang J. Recent advance for NO removal with carbonaceous material for low-temperature NH3-SCR reaction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
4
|
Liu X, Bai X, Wu W. Ultrasound-assisted green synthesis of Ru supported on LDH-CNT composites as an efficient catalyst for N-ethylcarbazole hydrogenation. ULTRASONICS SONOCHEMISTRY 2022; 91:106227. [PMID: 36410242 PMCID: PMC9679032 DOI: 10.1016/j.ultsonch.2022.106227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 06/01/2023]
Abstract
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NEC/12H-NEC) is one of the most attractive LOHCs, and it is of great significance to develop catalysts with high activity and reduce the hydrogen storage temperature. Layered double hydroxides-carbon nanotubes composites (LDH-CNT) were synthesized by a simple in-situ assembly method. Due to the introduction of CNT, a strong interaction occurred between LDH and CNT, which effectively improved the electron transfer ability of LDH-CNT. Ru/LDH-CNT catalysts were prepared via ultrasound-assisted reduction method without adding reducing agents and stabilizers. Under the cavitation effect of ultrasound, the hydroxyl groups on the surface of LDH were excited to generate hydrogen radicals (•H) with high reducibility, which successfully reduced Ru3+ to Ru NPs. Ru/LDH-3.9CNT-(300-1) catalyst was of 1.63 nm average Ru particle size with CNT amount of 3.9 wt% and the ultrasonic power of 300 W at 1 h, and its electron transfer resistance was less than that of Ru/LDH-(300-1). The synergy of ultrafine Ru NPs and fast electron transfer made it exhibit exceptional catalytic performance in NEC hydrogenation. Even if the reaction temperature was lowered to 80 °C, its hydrogenation performance was better than that of commercial Ru/Al2O3 catalyst at 120 °C. The ultrasound-assisted method is efficient, green and environmentally friendly, and the operation process is simple and economical. It is expected to be used in practical industrial production, which provides a reference for the preparation of high-activity and low-temperature hydrogen storage catalysts.
Collapse
Affiliation(s)
- Xiaoran Liu
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China
| | - Xuefeng Bai
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China; Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Wei Wu
- National Center for International Research on Catalytic Technology, Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
5
|
Fabrication of carbon doped Cu-based oxides as superior NH3-SCR catalysts via employing sodium dodecyl sulfonate intercalating CuMgAl-LDH. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Wang H, Yang M, Jin S, Zhang R, Li W, Wang Y, Huo W, Wang X, Qiao W, Ling L, Jin M. Promotion of Phosphorus on Carbon Supports for MnO
x
−CeO
2
Catalysts in Low‐Temperature NH
3
−SCR with Enhanced SO
2
Resistance. ChemistrySelect 2021. [DOI: 10.1002/slct.202100242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- He Wang
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Minghe Yang
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Shuangling Jin
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Rui Zhang
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Weifeng Li
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Yan Wang
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Wanying Huo
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Xiaorui Wang
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Licheng Ling
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Minglin Jin
- School of Materials Science and Engineering Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
7
|
Xiong ZB, Li ZZ, Du YP, Li CX, Lu W, Tian SL. Starch bio-template synthesis of W-doped CeO 2 catalyst for selective catalytic reduction of NO x with NH 3: influence of ignition temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5914-5926. [PMID: 32979181 DOI: 10.1007/s11356-020-10888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
A novel tungsten-doped CeO2 catalyst was fabricated via the sweet potato starch bio-template spread self-combustion (SSC) method to secure a high NH3-SCR activity. The study focuses on the influence of ignition temperature on the physical structure and redox properties of the synthesized catalyst and the catalytic performance of NOx reduction with NH3. These were quantitatively examined by conducting TG-DSC measurements of the starch gel, XRD analysis for the crystallites, SEM and TEM assessments for the morphology of the catalyst, XPS and H2-TPR measurements for the distribution of cerium and tungsten, and NH3-TPD assessments for the acidity of the catalyst. It is found that the ignition temperature shows an important role in the interaction of cerium and tungsten species, and the optimal ignition temperature is 500 °C. The increase of ignition temperature from 150 °C is beneficial to the interactions of species in the catalyst, depresses the formation of WO3, and refines the cubic CeO2 crystallite. The sample ignited at 500 °C shows the biggest BET surface area, the highest surface concentration of Ce species and molar ratio of Ce3+/(Ce3++Ce4+), and the most abundant surface Brønsted acid sites, which are the possible reasons for the superiority of the NH3-SCR activity. With a high GHSV of 200,000 mL (g h)-1 and the optimal ignition temperature, Ce4W2Oz-500 can achieve a steadily high NOx reduction of 80% or more at a lowered reduction temperature in the range of 250~500 °C.
Collapse
Affiliation(s)
- Zhi-Bo Xiong
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zhen-Zhuang Li
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan-Ping Du
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cheng-Xu Li
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wei Lu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Su-Le Tian
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Shandong Electric Power Engineering Consulting Institute Corp., Ltd, Jinan, 250013, China
| |
Collapse
|
8
|
Fu X, Ren X, Shen J, Jiang Y, Wang Y, Orooji Y, Xu W, Liang J. Synergistic catalytic hydrogenation of furfural to 1,2-pentanediol and 1,5-pentanediol with LDO derived from CuMgAl hydrotalcite. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Alkali metal-modified C-FDU-15: Highly efficient adsorbents for adsorption of NO and O 2 at low temperatures. J Colloid Interface Sci 2020; 577:217-232. [PMID: 32480108 DOI: 10.1016/j.jcis.2020.05.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/22/2022]
Abstract
The alkali metal (M = Na, K, Rb, and Cs)-modified C-FDU-15 (M-C-FDU-15(x); x was the M/C-FDU-15 M ratio, and equal to 0.01-0.03) samples were prepared through an in situ process, and characterized by means of the TG, XRD, TEM, EDS, N2 adsorption-desorption, O2-TPD, and CO2-TPD techniques. The (NO + O2) adsorption mechanism was investigated using the (NO + O2)-TPD and DRIFTS techniques. The results show that the sequence of (NO + O2) adsorption performance was Na-C-FDU-15(0.01) (104.1 mg/g) > K-C-FDU-15(0.01) (92.4 mg/g) > C-FDU-15 (76.2 mg/g) > Rb-C-FDU-15(0.01) (65.1 mg/g) > Cs-C-FDU-15(0.01) (62.3 mg/g). The alkali metal was uniformly distributed in C-FDU-15 and its doping enhanced the amount of the basic sites in the sample. Moreover, the optimal Na/C-FDU-15 M ratio was 0.02. (NO + O2) were chemically adsorbed mainly in the forms of nitrite (NO2-) and nitrate (NO3-) on M-C-FDU-15(x). A more amount of NO was converted to nitrate than to nitrite. There were three key factors of enhancing the (NO + O2) adsorption capacity of C-FDU-15 due to alkali metal doping: the first factor was the increasing of surface area and pore volume of the sample, the second one was the enhancement in amount of the active sites in the sample, and the third one was the smaller alkali metal ionic radius in the sample.
Collapse
|
10
|
Wang Y, Ji X, Meng H, Qu L, Wu X. Fabrication of high-silica Cu/ZSM-5 with confinement encapsulated Cu-based active species for NH3-SCR. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.105969] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Du Y, Liu J, Li X, Liu L, Wu X. SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs‐Based precursor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical EngineeringJinzhong University Jinzhong 030619 People's Republic of China
| | - Jiangning Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xiaojian Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Lili Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xu Wu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| |
Collapse
|
12
|
Du Y, Liu L, Feng Y, Yang B, Wu X. Enhancement of NH 3-SCR performance of LDH-based MMnAl (M = Cu, Ni, Co) oxide catalyst: influence of dopant M. RSC Adv 2019; 9:39699-39708. [PMID: 35541372 PMCID: PMC9076116 DOI: 10.1039/c9ra08391j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/14/2019] [Indexed: 12/28/2022] Open
Abstract
Transition metal (Cu, Ni, Co) doped MnAl mixed oxide catalysts were prepared through a novel method involving the calcination of hydrotalcite precursors for the selective catalytic reduction of NO x with NH3 (NH3-SCR). The effects of transition metal modification were confirmed by means of XRD, BET, TEM, XPS, NH3-TPD, and H2-TPR measurements. Experimental results evidenced that CoMnAl-LDO presented the highest NO x removal efficiency of over 80% and a relatively high N2 selectivity of over 88% in a broad working temperature range (150-300 °C) among all the samples studied. Moreover, the CoMnAl-LDO sample possessed better stability and excellent resistance to H2O and SO2. The reasons for such results could be associated with the good dispersion of Co3O4 and MnO x , which could consequently provide optimum redox behavior, plentiful acid sites, and strong NO x adsorption ability. Furthermore, dynamics calculations verified the meaningful reduction in apparent activation energy (E a) for the CoMnAl-LDO sample, which is in agreement with the DeNO x activity.
Collapse
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 PR China
| | - Lili Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528
| | - Yalin Feng
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528
| | - Baoshuan Yang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528
| |
Collapse
|