1
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
2
|
Yu S, Guo Z, Zhou Y, Li C. Research progress of MOFs/carbon nanocomposites on promoting ORR in microbial fuel cell cathodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93422-93434. [PMID: 37561294 DOI: 10.1007/s11356-023-29169-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
With the rapid development of the economy, energy demand is more urgent. Microbial fuel cells (MFCs) have the advantages of non-toxic, safety, and environmental protection, and are considered the ideal choice for the next generation of energy storage equipment. However, the slow kinetics of oxygen reduction reaction (ORR) on MFC air cathodes and the high cost of traditional platinum (Pt) catalysts hinder their practical application, so there is a need to develop efficient, low-cost, and stable electrocatalysts as alternatives. Recently, metal-organic framework (MOFs) has attracted wide attention in electrocatalysis. Electrocatalysts prepared by the nanocomposite of MOFs and carbon nanomaterials have multiple advantages, such as adjustable chemical properties, high specific surface area, and good electrical conductivity, which have been proven to be a promising electrocatalytic material. In this paper, the latest research progress of metal-organic frames (MOFs) and carbon nanocomposites is reviewed, and the preparation methods and modification of MOFs and carbon nanofibers, carbon nanotubes, and graphene composites are introduced, respectively, as well as their applications in MFC cathode. Finally, the main prospects of MOFs/carbon nanocomposite catalysts are put forward.
Collapse
Affiliation(s)
- Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Zhen Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
- Energy Conservation and Environmental Protection Engineering Research Center in Universities of Beijing, Beijing, 100083, China.
| |
Collapse
|
3
|
Cho DY, Kim KJ, Lee KS, Lübben M, Chen S, Valov I. Chemical Influence of Carbon Interface Layers in Metal/Oxide Resistive Switches. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18528-18536. [PMID: 36989142 PMCID: PMC10103050 DOI: 10.1021/acsami.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Thin layers introduced between a metal electrode and a solid electrolyte can significantly alter the transport of mass and charge at the interfaces and influence the rate of electrode reactions. C films embedded in functional materials can change the chemical properties of the host, thereby altering the functionality of the whole device. Using X-ray spectroscopies, here we demonstrate that the chemical and electronic structures in a representative redox-based resistive switching (RS) system, Ta2O5/Ta, can be tuned by inserting a graphene or ultrathin amorphous C layer. The results of the orbitalwise analyses of synchrotron Ta L3-edge, C K-edge, and O K-edge X-ray absorption spectroscopy showed that the C layers between Ta2O5 and Ta are significantly oxidized to form COx and, at the same time, oxidize the Ta layers with different degrees of oxidation depending on the distance: full oxidation at the nearest 5 nm Ta and partial oxidation in the next 15 nm Ta. The depth-resolved information on the electronic structure for each layer further revealed a significant modification of the band alignments due to C insertion. Full oxidation of the Ta metal near the C interlayer suggests that the oxygen-vacancy-related valence change memory mechanism for the RS can be suppressed, thereby changing the RS functionalities fundamentally. The knowledge on the origin of C-enhanced surfaces can be applied to other metal/oxide interfaces and used for the advanced design of memristive devices.
Collapse
Affiliation(s)
- Deok-Yong Cho
- IPIT
and Department of Physics, Jeonbuk National
University, Jeonju 54896, Republic of Korea
| | - Ki-jeong Kim
- Pohang
Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Kug-Seung Lee
- Pohang
Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Michael Lübben
- Peter
Gruenberg
Institute, Research Centre Juelich, Juelich 52425, Germany
| | - Shaochuan Chen
- IWE2, RWTH Aachen University, Sommerfed strasse 24, Aachen 52074, Germany
| | - Ilia Valov
- Peter
Gruenberg
Institute, Research Centre Juelich, Juelich 52425, Germany
- Institute
of Electrochemistry and Energy Systems “acad. E. Budewski”, Bulgarian Academy of Sciences, “acad. G Bonchev” street Bl.10, Sofia 1113, Bulgaria
| |
Collapse
|
4
|
Simple, controllable and environmentally friendly synthesis of FeCoNiCuZn-based high-entropy alloy (HEA) catalysts, and their surface dynamics during nitrobenzene hydrogenation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Boiko DA, Pentsak EO, Cherepanova VA, Gordeev EG, Ananikov VP. Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chem Sci 2021; 12:7428-7441. [PMID: 34163833 PMCID: PMC8171319 DOI: 10.1039/d0sc05696k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Smoothness/defectiveness of the carbon material surface is a key issue for many applications, spanning from electronics to reinforced materials, adsorbents and catalysis. Several surface defects cannot be observed with conventional analytic techniques, thus requiring the development of a new imaging approach. Here, we evaluate a convenient method for mapping such "hidden" defects on the surface of carbon materials using 1-5 nm metal nanoparticles as markers. A direct relationship between the presence of defects and the ordering of nanoparticles was studied experimentally and modeled using quantum chemistry calculations and Monte Carlo simulations. An automated pipeline for analyzing microscopic images is described: the degree of smoothness of experimental images was determined by a classification neural network, and then the images were searched for specific types of defects using a segmentation neural network. An informative set of features was generated from both networks: high-dimensional embeddings of image patches and statics of defect distribution.
Collapse
Affiliation(s)
- Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Vera A Cherepanova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| |
Collapse
|
6
|
Wang Q, Zhou L, Chen Q, Mao M, Jiang W, Long Y, Fan G. Oxygenated functional group-driven spontaneous fabrication of Pd nanoparticles decorated porous carbon nanosheets for electrocatalytic hydrodechlorination of 4-chlorophenol. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124456. [PMID: 33223316 DOI: 10.1016/j.jhazmat.2020.124456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Researchers have been committed to reducing the hazardous pollutants by developing efficient catalysts while ignoring the pollution caused by the use of toxic surface capping agents, reductants and/or organic solvents in the catalyst preparation process. To alleviate such problems, we here report a novel one-step oxygenated functional group-driven electroless deposition strategy to synthesize clean and uniformly distributed Pd nanoparticles (NPs) using porous carbon nanosheets (PCN) as both substrates and reducing agents. It is observed that the oxygenated functional groups enriched PCN possesses a low work function and allows the spontaneous reduction of PdCl42- ions to Pd NPs deposited on the PCN support (Pd/PCN). The particle size of Pd NPs can be flexibly modulated by simply controlling the immersing time and thereby their maximum catalytic performances can be achieved. Specifically, the optimal Pd/PCN-08 with a Pd loading of 3.0 wt% shows an excellent activity with a turnover frequency of 0.38 min-1 for electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP), superior to the previously reported materials. The stability of Pd/PCN-08 for 4-CP ECH is impressive in repetitive cycles. This work proposes a facile and efficient strategy to synthesize high-performance catalysts for detoxifying the hazardous organic pollutants.
Collapse
Affiliation(s)
- Qi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Lingxi Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qian Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Mingyue Mao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
7
|
Chen Q, Nie Y, Ming M, Fan G, Zhang Y, Hu JS. Sustainable synthesis of supported metal nanocatalysts for electrochemical hydrogen evolution. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(20)63652-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Selective Reduction Sites on Commercial Graphite Foil for Building Multimetallic Nano‐Assemblies for Energy Conversion. ChemistrySelect 2020. [DOI: 10.1002/slct.202003185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|