1
|
Cureno Hernandez KE, Lee J, Kim S, Cartwright Z, Herrera-Alonso M. Boronic acid-mediated mucin/surface interactions of zwitterionic polymer brushes. SOFT MATTER 2025; 21:3125-3136. [PMID: 40171575 DOI: 10.1039/d4sm01502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Mucus is a substance that acts as a protective barrier, shielding tissues from infections caused by viruses and bacteria. Recent studies highlight the advantages of transmucosal drug delivery compared to traditional delivery methods. However, external particles in mucus struggle to penetrate its deeper layers and are often eliminated by mucus clearance mechanisms, hindering effective drug delivery. To gain a deeper understanding of how material surfaces interact with mucus, we grafted brushes of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) onto silica surfaces, followed by the straightforward installation of a terminal boronic acid moiety (3-phenylboronic acid, APBA). The modification process was carried out following a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP), a method known for its effectiveness in producing well-defined grafted polymers. After conjugation of APBA, we studied the effects of surface chemistry on properties such as pH-sensitivity and mucin adsorption. The surfaces modified with the zwitterionic polymer showed no mucin interaction regardless of system pH. However, all the surfaces containing the boronic acid showed boronic acid-sialic acid interactions, particularly at lower pH values. The insights gained from this study will enhance our understanding of the interactions between the zwitterionic PMPC and the boronic acid APBA with mucins, laying the groundwork for future chemical modifications of particle surfaces aimed at modulating their transport through mucus.
Collapse
Affiliation(s)
- Karla E Cureno Hernandez
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Jeonghun Lee
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Sunghoon Kim
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
| | - Zach Cartwright
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Margarita Herrera-Alonso
- School of Materials Science and Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
2
|
Mangolini F, Espinosa-Marzal RM, Nalam PC, Ruths M. Pioneers in Applied and Fundamental Interfacial Chemistry (PAFIC): Nicholas D. Spencer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4403-4409. [PMID: 39995303 DOI: 10.1021/acs.langmuir.5c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Affiliation(s)
- Filippo Mangolini
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rosa M Espinosa-Marzal
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Prathima C Nalam
- Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260, United States
| | - Marina Ruths
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
3
|
Srinivasan S, McGaughey AL, Ren ZJ, Zuo B, Priestley RD. Physical Aging of Poly(methyl methacrylate) Brushes and Spin-Coated Films. J Phys Chem B 2024; 128:11999-12007. [PMID: 39576256 DOI: 10.1021/acs.jpcb.4c05704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
While there is significant attention aimed at understanding how one-dimensional confinement and chain confirmations can impact the glass transition temperature (Tg) of polymer films, there remains a limited focus on similar effects on sub-Tg processes, notably, structural relaxation. Using spectroscopic ellipsometry, we investigated the combined influence of confinement and molecular packing on Tg and physical aging, i.e., the property changes that accompany structural relaxation, at select film thicknesses and aging temperatures (Ta). We used poly(methyl methacrylate) (PMMA) films in the brush and spin-coated morphologies as model systems. We found that whether a PMMA film exhibited a decrease or increase in physical aging rate with confinement was dependent on the morphology. Notably, PMMA brushes exhibited higher physical aging rates compared to similarly thick spin-coated films at all values of Ta. These intriguing findings reveal the strong effects of confinement and molecular packing on the structural relaxation of polymer films. Results from this study have the potential to aid in the design of thin-film materials with controllable long-term glassy-state properties.
Collapse
Affiliation(s)
- Sneha Srinivasan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Allyson L McGaughey
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Milatz R, Duvigneau J, Vancso GJ. Clicked into Place: Biomimetic Copolymer Adhesive for Covalent Conjugation of Functionalities. ACS OMEGA 2024; 9:38153-38159. [PMID: 39281956 PMCID: PMC11391531 DOI: 10.1021/acsomega.4c03428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
Polydopamines (PDA) are a popular class of materials and promising candidates as adhesives for new fastening techniques. PDA layers can be formed on a wide range of substrates in various environments. Here, we present a novel method for functionalizing PDA-based copolymer films by using click chemistry. These copolymers adhere strongly to various surfaces and simultaneously have active groups that allow the attachment of functional groups. We discuss the coupling of two types of chitosan and a rhodamine B dye molecule to the alkyne groups of the copolymers by employing click reactions. Azidopropyl methacrylate (AzMA), methyl methacrylate (MMA), and dopamine methacrylamide (DOMA) are copolymerized and codeposited with (3-aminopropyl)triethoxysilane on silicon wafers, polyethylene (PE), and polytetrafluoroethylene (PTFE). AzMA provides the surfaces with azides for use in click reactions, MMA functions to control the polymer as a nonfunctional diluent, whereas DOMA provides adhesion, as well as cross-linking groups. After codeposition, the dyes are grafted to the copolymer to illustrate the ability of the films to link functional groups covalently. Fourier transform infrared spectroscopy confirms the successful click reaction in solution, and atomic force microscopy shows the surface morphologies following grafting. Fluorescence microscopy provides evidence of successful grafting. As an example of a possible application, layers exhibiting antifouling properties are prepared. Chitosan grafted to PE is tested for antifouling performance. These functionalized layers show nonspecific inhibition of protein adsorption. We find that chitosan can lower the adsorption of fluorescein-labeled bovine serum albumin (BSA) protein by more than 90% for the best performing fluorescein-labeled BSA protein and by more than 90% for the best-performing layer. These results demonstrate the viability of our PDA-based copolymers for surface functionalization through click chemistry grafting at challenging adhesion to surfaces.
Collapse
Affiliation(s)
- Roland Milatz
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
- DPI, P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Joost Duvigneau
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Gyula Julius Vancso
- Department of Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
5
|
Li S, Zhao Y, Huang R, Wang J, Wu D, Zhang W, Zeng Z, Zhang T. Roughness-Mediated SI-Fe 0CRP for Polymer Brush Engineering toward Superior Drag Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27761-27766. [PMID: 38748552 DOI: 10.1021/acsami.4c03854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Surface-initiated iron(0)-mediated controlled radical polymerization (SI-Fe0CRP) with low toxicity and excellent biocompatibility is promising for the fabrication of biofunctional polymer coatings. However, the development of Fe(0)-based catalysts remains limited by the lower dissociation activity of the Fe(0) surface in comparison to Cu(0). Here, we found that, by simply polishing the Fe(0) plate surface with sandpaper, the poly(methacryloyloxy)ethyl trimethylammonium chloride brush growth rate has been increased significantly to 3.3 from 0.14 nm min-1 of the pristine Fe(0) plate. The excellent controllability of roughness-mediated SI-Fe0CRP can be demonstrated by customizing multicompartment brushes and triblock brushes. Furthermore, we found that the resulting polymer brush coatings exhibit remarkably low water adhesion (0.097 mN) and an outstanding drag reduction rate of 52% in water. This work provides a promising strategy for regulating the grafting rate of polymer brushes via SI-Fe0CRP for biocompatible marine drag reduction coatings.
Collapse
Affiliation(s)
- Shengfei Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuxiang Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runhao Huang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianing Wang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Daheng Wu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wuxin Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
6
|
Wu D, Li W, Zhang T. Surface-Initiated Zerovalent Metal-Mediated Controlled Radical Polymerization (SI-Mt 0CRP) for Brush Engineering. Acc Chem Res 2023; 56:2329-2340. [PMID: 37616063 DOI: 10.1021/acs.accounts.3c00310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
ConspectusThe surface-tethered polymer brush has become a powerful approach to tailoring the chemical and physical properties of surfaces and interfaces and revealed broad application prospects in widespread fields such as self-cleaning, surface lubrication, and antibiofouling. Access to these diverse functional polymer brushes is highly dependent on versatile and powerful surface-initiated controlled radical polymerization (SI-CRP) strategies. However, conventional SI-CRP typically requires oxygen exclusion, large amounts of catalysts and monomer solution, and a long reaction time, making it time-consuming and sophisticated. When using a two-plate system consisting of an initiator-bearing substrate and a metal plate, we and our collaborators introduced surface-initiated zerovalent metal-mediated controlled radical polymerization (SI-Mt0CRP). In the SI-Mt0CRP setup, a metal(0) plate (Cu, Fe, Zn, or Sn) is placed proximately to an initiator-functionalized substrate and forms a confined polymerization system which considerably simplifies the synthesis of a wide range of polymer brushes with high grafting densities over large areas (up to the meter scale).In comparison to classical SI-ATRP (catalyzed by metal salts), SI-Mt0CRP demonstrates oxygen tolerance, high controllability, good retention of chain-end functionality, and facile recyclability of the metal catalysts (i.e., metal foil/plate). Taking advantage of the confined geometry of the SI-Mt0CRP setup, polymer brushes with various conformations and architectures are easily accessible while consuming only microliter volumes of monomer solution and without complicated operations under ambient conditions. Owing to these attractive characteristics, SI-Mt0CRP has become a versatile technique for functionalizing materials for targeted applications, ranging from the areas of surface science to materials science and nanotechnology.In this Account, we summarize the recent advances of SI-Mt0CRP catalyzed by zerovalent metals (e.g., Cu, Fe, Zn, and Sn) and highlight the intrinsic advantages of the featured experimental setup, compared with the "classical" SI-CRP in which metal salt, powder, or wire is applied. We further discuss the synthetic features and proposed mechanism of SI-Mt0CRP while emphasizing the various external technologies' (including "on water" reaction, galvanic replacement, lithography, and capillary microfluidic) integrated polymerization systems. We also describe structural polymer brushes, including block copolymers, patterned and gradient structures, and arrayed and binary polymer brushes. Finally, we introduce the diverse polymer brushes that have been prepared using these techniques, with a focus on targeted and emerging applications. We anticipate that the discussion presented in this Account will promote a better understanding of the SI-Mt0CRP technique and advance the future development of practical surface brushing.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wei Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Research Center for Advanced Interdisciplinary Sciences, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Fan D, Bajgiran SR, Samghabadi FS, Dutta C, Gillett E, Rossky PJ, Conrad JC, Marciel AB, Landes CF. Imaging Heterogeneous 3D Dynamics of Individual Solutes in a Polyelectrolyte Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37290000 DOI: 10.1021/acs.langmuir.3c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding molecular transport in polyelectrolyte brushes (PEBs) is crucial for applications such as separations, drug delivery, anti-fouling, and biosensors, where structural features of the polymer control intermolecular interactions. The complex structure and local heterogeneity of PEBs, while theoretically predicted, are not easily accessed with conventional experimental methods. In this work, we use 3D single-molecule tracking to understand transport behavior within a cationic poly(2-(N,N-dimethylamino)ethyl acrylate) (PDMAEA) brush using an anionic dye, Alexa Fluor 546, as the probe. The analysis is done by a parallelized, unbiased 3D tracking algorithm. Our results explicitly demonstrate that spatial heterogeneity within the brush manifests as heterogeneity of single-molecule displacements. Two distinct populations of probe motion are identified, with anticorrelated axial and lateral transport confinement, which we believe to correspond to intra- vs inter-chain probe motion.
Collapse
Affiliation(s)
- Dongyu Fan
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Shahryar Ramezani Bajgiran
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Chayan Dutta
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Emil Gillett
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Smalley Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Polanowski P, Jeszka JK, Matyjaszewski K. Crosslinking and Gelation of Polymer Brushes and Free Polymer Chains in a Confined Space during Controlled Radical Polymerization─A Computer Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Wu D, Yin X, Zhao Y, Wang Y, Li D, Yang F, Wang L, Chen Y, Wang J, Yang H, Liu X, Liu F, Zhang T. Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn 0CRP) for Biocompatible Surface Engineering. ACS Macro Lett 2023; 12:71-76. [PMID: 36576724 DOI: 10.1021/acsmacrolett.2c00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applications. Herein, we present a robust and biocompatible surface-initiated controlled radical polymerization catalyzed by a Sn(0) sheet (SI-Sn0CRP) under ambient conditions. Through this approach, microliter volumes of vinyl monomers with diverse functions (heterocyclic, ionic, hydrophilic, and hydrophobic) could be efficiently converted to homogeneous polymer brushes. The excellent controllability of SI-Sn0CRP strategy is further demonstrated by the exquisite fabrication of predetermined block and patterned polymer brushes through chain extension and photolithography, respectively. Additionally, in virtue of intrinsic biocompatibility of Sn, the resultant polymer brushes present transcendent affinity toward blood and cell, in marked contrast to those of copper-based approaches. This strategy could provide an avenue for the controllable fabrication of biocompatible polymer brushes toward biological applications.
Collapse
Affiliation(s)
- Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yiwen Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fuchao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Long Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Liu
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
10
|
Fromel M, Benetti EM, Pester CW. Oxygen Tolerance in Surface-Initiated Reversible Deactivation Radical Polymerizations: Are Polymer Brushes Turning into Technology? ACS Macro Lett 2022; 11:415-421. [PMID: 35575317 DOI: 10.1021/acsmacrolett.2c00114] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past three decades, the development of reversible deactivation radical polymerizations (RDRP), and advancements toward more user-friendly and accessible experimental setups have opened the door for nonexperts to design complex macromolecules with well-defined properties. External mediation, improved tolerance to oxygen, and increased reaction volumes for higher synthetic output are some of the many noteworthy technical improvements. The development of RDRPs in solution was paralleled by their application on solid substrates to synthesize surface-grafted "polymer brushes" via surface-initiated RDRP (SI-RDRP). This Viewpoint paper provides a current perspective on recent developments in SI-RDRP methods that are tolerant to oxygen, especially highlighting those that could potentially enable scaling up of the synthesis of brushes for the functionalization of technologically relevant materials.
Collapse
Affiliation(s)
- Michele Fromel
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edmondo M. Benetti
- Dipartimento di Scienze Chimiche, University of Padua, 35122 Padova, Italy
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Yin X, Wu D, Yang H, Wang J, Zhang X, Li H, Zheng T, Wang L, Zhang T. Galvanic-Replacement-Assisted Surface-Initiated Atom Transfer Radical Polymerization for Functional Polymer Brush Engineering. ACS Macro Lett 2022; 11:296-302. [PMID: 35575363 DOI: 10.1021/acsmacrolett.1c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here we present a facile and robust strategy, namely, galvanic-replacement-assisted surface-initiated Cu(0)-mediated atom transfer radical polymerization (gr-SI-Cu0ATRP, or gr-SI-Cu0CRP) for polymer brush engineering under ambient conditions. In gr-SI-Cu0ATRP, highly active and nanostructured Cu(0) surfaces are obtained by a simple galvanic replacement on zinc/aluminum surfaces in dilute Cu2+ solution. Polymer brush growth rate is extremely high (up to ∼904 nm in 30 min polymerization); meanwhile, both nano Cu(0) surfaces and Cu2+ solution can be reused multiple times without losing grafting efficiency. We also demonstrate that the gr-SI-Cu0ATRP is advantageous for polymer brush engineering on arbitrary substrates, including flexible (polyethylene terephthalate), curved (polycarbonate), and porous (anodic aluminum oxide), and endow the substrates with various functionalities, for example, anti-icing, antifogging, and ion selectivity.
Collapse
Affiliation(s)
- Xiaodong Yin
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jianing Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaoxuan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - He Li
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Liu C, Cheng F, Liu B, Gao D, Cheng G, Li C, Wang H, He W. Versatile, Oxygen-Insensitive Surface-Initiated Anionic Polymerization to Prepare Functional Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1001-1010. [PMID: 34949091 DOI: 10.1021/acs.langmuir.1c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-initiated polymerization is an attractive approach to achieve desired interfacial compositions and properties on a wide range of substrates and surfaces. Due to mild reaction conditions, multiple surface-initiated polymerization methods, such as atom-transfer radical polymerization (ATRP), reversible addition-fragmentation chain-transfer polymerization, and so forth, have been developed and studied in academia and industry. However, the current methods require the combination of metal catalysts, special initiators, and oxygen removal. Herein, we developed a surface-initiated carbanion-mediated anionic polymerization (SI-CMAP), which can be conducted in aqueous solutions in the presence of oxygen without the need for metal catalysts. Zwitterionic 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate (SBMA) was selected as a model monomer to develop and demonstrate this strategy. The vinyl sulfone (VS) groups displayed on substrate surfaces reacted with N-methylimidazole (NMIM), which was used as the in situ initiator. The polymerization mechanism was extensively studied from many aspects at room temperature, including the changes in reaction conditions, factors affecting the polymerization extent, and substrate surfaces. We also demonstrated the compatibility of this method with a broad spectrum of monomers ranging from SBMA to other acrylates and acrylamides by using glycine betaine as a reaction additive. This method was also evaluated for the preparation of polymer-coated nanoparticles. For polymer-coated silica nanoparticles, their hydrodynamic diameter, copper contamination, and effects of salt and protein concentrations were compared with SI-ATRP in parallel. SI-CMAP in aqueous solutions in air and the absence of metal catalysts make this method sustainable and cost-effective. We believe that SI-CMAP can be readily adapted to the industrial surface coating and large-scale nanoparticle preparation under mild conditions.
Collapse
Affiliation(s)
- Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Bo Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan, Guangdong 523000, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
13
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
14
|
Flejszar M, Chmielarz P, Gießl M, Wolski K, Smenda J, Zapotoczny S, Cölfen H. A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Park S, Kim M, Park J, Choi W, Hong J, Lee DW, Kim BS. Mussel-Inspired Multiloop Polyethers for Antifouling Surfaces. Biomacromolecules 2021; 22:5173-5184. [PMID: 34818000 DOI: 10.1021/acs.biomac.1c01124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the widespread use of polymers for antifouling coatings, the effect of the polymeric topology on the antifouling property has been largely underexplored. Unlike conventional brush polymers, a loop conformation often leads to strong steric stabilization of surfaces and antifouling and lubricating behavior owing to the large excluded volume and reduced chain ends. Herein, we present highly antifouling multiloop polyethers functionalized with a mussel-inspired catechol moiety with varying loop dimensions. Specifically, a series of polyethers with varying catechol contents were synthesized via anionic ring-opening polymerization by using triethylene glycol glycidyl ether (TEG) and catechol-acetonide glycidyl ether (CAG) to afford poly(TEG-co-CAG)n. The versatile adsorption and antifouling effects of multiloop polyethers were evaluated using atomic force microscopy and a quartz crystal microbalance with dissipation. Furthermore, the crucial role of the loop dimension in the antifouling properties was analyzed via a surface force apparatus and a cell attachment assay. This study provides a new platform for the development of versatile antifouling polymers with varying topologies.
Collapse
Affiliation(s)
- Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
16
|
Light-promoted synthesis of surface-grafted polymers bearing pyridine groups by metal-free ATRP in microliter volumes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Lee JH, Seo HJ, Lee SY, Cho WK, Son K. On‐Surface RAFT Polymerization using Oxygen to form Triblock Copolymer Brushes. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Hoon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Hyun Ji Seo
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Seung Yeon Lee
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| | - Kyung‐sun Son
- Department of Chemistry Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
18
|
|
19
|
Albers RF, Magrini T, Romio M, Leite ER, Libanori R, Studart AR, Benetti EM. Fabrication of Three-Dimensional Polymer-Brush Gradients within Elastomeric Supports by Cu 0-Mediated Surface-Initiated ATRP. ACS Macro Lett 2021; 10:1099-1106. [PMID: 35549080 DOI: 10.1021/acsmacrolett.1c00446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cu0-mediated surface-initiated ATRP (Cu0 SI-ATRP) emerges as a versatile, oxygen-tolerant process to functionalize three-dimensional (3D), microporous supports forming single and multiple polymer-brush gradients with a fully tunable composition. When polymerization mixtures are dispensed on a Cu0-coated plate, this acts as oxygen scavenger and source of active catalyst. In the presence of an ATRP initiator-bearing microporous elastomer placed in contact with the metallic plate, the reaction solution infiltrates by capillarity through the support, simultaneously triggering the controlled growth of polymer brushes. The polymer grafting process proceeds with kinetics that are determined by the progressive infiltration of the reaction solution within the microporous support and by the continuous diffusion of catalyst regenerated at the Cu0 surface. The combination of these effects enables the accessible generation of 3D polymer-brush gradients extending across the microporous scaffolds used as supports, finally providing materials with a continuous variation of interfacial composition and properties.
Collapse
Affiliation(s)
- Rebecca Faggion Albers
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
| | - Edson R. Leite
- Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP Brazil
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Brazil
| | - Rafael Libanori
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - André R. Studart
- Complex Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zurich, Switzerland
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, Switzerland
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
20
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
21
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting “Band‐Aid” for “Everyone”: Filter Paper‐Assisted Surface‐Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| | - Bin Li
- Physik Department TUM-Technische Universität München James-Franck-Straße 1 85748 Garching Germany
| | - Rainer Jordan
- Chair of Macromolecular Chemistry Faculty of Chemistry and Food Chemistry School of Science Technische Universität Dresden Mommsenstr. 4 01069 Dresden Germany
| |
Collapse
|
22
|
Li W, Sheng W, Li B, Jordan R. Surface Grafting "Band-Aid" for "Everyone": Filter Paper-Assisted Surface-Initiated Polymerization in the Presence of Air. Angew Chem Int Ed Engl 2021; 60:13621-13625. [PMID: 33751767 PMCID: PMC8252564 DOI: 10.1002/anie.202103182] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 11/18/2022]
Abstract
We report herein a facile and generalized approach to the modification of solid surfaces with polymer brushes under ambient conditions: filter paper-assisted surface-initiated Cu0 -mediated controlled radical polymerization (PSI-CuCRP). The polymerization solution wetted filter paper is sandwiched between a copper plate and an initiator-modified substrate, which allows the creation of a surface-initiated polymerization (SIP) "band-aid" so that everyone can perform the surface grafting selectively with good control over the quality of the polymer brushes employing low concentration and microliter amounts of the monomer solution. The versatility of this method is demonstrated by grafting different homo-, block-, and multicomponent polymer brushes by using the same activation system and reaction conditions, the polymerization process can be precisely controlled to yield uniform polymers and show high chain-end functionality which is exemplified by in situ tetra-copolymerization. The combination of photolithography and paper cutting enables to prepare arbitrary three-dimensional patterned polymer brushes on the surface.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Wenbo Sheng
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| | - Bin Li
- Physik DepartmentTUM-Technische Universität MünchenJames-Franck-Straße 185748GarchingGermany
| | - Rainer Jordan
- Chair of Macromolecular ChemistryFaculty of Chemistry and Food ChemistrySchool of ScienceTechnische Universität DresdenMommsenstr. 401069DresdenGermany
| |
Collapse
|
23
|
Szczepaniak G, Fu L, Jafari H, Kapil K, Matyjaszewski K. Making ATRP More Practical: Oxygen Tolerance. Acc Chem Res 2021; 54:1779-1790. [PMID: 33751886 DOI: 10.1021/acs.accounts.1c00032] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Atom-transfer radical polymerization (ATRP) is a well-known technique for the controlled polymerization of vinyl monomers under mild conditions. However, as with any other radical polymerization, ATRP typically requires rigorous oxygen exclusion, making it time-consuming and challenging to use by nonexperts. In this Account, we discuss various approaches to achieving oxygen tolerance in ATRP, presenting the overall progress in the field.Copper-mediated ATRP, which we first discovered in the late 1990s, uses a CuI/L activator that reversibly reacts with the dormant C(sp3)-X polymer chain end, forming a X-CuII/L deactivator and a propagating radical. Oxygen interferes with activation and chain propagation by quenching the radicals and oxidizing the activator. At ATRP equilibrium, the activator is present at a much higher concentration than the propagating radicals. Thus, oxidation of the activator is the dominant inhibition pathway. In conventional ATRP, this reaction is irreversible, so oxygen must be strictly excluded to achieve good results.Over the last two decades, our group has developed several ATRP techniques based on the concept of regenerating the activator. When the oxidized activator is continuously converted back to its active reduced form, then the catalytic system itself can act as an oxygen scavenger. Regeneration can be accomplished by reducing agents and photo-, electro-, and mechanochemical stimuli. This family of methods offers a degree of oxygen tolerance, but most of them can tolerate only a limited amount of oxygen and do not allow polymerization in an open vessel.More recently, we discovered that enzymes can be used in auxiliary catalytic systems that directly deoxygenate the reaction medium and protect the polymerization process. We developed a method that uses glucose oxidase (GOx), glucose, and sodium pyruvate to very effectively scavenge oxygen and enable open-vessel ATRP. By adding a second enzyme, horseradish peroxidase (HPR), we managed to extend the role of the auxiliary enzymatic system to generating carbon-based radicals and changed ATRP from an oxygen-sensitive to an oxygen-fueled reaction.While performing control experiments for the enzymatic methods, we noticed that using sodium pyruvate under UV irradiation triggers polymerization without the presence of GOx. This serendipitous discovery allowed us to develop the first oxygen-proof, small-molecule-based, photoinduced ATRP system. It has oxygen tolerance similar to that of the enzymatic methods, exhibits superior compatibility with both aqueous media and organic solvents, and avoids problems associated with purifying polymers from enzymes. The system was able to rapidly polymerize N-isopropylacrylamide, a challenging monomer, with a high degree of control.These contributions have substantially simplified the use of ATRP, making it more practical and accessible to everyone.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Liye Fu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hossein Jafari
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Su HL, Xu L, Hu XJ, Chen FF, Li G, Yang ZK, Wang LP, Li HL. Polymer grafted mesoporous SBA-15 material synthesized via metal-free ATRP as pH-sensitive drug carrier for quercetin. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Zhang BP, Li HN, Shen JL, Zhou D, Xu ZK, Wan LS. Surface Coatings via the Assembly of Metal-Monophenolic Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3721-3730. [PMID: 33734690 DOI: 10.1021/acs.langmuir.1c00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mussel-inspired surface modification has received significant interest in recent years because of its simplicity and versatility. The deposition systems are still mainly limited to molecules with catechol chemical structures. In this paper, we report a novel deposition system based on a monophenol, vanillic acid (4-hydroxy-3-methoxybenzoic acid), to fabricate metal-phenolic network coatings on various substrates. The results of the water contact angle and zeta potential reveal that the modified polypropylene microfiltration membrane is underwater superhydrophobic and positively charged, showing applications in oil/water separation and dye removal. Furthermore, the single-face modified Janus membrane is promising in switchable oil/water separation. The results demonstrate a novel example of the metal-monophenolic deposition system, which expands the toolbox of surface coatings and facilitates the understanding of the deposition of phenols.
Collapse
Affiliation(s)
- Bing-Pan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hao-Nan Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jia-Lu Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ling-Shu Wan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Mushtaq R, Abbas MA, Mushtaq S, Ahmad NM, Khan NA, Khan AU, Hong W, Sadiq R, Jiang Z. Antifouling and Flux Enhancement of Reverse Osmosis Membrane by Grafting Poly (3-Sulfopropyl Methacrylate) Brushes. MEMBRANES 2021; 11:213. [PMID: 33803777 PMCID: PMC8003146 DOI: 10.3390/membranes11030213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022]
Abstract
A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m-2 h-1 to 71.2 L m-2 h-1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification.
Collapse
Affiliation(s)
- Reema Mushtaq
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Muhammad Asad Abbas
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Shehla Mushtaq
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Nasir M. Ahmad
- Polymer Research Lab, School of Chemical and Material Engineering, NUST, H-12, Islamabad 44000, Pakistan; (R.M.); (M.A.A.); (S.M.)
| | - Niaz Ali Khan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| | - Asad U. Khan
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan;
| | - Wu Hong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| | - Rehan Sadiq
- School of Engineering, University of British Columbia (Okanagan), 3333 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.H.); (Z.J.)
| |
Collapse
|
27
|
|
28
|
Kim CS, Cho S, Lee JH, Cho WK, Son KS. Open-to-Air RAFT Polymerization on a Surface under Ambient Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11538-11545. [PMID: 32921056 DOI: 10.1021/acs.langmuir.0c01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen (O2)-mediated controlled radical polymerization was performed on surfaces under ambient conditions, enabling on-surface polymer brush growth under open-to-air conditions at room temperature in the absence of metal components. Polymerization of zwitterionic monomers using this O2-mediated surface-initiated reversible addition fragmentation chain-transfer (O2-SI-RAFT) method yielded hydrophilic surfaces that exhibited anti-biofouling effects. O2-SI-RAFT polymerization can be performed on large surfaces under open-to-air conditions. Various monomers including (meth)acrylates and acrylamides were employed for O2-SI-RAFT polymerization; the method is thus versatile in terms of the polymers used for coating and functionalization. A wide range of hydrophilic and hydrophobic monomers can be employed. In addition, the end-group functionality of the polymer grown by O2-SI-RAFT polymerization allowed chain extension to form block copolymer brushes on a surface.
Collapse
Affiliation(s)
- Chung Soo Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soojeong Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Hoon Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung-Sun Son
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
29
|
Buhl KB, Agergaard AH, Lillethorup M, Nikolajsen JP, Pedersen SU, Daasbjerg K. Polymer Brush Coating and Adhesion Technology at Scale. Polymers (Basel) 2020; 12:E1475. [PMID: 32630138 PMCID: PMC7407671 DOI: 10.3390/polym12071475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 01/09/2023] Open
Abstract
Creating strong joints between dissimilar materials for high-performance hybrid products places high demands on modern adhesives. Traditionally, adhesion relies on the compatibility between surfaces, often requiring the use of primers and thick bonding layers to achieve stable joints. The coatings of polymer brushes enable the compatibilization of material surfaces through precise control over surface chemistry, facilitating strong adhesion through a nanometer-thin layer. Here, we give a detailed account of our research on adhesion promoted by polymer brushes along with examples from industrial applications. We discuss two fundamentally different adhesive mechanisms of polymer brushes, namely (1) physical bonding via entanglement and (2) chemical bonding. The former mechanism is demonstrated by e.g., the strong bonding between poly(methyl methacrylate) (PMMA) brush coated stainless steel and bulk PMMA, while the latter is shown by e.g., the improved adhesion between silicone and titanium substrates, functionalized by a hydrosilane-modified poly(hydroxyethyl methacrylate) (PHEMA) brush. This review establishes that the clever design of polymer brushes can facilitate strong bonding between metals and various polymer materials or compatibilize fillers or nanoparticles with otherwise incompatible polymeric matrices. To realize the full potential of polymer brush functionalized materials, we discuss the progress in the synthesis of polymer brushes under ambient and scalable industrial conditions, and present recent developments in atom transfer radical polymerization for the large-scale production of brush-modified materials.
Collapse
Affiliation(s)
- Kristian Birk Buhl
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | - Asger Holm Agergaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
| | | | - Jakob Pagh Nikolajsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK 8000 Aarhus C, Denmark; (K.B.B.); (A.H.A.); (J.P.N.)
- Radisurf ApS, Arresoevej 5B, DK-8240 Risskov, Denmark
| |
Collapse
|
30
|
Recent trends in nanopore polymer functionalization. Curr Opin Biotechnol 2020; 63:200-209. [PMID: 32387643 DOI: 10.1016/j.copbio.2020.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Functional nanopores play an essential role in many biotechnological applications such as sensing, or drug delivery. Prominent examples are polymer functionalized ceramic or solid state nanopores. Intensive research efforts led to a discovery of a plethora of polymer functionalized nanopores demonstrating gated molecular transport upon basically all common stimuli. Nevertheless, nature's biological pore transport precision is unreached. This can be, among others, ascribed to limits in design precision especially with respect to functionalization. Recent trends in polymer functionalized nanopores address the role of confinement and polymerization control, strategies toward more sustainable reaction conditions, such as visible light initiation and strategies toward nanoscale local placement of polymer functionalization. The resulting multi-stimuli responsive nanopore performance enables concerted release or transport, side selective separation and selective detection.
Collapse
|
31
|
Li D, Wei Q, Wu C, Zhang X, Xue Q, Zheng T, Cao M. Superhydrophilicity and strong salt-affinity: Zwitterionic polymer grafted surfaces with significant potentials particularly in biological systems. Adv Colloid Interface Sci 2020; 278:102141. [PMID: 32213350 DOI: 10.1016/j.cis.2020.102141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
In recent years, zwitterionic polymers have been frequently reported to modify various surfaces to enhance hydrophilicity, antifouling and antibacterial properties, which show significant potentials particularly in biological systems. This review focuses on the fabrication, properties and various applications of zwitterionic polymer grafted surfaces. The "graft-from" and "graft-to" strategies, surface grafting copolymerization and post zwitterionization methods were adopted to graft lots type of the zwitterionic polymers on different inorganic/organic surfaces. The inherent hydrophilicity and salt affinity of the zwitterionic polymers endow the modified surfaces with antifouling, antibacterial and lubricating properties, thus the obtained zwitterionic surfaces show potential applications in biosystems. The zwitterionic polymer grafted membranes or stationary phases can effectively separate plasma, water/oil, ions, biomolecules and polar substrates. The nanomedicines with zwitterionic polymer shells have "stealth" effect in the delivery of encapsulated drugs, siRNA or therapeutic proteins. Moreover, the zwitterionic surfaces can be utilized as wound dressing, self-healing or oil extraction materials. The zwitterionic surfaces are expected as excellent support materials for biosensors, they are facing the severe challenges in the surface protection of marine facilities, and the dense ion pair layers may take unexpected role in shielding the grafted surfaces from strong electromagnetic field.
Collapse
|
32
|
Zhang K, Yan W, Simic R, Benetti EM, Spencer ND. Versatile Surface Modification of Hydrogels by Surface-Initiated, Cu 0-Mediated Controlled Radical Polymerization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6761-6767. [PMID: 31933355 PMCID: PMC7042955 DOI: 10.1021/acsami.9b21399] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/14/2020] [Indexed: 05/04/2023]
Abstract
Surface-initiated controlled radical polymerization mediated by a Cu0 plate (SI-Cu0 CRP) emerges as a versatile and efficient method for the functionalization of the exposed surfaces of hydrogels with a wide variety of polymer brushes. When a Cu0 plate is placed in contact with initiator-bearing hydrogel surfaces in the presence of ligand and monomer and under ambient conditions, it rapidly consumes dissolved oxygen from the reaction mixture, further acting as a source of catalyst and leading to the rapid growth of hydrogel-bound polymer chains. Three types of functional surfaces have been prepared as examples of the wide range of potential materials that can be synthesized in this way, including a hydrogel with a protective, hydrophobic surface, a lubricious hydrogel, as well as a hydrogel with thermally switchable frictional properties.
Collapse
Affiliation(s)
- Kaihuan Zhang
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Wenqing Yan
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rok Simic
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Edmondo M. Benetti
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Biointerfaces, Swiss Federal Laboratories
for Materials Science and
Technology (Empa), 9014 St. Gallen, Switzerland
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Layadi A, Kessel B, Yan W, Romio M, Spencer ND, Zenobi-Wong M, Matyjaszewski K, Benetti EM. Oxygen Tolerant and Cytocompatible Iron(0)-Mediated ATRP Enables the Controlled Growth of Polymer Brushes from Mammalian Cell Cultures. J Am Chem Soc 2020; 142:3158-3164. [PMID: 31967475 DOI: 10.1021/jacs.9b12974] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of zerovalent iron (Fe0)-coated plates, which act both as a source of catalyst and as a reducing agent during surface-initiated atom transfer radical polymerization (SI-ATRP), enables the controlled growth of a wide range of polymer brushes under ambient conditions utilizing either organic or aqueous reaction media. Thanks to its cytocompatibility, Fe0 SI-ATRP can be applied within cell cultures, providing a tool that can broadly and dynamically modify the substrate's affinity toward cells, without influencing their viability. Upon systematically assessing the application of Fe-based catalytic systems in the controlled grafting of polymers, Fe0 SI-ATRP emerges as an extremely versatile technique that could be applied to tune the physicochemical properties of a cell's microenvironments on biomaterials or within tissue engineering constructs.
Collapse
Affiliation(s)
- Amine Layadi
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Benjamin Kessel
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology , ETH Zürich , 8093 Zürich , Switzerland
| | - Wenqing Yan
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland.,Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 , St. Gallen , Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology , ETH Zürich , 8093 Zürich , Switzerland
| | - Krzysztof Matyjaszewski
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials , ETH Zürich ; Vladimir-Prelog-Weg 5 , 8093 Zürich , Switzerland.,Biointerfaces , Swiss Federal Laboratories for Materials Science and Technology (Empa) , Lerchenfeldstrasse 5 , CH-9014 , St. Gallen , Switzerland
| |
Collapse
|
34
|
Faggion Albers R, Yan W, Romio M, Leite ER, Spencer ND, Matyjaszewski K, Benetti EM. Mechanism and application of surface-initiated ATRP in the presence of a Zn0 plate. Polym Chem 2020. [DOI: 10.1039/d0py01233e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SI-Zn0-ATRP enables the synthesis of chemically different polymer brushes under full ambient conditions, using just microliter volumes of reaction solutions.
Collapse
Affiliation(s)
| | - Wenqing Yan
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Matteo Romio
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | - Edson R. Leite
- Department of Chemistry
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
- Brazilian Nanotechnology National Laboratory (LNNano)
| | - Nicholas D. Spencer
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| | | | - Edmondo M. Benetti
- Laboratory for Surface Science and Technology
- Department of Materials
- ETH Zürich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
35
|
Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Li W, Sheng W, Jordan R, Zhang T. Boosting or moderating surface-initiated Cu(0)-mediated controlled radical polymerization with external additives. Polym Chem 2020. [DOI: 10.1039/d0py01061h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
External additives regulate the copper disproportionation/comproportionation equilibrium to control polymer brush growth in surface-initiated Cu(0)-mediated controlled radical polymerization.
Collapse
Affiliation(s)
- Wei Li
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Wenbo Sheng
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Rainer Jordan
- Chair of Macromolecular Chemistry
- Faculty of Chemistry and Food Chemistry
- School of Science
- Technische Universität Dresden
- 01069 Dresden
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies
- Zhejiang Key Laboratory of Marine Materials and Protective Technologies
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo 315201
| |
Collapse
|
37
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Xu L, Li HL, Wang LP. PH-Sensitive, Polymer Functionalized, Nonporous Silica Nanoparticles for Quercetin Controlled Release. Polymers (Basel) 2019; 11:E2026. [PMID: 31817771 PMCID: PMC6960605 DOI: 10.3390/polym11122026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Some pH-sensitive, poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) grafted silica nanoparticles (SNPs) (SNPs-g-PDEAEMA) were designed and synthesized via surface initiated, metal-free, photoinduced atom transfer radical polymerization (ATRP). The structures of the polymers formed in solution were determined by 1H NMR. The modified nanoparticles were characterized by FT-IR spectroscopy, XPS, GPC, TEM and TGA. The analytical results show that α-bromoisobutyryl bromide (BIBB) (ATRP initiator) had been successfully anchored onto SNPs' surfaces, and was followed by surface-initiated, metal-free ATRP of 2-(diethylamino)ethyl methacrylate (DEAEMA). The resultant SNPs-g-PDEAEMA were uniform spherical nanoparticles with the particles size of about 22-25 nm, and the graft density of PDEAEMA on SNPs' surfaces obtained by TGA was 19.98 μmol/m2. Owing to the covalent grafting of pH-sensitive PDEAEMA, SNPs-g-PDEAEMA can dispersed well in acidic aqueous solution, but poorly in neutral and alkaline aqueous solutions, which is conducive to being employed as drug carriers to construct a pH-sensitive controlled drug delivery system. In vitro cytotoxicity evaluation results showed that the cytotoxicity of SNPs-g-PDEAEMA to the L929 cells had completely disappeared on the 3rd day. The loading of quercetin on SNPs-g-PDEAEMA was performed using adsorption process from ethanol solutions, and the dialysis release rate increased sharply when the pH value of phosphate-buffered saline (PBS) decreased from 7.4 to 5.5. All these results indicated that the pH-responsive microcapsules could serve as potential anti-cancer drug carriers.
Collapse
Affiliation(s)
- Lin Xu
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Hong-Liang Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China;
| | - Li-Ping Wang
- College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
39
|
Fu L, Omi M, Sun M, Cheng B, Mao G, Liu T, Mendonça G, Averick SE, Mishina Y, Matyjaszewski K. Covalent Attachment of P15 Peptide to Ti Alloy Surface Modified with Polymer to Enhance Osseointegration of Implants. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38531-38536. [PMID: 31599570 PMCID: PMC6993989 DOI: 10.1021/acsami.9b14651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Titanium (Ti) and its alloys are used in orthopedic and dental implants due to their excellent physical properties and biocompatibility. Although Ti exhibits superior osteoconductive properties compared to those of polymer-based implants, improved bone-on growth properties are required for enhanced surgical outcomes and improved recovery surgical interventions. Herein, we demonstrate a novel surface modification strategy to enhance the osteoconductivity of Ti surfaces through the grafting-from procedure of a reactive copolymer via surface-initiated atom transfer radical polymerization (SI-ATRP). Then, postpolymerization conjugation of the P15 peptide, an osteoblast binding motif, was successfully carried out. Subsequent in vitro studies revealed that the surface modification promoted osteoblast attachment on the Ti discs at 6 and 24 h. Moreover, mineral matrix deposition by osteoblasts was greater for the surface-modified Ti than for plain Ti and P15 randomly absorbed onto the Ti surface. These results suggest that the strategy for postpolymerization incorporation of P15 onto a Ti surface with a polymer interface may provide improved osseointegration outcomes, leading to enhanced quality of life for patients.
Collapse
Affiliation(s)
- Liye Fu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Maiko Omi
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Mingkang Sun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Boyle Cheng
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Gordon Mao
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Tong Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gustavo Mendonça
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Saadyah E. Averick
- Neuroscience Disruptive Research Lab, Allegheny Health Network, 320 East North Avenue, Pittsburgh, Pennsylvania 15212, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prothodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
40
|
Jeong W, Kang H, Kim E, Jeong J, Hong D. Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13268-13274. [PMID: 31573813 DOI: 10.1021/acs.langmuir.9b02219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we developed a uniform initiator layer that can be formed on various surfaces, and formed site-selectively, for the subsequent antifouling polymer brush formation. Initially, metal-organic films composed of tannic acid (TA) and FeIII ions (TA-FeIII) were formed on various surfaces, followed by functionalization with an aryl azide-based initiator (ABI) under photoreaction. In particular, combination with a photolithographic technique enabled the presentation of initiators only on the intended region within a single-surface platform. A resultant initiator film (TF-ABI) was formed under mild reaction conditions and meets the uniformity and transparency requirements concurrently. Subsequently, we showed that TF-ABI can be further utilized to form a polymer brush by proceeding with surface-initiated polymerization using a zwitterionic monomer, namely, sulfobetaine acrylamide (SBAA). Instead of applying a classical, yet air-sensitive atom transfer radical polymerization (ATRP) technique, we utilized an activator regenerated by electron transfer (ARGET) ATRP under air conditions without a cumbersome deoxygenation step. Overall, our initiator layer allowed the antifouling poly(SBAA) brush to be used on various surfaces, and enabled their pattern generation.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Hyeongeun Kang
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Eunseok Kim
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Jaehoon Jeong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| | - Daewha Hong
- Department of Chemistry and Chemistry Institute of Functional Materials , Pusan National University , Busan 46241 , Korea
| |
Collapse
|