1
|
Li Y, Wang Z, Jiang Y, Wu C, Sun C, Zhang Q, Zhang C, Fei H. Precise Single-Atom Modification of Hybrid Lead Chlorides for Electron Donor-Acceptor Effect and Enhanced Photocatalytic Aerobic Oxidation. Angew Chem Int Ed Engl 2025; 64:e202415896. [PMID: 39450503 DOI: 10.1002/anie.202415896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Hybrid lead halides show significant potential in photocatalysis due to their excellent photophysical properties, but the atomically precise modification of their organic component to achieve synergistic interactions with the lead halide units remains a great challenge. Herein, for the first time, we have employed the crystal engineering strategy to construct a class of single-atom-substituted hybrid lead halides with electron donor-acceptor (D-A) effect. The lead halide frameworks consist of 1D linear [PbCl]+ chains as inorganic building units and benzoxadiazole/benzothiadiazole/ benzoselenadiazole-funtionalized dicarboxylates as linkers. The covalent bonding between the organic ligands with electron-withdrawing groups and the electron-rich lead halide units not only facilitate the charge separation, but also enhance structural robustness that is critical for photocatalysis. The D-A structured lead halides serve as highly efficient heterogeneous photooxidation catalysts, including aerobic oxidation of C(sp3)-H bonds, oxidative coupling of primary amines, oxidation of phenylboronic acids and selective oxidation of sulfides that are demonstrated in 30 examples. Importantly, these photooxidation reactions are able to be driven by natural sunlight and ambient air to afford quantitative yields. Moreover, our lead halide photocatalysts are successful to fix into a photocatalytic flow system, which enables the flow-type synthesis of high value-added photooxidation products on a gram scale.
Collapse
Affiliation(s)
- Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Ziyi Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yilin Jiang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
2
|
Bhattacharjee S, Mondal S, Ghosh A, Banerjee S, Das AK, Bhaumik A. Rational Design of Highly Porous Donor-Acceptor Based Conjugated Microporous Polymer for Photocatalytic Benzylamine Coupling Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406723. [PMID: 39358942 DOI: 10.1002/smll.202406723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed. The CBZ-CMP framework is made through the polycondensation of 4,4'-di(9H-carbazol-9-yl)-1,1'-biphenyl using FeCl3 as a catalyst. The CBZ-CMP shows very high BET surface area of 1536 m2 g-1 together with unimodal porosity (ca. 1.7 nm supermicropore), nanowire-like particle morphology (16-18 nm diameter), and low band gap property. The bi-phenyl moiety functions as the electron accepting center and the carbazole unit acts as the donor center, which accounts for the low band gap energy of CBZ-CMP. This nanoporous semiconducting CBZ-CMP material for photocatalytic benzylamine coupling reaction is explored, where it shows good conversion together with high selectivity under mild reaction conditions. This study offers simple method of preparation of a D-A-D-based porous photocatalyst for sustainable synthesis of value-added organics.
Collapse
Affiliation(s)
- Sudip Bhattacharjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Sumanta Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Soumadip Banerjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Abhijit K Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| |
Collapse
|
3
|
Xing X, Cheng W, Zhou S, Liu H, Wu Z. Recent advances in small-angle scattering techniques for MOF colloidal materials. Adv Colloid Interface Sci 2024; 329:103162. [PMID: 38761601 DOI: 10.1016/j.cis.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/21/2024] [Accepted: 04/20/2024] [Indexed: 05/20/2024]
Abstract
This paper reviews the recent progress of small angle scattering (SAS) techniques, mainly including X-ray small angle scattering technique (SAXS) and neutron small angle scattering (SANS) technique, in the study of metal-organic framework (MOF) colloidal materials (CMOFs). First, we introduce the application research of SAXS technique in pristine MOFs materials, and review the studies on synthesis mechanism of MOF materials, the pore structures and fractal characteristics, as well as the spatial distribution and morphological evolution of foreign molecules in MOF composites and MOF-derived materials. Then, the applications of SANS technique in MOFs are summarized, with emphasis on SANS data processing method, structure modeling and quantitative structural information extraction. Finally, the characteristics and developments of SAS techniques are commented and prospected. It can be found that most studies on MOF materials with SAS techniques focus mainly on nanoporous structure characterization and the evolution of pore structures, or the spatial distribution of other foreign molecules loaded in MOFs. Indeed, SAS techniques take an irreplaceable role in revealing the structure and evolution of nanopores in CMOFs. We expect that this paper will help to understand the research status of SAS techniques on MOF materials and better to apply SAS techniques to conduct further research on MOF and related materials.
Collapse
Affiliation(s)
- Xueqing Xing
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Cheng
- College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Shuming Zhou
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huanyan Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; College of Materials Science and Engineering, New Energy Storage Devices Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Zhonghua Wu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Wang J, Li L, Liu Y, Yuan Z, Meng S, Ma P, Wang J, Niu J. Intensifying Photocatalytic Baeyer-Villiger Oxidation of Ketones with the Introduction of Ru Metalloligands and Bimetallic Units in POM@MOF. Inorg Chem 2024; 63:7325-7333. [PMID: 38602808 DOI: 10.1021/acs.inorgchem.4c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The synthesis of visible light-responsive and efficient photocatalysts toward green Baeyer-Villiger oxidation organic synthesis is of extraordinary significance. In this work, we have synthesized two examples of visible light responsive crystalline polyoxometalate@metal-organic framework materials Ru-NiMo and Ru-CoMo by introducing Ru metalloligands and {CdM3O12} bimetallic units (M = Ni or Co). This is the first report of metalloligand-modified polyoxometalate@metal-organic framework materials with bimetallic nodes, and the materials form a three-dimensional framework directly through coordination bonds between {CdM3O12} bimetallic units and metalloligands. In particular, Ru-NiMo can achieve efficient photocatalytic conversion of cyclohexanone to ε-caprolactone in yields as high as 95.5% under visible light excitation in the range of λ > 400 nm, achieving a turnover number and turnover frequency of 955 and 440 h-1, respectively, which are the best known photocatalysts for Baeyer-Villiger oxidation, while apparent quantum yield measured at 485 nm is 4.4%. Moreover, Ru-NiMo exhibited excellent structural stability and recyclability, producing a 90.8% yield after five cycles of recycling.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Luoning Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
- Puyang Institute of Technology, Henan University, Puyang, Henan 457000, P. R. China
| | - Zelong Yuan
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sha Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
5
|
Bao T, Tang C, Li S, Qi Y, Zhang J, She P, Rao H, Qin JS. Hollow structured CdS@ZnIn 2S 4 Z-scheme heterojunction for bifunctional photocatalytic hydrogen evolution and selective benzylamine oxidation. J Colloid Interface Sci 2024; 659:788-798. [PMID: 38215615 DOI: 10.1016/j.jcis.2023.12.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/22/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.
Collapse
Affiliation(s)
- Tengfei Bao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Chenxi Tang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Shuming Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Yuanyuan Qi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China.
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| |
Collapse
|
6
|
Liu AG, Meng XY, Chen Y, Chen ZT, Liu PD, Li B. Introducing a Pyrazinoquinoxaline Derivative into a Metal-Organic Framework: Achieving Fluorescence-Enhanced Detection for Cs + and Enhancing Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:669-683. [PMID: 38150676 DOI: 10.1021/acsami.3c14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Conventional photoresponsive materials have low photon utilization due to irregular distribution of photoactive groups, which severely limits the related real applications. Metal-organic frameworks (MOFs) can modulate the regular arrangement of functional groups to improve the electron transport paths and enhance the photon utilization, which provides strong support for the development of photoactive materials with excellent performance. In this work, one effective strategy for constructing a photoactive MOF had been developed via the utilization of Cd2+ and pyrazinoquinoxaline tetracarboxylic acid. The structural advantages of the Cd-MOF, such as a porous structure, abundant subject-object interaction sites, and a stable framework, ensure the prerequisite for various applications, while the better synergistic effect of Cd3 clusters and the pyrazinoquinoxaline derivative ensures efficient electron transfer efficiency. Therefore, by virtue of these structural advantages, the Cd-MOF can achieve fluorescence quenching detection for a variety of substrates, such as Fe3+, Cr2O72-, MnO4-, nitrofuran antibiotics, and TNP explosives, while fluorescence enhancement detection can be achieved for halogen ions, Cs+, Pb2+, and NO2-. In addition, the Cd-MOF can be used as a photocatalyst to successfully achieve the photocatalytic conversion of benzylamine to N-benzylbenzimidate under mild conditions. Thus, the Cd-MOF as a whole shows the possibility of application as a diverse fluorescence detection and photocatalyst and also illustrates the feasibility of preparing high-performance photoactive materials using the pyrazinoquinoxaline derivative.
Collapse
Affiliation(s)
- Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiao-Yu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zi-Tong Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
7
|
Ge B, Ye Y, Yan Y, Luo H, Chen Y, Meng X, Song X, Liang Z. Thiazolo[5,4- d]thiazole-Based Metal-Organic Framework for Catalytic CO 2 Cycloaddition and Photocatalytic Benzylamine Coupling Reactions. Inorg Chem 2023; 62:19288-19297. [PMID: 37956183 DOI: 10.1021/acs.inorgchem.3c02875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) with permanent porosity and multifunctional catalytic sites constructed by two or more organic ligands are regarded as effective heterogeneous catalysts to improve certain organic catalytic reactions. In this work, a pillared-layer Zn-MOF (MOF-LS10) was constructed by 2,3,5,6-tetrakis(4-carboxyphenyl)pyrazine (H4TCPP) and 2,5-di(pyridin-4-yl)thiazolo[5,4-d]thiazole (DPTZTZ). After activation, MOF-LS10 has a permanent porosity and moderate CO2 adsorption capacity. The introduction of thiazolo[5,4-d]thiazole (TZTZ), a photoactive unit, into the framework endows MOF-LS10 with excellent photocatalytic performance. MOF-LS10 can not only efficiently catalyze the formation of cyclic carbonates from CO2 and epoxide substrates under mild conditions but also can photocatalyze benzylamine coupling at room temperature. In addition, we used another two ligands 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (H4BTEB) and 1,4-di(pyridin-4-yl)benzene (DPB) to synthesize MOF-LS11 (constructed by BTEB4- and DPTZTZ) and MOF-LS12 (constructed by TCPP4- and DPB) in order to explore whether the pyrazine structural unit and the TZTZ structural unit synergistically catalyze the reaction. The electron paramagnetic resonance spectrum demonstrates that the superoxide radical (·O2-), generated by electron transfer from the MOF excited by light to the oxidant, is the main active substance of oxidation. The design and synthesis of MOF-LS10 provide an effective synthetic strategy for the development of versatile heterogeneous catalysts for various organic reactions and a wide range of substrates.
Collapse
Affiliation(s)
- Bangdi Ge
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yu Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
- Huairou Branch of Beijing No. 101 Middle School, Beijing 100005, China
| | - Yan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Hao Luo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yuze Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xianyu Meng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Liang C, Tan S, Shao L, Xue X, Liu J, Liu N, Zhang W, Shi Q. Sensitive Current Sensor Based on a Lanthanide Framework with Lewis Basic Bipyridyl Sites for Cu 2+ Detection. Inorg Chem 2023. [PMID: 37296395 DOI: 10.1021/acs.inorgchem.3c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new Yb-based three-dimensional metal-organic framework with free Lewis basic sites, [Yb2(ddbpdc)3(CH3OH)2] (referred to as ACBP-6), from YbCl3 and (6R,8R)-6,8-dimethyl-7,8-dihydro-6H-[1,5]dioxonino[7,6-b:8,9-b']dipyridine-3,11-dicarboxylic acid (H2ddbpdc) was synthesized by a conventional solvothermal method. Two Yb3+ are connected by three carboxyl groups to form the [Yb2(CO2)5] binuclear unit, which is further bridged by two carboxyl moieties to produce a tetranuclear secondary building unit. With further ligation of the ligand ddbpdc2-, a 3-D MOF with helical channels is constructed. In the MOF, Yb3+ only coordinates with O atoms, leaving the bipyridyl N atoms of ddbpdc2- unoccupied. The unsaturated Lewis basic sites make this framework possible to coordinate with other metal ions. After growing the ACBP-6 in situ into a glass micropipette, a novel current sensor is formed. This sensor shows high selectivity and a high signal-to-noise ratio toward Cu2+ detection with a detection limit of 1 μM, due to the stronger coordination ability between the Cu2+ and the bipyridyl N atoms.
Collapse
Affiliation(s)
- Chenglong Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Shiyi Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Lixiong Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xinxin Xue
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| | - Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325027, P. R. China
| | - Weibing Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou 325000, P. R. China
| |
Collapse
|
9
|
Dang Y, Tang K, Wang Z, Cui H, Lei J, Wang D, Liu N, Zhang X. Organophosphate Esters (OPEs) Flame Retardants in Water: A Review of Photocatalysis, Adsorption, and Biological Degradation. Molecules 2023; 28:molecules28072983. [PMID: 37049746 PMCID: PMC10096410 DOI: 10.3390/molecules28072983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
As a substitute for banned brominated flame retardants (BFRs), the use of organophosphate esters (OPEs) increased year by year with the increase in industrial production and living demand. It was inevitable that OPEs would be discharged into wastewater in excess, which posed a great threat to the health of human beings and aquatic organisms. In the past few decades, people used various methods to remove refractory OPEs. This paper reviewed the photocatalysis method, the adsorption method with wide applicability, and the biological method mainly relying on enzymolysis and hydrolysis to degrade OPEs in water. All three of these methods had the advantages of high removal efficiency and environmental protection for various organic pollutants. The degradation efficiency of OPEs, degradation mechanisms, and conversion products of OPEs by three methods were discussed and summarized. Finally, the development prospects and challenges of OPEs’ degradation technology were discussed.
Collapse
|
10
|
Dubskikh VA, Kolosov AA, Lysova AA, Samsonenko DG, Lavrov AN, Kovalenko KA, Dybtsev DN, Fedin VP. A Series of Metal-Organic Frameworks with 2,2'-Bipyridyl Derivatives: Synthesis vs. Structure Relationships, Adsorption, and Magnetic Studies. Molecules 2023; 28:molecules28052139. [PMID: 36903384 PMCID: PMC10004071 DOI: 10.3390/molecules28052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Five new metal-organic frameworks based on Mn(II) and 2,2'-bithiophen-5,5'-dicarboxylate (btdc2-) with various chelating N-donor ligands (2,2'-bipyridyl = bpy; 5,5'-dimethyl-2,2'-bipyridyl = 5,5'-dmbpy; 4,4'-dimethyl-2,2'-bipyridyl = 4,4'-dmbpy) [Mn3(btdc)3(bpy)2]·4DMF, 1; [Mn3(btdc)3(5,5'-dmbpy)2]·5DMF, 2; [Mn(btdc)(4,4;-dmbpy)], 3; [Mn2(btdc)2(bpy)(dmf)]·0.5DMF, 4; [Mn2(btdc)2(5,5'-dmbpy)(dmf)]·DMF, 5 (dmf, DMF = N,N-dimethylformamide) have been synthesized, and their crystal structure has been established using single-crystal X-ray diffraction analysis (XRD). The chemical and phase purities of Compounds 1-3 have been confirmed via powder X-ray diffraction, thermogravimetric, and chemical analyses as well as IR spectroscopy. The influence of the bulkiness of the chelating N-donor ligand on the dimensionality and structure of the coordination polymer has been analyzed, and the decrease in the framework dimensionality, as well as the secondary building unit's nuclearity and connectivity, has been observed for bulkier ligands. For three-dimensional (3D) coordination polymer 1, the textural and gas adsorption properties have been studied, revealing noticeable ideal adsorbed solution theory (IAST) CO2/N2 and CO2/CO selectivity factors (31.0 at 273 K and 19.1 at 298 K and 25.7 at 273 K and 17.0 at 298 K, respectively, for the equimolar composition and the total pressure of 1 bar). Moreover, significant adsorption selectivity for binary C2-C1 hydrocarbons mixtures (33.4 and 24.9 for C2H6/CH4, 24.8 and 17.7 for C2H4/CH4, 29.3 and 19.1 for C2H2/CH4 at 273 K and 298 K, respectively, for the equimolar composition and the total pressure of 1 bar) has been observed, making it possible to separate on 1 natural, shale, and associated petroleum gas into valuable individual components. The ability of Compound 1 to separate benzene and cyclohexane in a vapor phase has also been analyzed based on the adsorption isotherms of individual components measured at 298 K. The preferable adsorption of C6H6 over C6H12 by 1 at high vapor pressures (VB/VCH = 1.36) can be explained by the existence of multiple van der Waals interactions between guest benzene molecules and the metal-organic host revealed by the XRD analysis of 1 immersed in pure benzene for several days (1≅2C6H6). Interestingly, at low vapor pressures, an inversed behavior of 1 with preferable adsorption of C6H12 over C6H6 (KCH/KB = 6.33) was observed; this is a very rare phenomenon. Moreover, magnetic properties (the temperature-dependent molar magnetic susceptibility, χp(T) and effective magnetic moments, μeff(T), as well as the field-dependent magnetization, M(H)) have been studied for Compounds 1-3, revealing paramagnetic behavior consistent with their crystal structure.
Collapse
Affiliation(s)
- Vadim A. Dubskikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Aleksei A. Kolosov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna A. Lysova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence: (A.A.L.); (D.N.D.)
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Alexander N. Lavrov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Konstantin A. Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Danil N. Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
- Correspondence: (A.A.L.); (D.N.D.)
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
11
|
Wu B, Zhan X, Yu P, Meng J, Sendeku MG, Dajan FT, Gao N, Lai W, Yang Y, Wang Z, Wang F. Photocatalytic co-production of hydrogen gas and N-benzylidenebenzylamine over high-quality 2D layered In 4/3P 2Se 6 nanosheets. NANOSCALE 2022; 14:15442-15450. [PMID: 36222699 DOI: 10.1039/d2nr04332g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The concurrent photocatalytic synthesis of hydrogen gas and high-valued chemicals over two-dimensional semiconductors is extremely attractive to alleviate global energy and environmental concerns through directly using sunlight. Herein, a novel layered In4/3P2Se6 nanosheet is synthesized by a space confined chemical vapor conversion method, and it acts as a dual-functional photocatalyst to deliver the co-production of hydrogen gas and N-benzylidenebenzylamine from water reduction and selective benzylamine oxidation. The simultaneous yield of hydrogen gas and N-benzylidenebenzylamine is 895 μmol g-1 and 681 μmol g-1, respectively, within 16-hour continuous reaction involving a small amount of water in acetonitrile solvent. Moreover, 97.4% N-benzylidenebenzylamine selectivity from benzylamine oxidation can be achieved with continuous 10 hour-reaction only in acetonitrile solvent under ambient conditions. Further in situ electron paramagnetic resonance measurements and reaction optimization tests reveal that the reaction mechanism strongly relies on the conditions over the In4/3P2Se6 nanosheet photocatalyst.
Collapse
Affiliation(s)
- Binglan Wu
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Xueying Zhan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Peng Yu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Jun Meng
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Marshet Getaye Sendeku
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Fekadu Tsegaye Dajan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Ning Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Wenjia Lai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Ying Yang
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
| | - Zhenxing Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Fengmei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Che G, Yang W, Wang C, Li M, Li X, Pan Q. Efficient Photocatalytic Oxidative Coupling of Benzylamine over Uranyl-Organic Frameworks. Inorg Chem 2022; 61:12301-12307. [PMID: 35881495 DOI: 10.1021/acs.inorgchem.2c01594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible-light-driven organic transformation photocatalyzed by metal-organic frameworks (MOFs) under mild conditions is considered a feasible route to conserve energy and simplify synthesis. Herein, a light-sensitized, three-dimensional uranyl-organic framework (HNU-64) with twofold interpenetration and its derivatives HNU-64-CH3 and HNU-64-Cl with functionalized ligands of -CH3 and -Cl groups were obtained. These MOFs have broad optical absorption bands and suitable band energy levels in photooxidation, which makes them exhibit high activity and selectivity for the photooxidation of benzylamine to N-benzylbenzoimide under mild conditions. This work provides an efficient and simple synthetic option for oxidative coupling of amines to directly produce imines.
Collapse
Affiliation(s)
- Guang Che
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Weiting Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Cong Wang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Meiling Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinyi Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Qinhe Pan
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Cheng X, Zhang J, Sha Y, Xu M, Duan R, Su Z, Li J, Wang Y, Hu J, Guan B, Han B. Periodically nanoporous hydrogen-bonded organic frameworks for high performance photocatalysis. NANOSCALE 2022; 14:9762-9770. [PMID: 35766869 DOI: 10.1039/d2nr02585j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of highly catalytic hydrogen-bonded organic frameworks (HOFs) is of great importance, but remains challenging. Herein, we demonstrate the fabrication of a periodically nanoporous HOF for high performance photocatalysis. Compared with the conventional microporous HOFs, the nanoporous HOF architecture has a larger number of free carboxyl groups on the surface and presents greatly improved photoelectrochemical properties. It exhibits high catalytic activity for the photo-oxidative coupling of amines under mild conditions such as air atmosphere and room temperature and without any co-catalysts, sacrificial reagents or photosensitizers. The relationship between the structure, properties and catalytic performance of the nanoporous HOF was studied by experimental and theoretical investigations. It shows that such a HOF structure facilitates reactant adsorption and O2 dissociation, thus promoting the oxidative coupling reaction. This work provides a new way for improving the catalytic performance of a single HOF.
Collapse
Affiliation(s)
- Xiuyan Cheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Jianling Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Mingzhao Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Ran Duan
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuizhui Su
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Jialiang Li
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Yanyue Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Jingyang Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| | - Bo Guan
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China
| |
Collapse
|
14
|
Liu Y, Ji K, Wang J, Li H, Zhu X, Ma P, Niu J, Wang J. Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal-Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27882-27890. [PMID: 35675907 DOI: 10.1021/acsami.2c05654] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology is widely studied, while it comes with drawbacks such as low sunlight utilization efficiency and high carrier recombination rates. Herein, for the first time, we present two crystalline polyoxometalate (POM)-based metal-organic frameworks (POMOFs), {[Cd(DMF)2Ru(bpy)2(dcbpy)]2(POMs)(DMF)2} xDMF (PMo-1, POMs = [PMoVI11MoVO40]4-, x = 5; SiW-2, POMs = [SiW12O40]4-, x = 4) through assembling the photosensitizer [Ru(bpy)2(H2dcbpy)]Cl2 and POMs into a single framework. The assembly not only enhances light absorption in the visible light regime but also improves carrier separation efficiency; atop of that, both POMOFs demonstrate activities in the photocatalytic oxidative coupling of amines. Particularly, PMo-1 enables the quantitative completion of oxidative coupling of benzylamine reaction within 30 min (yield = 99.6%) with a high turnover frequency (TOF = 6631.6 h-1). To our knowledge, the PMo-1 catalyst outperforms any other photocatalysts previously reported in similar use cases where TOF values were usually obtained <2000 h-1.
Collapse
Affiliation(s)
- Yanan Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Kaihui Ji
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jing Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Huafeng Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Xueyu Zhu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Henan, Kaifeng 475004, P. R. China
| |
Collapse
|
15
|
Mondal S, Das SR, Sahoo L, Dutta S, Gautam UK. Light-Induced Hypoxia in Carbon Quantum Dots and Ultrahigh Photocatalytic Efficiency. J Am Chem Soc 2022; 144:2580-2589. [PMID: 35104402 DOI: 10.1021/jacs.1c10636] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbon quantum dots (CQDs) represent a class of carbon materials exhibiting photoresponse and many potential applications. Here, we present a unique property that dissolved CQDs capture large amounts of molecular oxygen from the air, the quantity of which can be controlled by light irradiation. The O2 content can be varied between a remarkable 1 wt % of the CQDs in the dark to nearly half of it under illumination, in a reversible manner. Moreover, O2 depletion enhances away from the air-solution interface as the nearby CQDs quickly regain them from the air, creating a pronounced concentration gradient in the solution. We elucidate the role of the CQD functional groups and show that excitons generated under light are responsible for their tunable adsorbed-oxygen content. Because of O2 enrichment, the photocatalytic efficiency of the CQDs toward oxidation of benzylamines in the air is the same as under oxygen flow and far higher than the existing photocatalysts. The findings should encourage the development of a new class of oxygen-enricher materials and air as a sustainable oxidant in chemical transformations.
Collapse
Affiliation(s)
- Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| | | | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS Nagar, Punjab 140306, India
| |
Collapse
|
16
|
Li Y, Cheng X, Li Z, Jin Y, Sun Y, Zou Y, Liu L, Duan R, Zhang J, Xu W. Two highly crystalline coordination polymers with two-dimensional PbS networks for photocatalytic synthesis of imines. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00797e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two highly crystalline coordination polymers, namely, Pb–HBT and Pb–BDT, were synthesized, and their crystal structures were solved. As photocatalysts, they exhibit high activities for the oxidation reactions of amines to imines under mild conditions.
Collapse
Affiliation(s)
- Yang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyan Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yigang Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ran Duan
- CAS Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianling Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Su Z, Zhang B, Cheng X, Xu M, Chen G, Sha Y, Wang Y, Hu J, Duan R, Zhang J. SnS2/polypyrrole for high-efficiency photocatalytic oxidation of benzylamine. Dalton Trans 2022; 51:13601-13605. [DOI: 10.1039/d2dt01899c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, SnS2/polypyrrole (PPy) was synthesized, which shows high catalytic activity for the photocatalytic oxidation of benzylamine under mild conditions (at 25 oC, in air and without adding additional sacrificial reagent,...
Collapse
|
19
|
Gao J, Huang Q, Wu Y, Lan YQ, Chen B. Metal–Organic Frameworks for Photo/Electrocatalysis. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202100033] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qing Huang
- Department of Chemistry South China Normal University Guangzhou 510006 China
| | - Yuhang Wu
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Ya-Qian Lan
- Department of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA circle San Antonio TX 78249-0689 USA
| |
Collapse
|
20
|
An S, Guo Z, Liu X, Che Y, Xing H, Chen P. Visible-light-responsive lanthanide coordination polymers for highly efficient photocatalytic aerobic oxidation of amines and thiols. NEW J CHEM 2021. [DOI: 10.1039/d1nj02416g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced activation of oxygen by visible-light-responsive CPs via electron/energy transfer and its roles on aerobic oxidation of amines and thiols.
Collapse
Affiliation(s)
- Shuyi An
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, China
| | - Zhifen Guo
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, China
| | - Xin Liu
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, China
| | - Yan Che
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, China
| | - Hongzhu Xing
- Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, Changchun 130021, China
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
21
|
Wang H, Zhang Q, Liu Q, Zhang N, Zhang JY, Fang YZ. Bi 2S 3@NH 2-UiO-66-S composites modulated by covalent interfacial reactions boost photodegradation and the oxidative coupling of primary amines. NEW J CHEM 2021. [DOI: 10.1039/d1nj01427g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Bi2S3@NH2-UiO-66-S heterostructures have been synthesized via covalent interfacial reactions, exhibiting excellent performance in the photodegradation of methylene and the oxidative coupling of primary amines compared to reported photocatalysts.
Collapse
Affiliation(s)
- Hang Wang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qing Zhang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Qing Liu
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | - Na Zhang
- Shanghai Institute of Technology
- Shanghai 201418
- P. R. China
| | | | | |
Collapse
|
22
|
Fan Q, Zhu L, Li X, Ren H, Zhu H, Wu G, Ding J. Visible-light photocatalytic selective oxidation of amine and sulfide with CsPbBr 3 as photocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj02595c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Using CsPbBr3 as a visible-light catalyst, a facile protocol for photocatalytic oxidation of amines and sulfides is reported, generating aldehydes, imines and sulfoxide with excellent yields and selectivity.
Collapse
Affiliation(s)
- Qiangwen Fan
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang
- China
| | - Longwei Zhu
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang
- China
| | - Xuhuai Li
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang
- China
| | - Huijun Ren
- State Key Laboratory of Nuclear Resources and Environment
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang
- China
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry
- School of Chemistry, Biology and Materials Science
- East China University of Technology
- Nanchang
- China
| | - Guorong Wu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices
- East China University of Technology
- Nanchang
- China
| | - Jianhua Ding
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation
- East China University of Technology
- Nanchang
- China
| |
Collapse
|
23
|
Li X, Hao H, Lang X. Molecular design of dye-TiO2 assemblies for green light-induced photocatalytic selective aerobic oxidation of amines. J Colloid Interface Sci 2021; 581:826-835. [DOI: 10.1016/j.jcis.2020.07.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/05/2023]
|
24
|
Nagarjun N, Jacob M, Varalakshmi P, Dhakshinamoorthy A. UiO-66(Ce) metal-organic framework as a highly active and selective catalyst for the aerobic oxidation of benzyl amines. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Chai K, Shi Y, Wang Y, Zou P, Yuan Q, Xu W, Zhang P. Visible light-driven oxidative coupling of dibenzylamine and substituted anilines with a 2D WSe 2 nanomesh material. NANOSCALE 2020; 12:21869-21878. [PMID: 33107549 DOI: 10.1039/d0nr05128d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel 2D WSe2 nanomesh material was synthesized with a 3D SBA-15 mesoporous material via a nanocasting strategy. The formation of the 2D sheet-like nanomesh structure of WSe2 inside a 3D confined pore space is mainly attributed to the synergistic effect arising from the crystal self-limitation growth caused by the layered crystal structure of the WSe2 material and to the space-limitation effect coming from the unique pore structure of the SBA-15 template. The 2D WSe2 nanomesh material possesses extremely high exposure of crystal layer edges, making it an excellent photocatalyst. It shows good visible light-driven photocatalytic performance in oxidative coupling of dibenzylamine and 2-amino/hydroxy/mercaptoanilines to prepare a group of heterocyclic compounds, including benzimidazoles, benzoxazoles and benzothiazoles with oxygen as the sole oxidant. A gram-scale experiment was also carried out to exhibit the scope of this method.
Collapse
Affiliation(s)
- Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Sha Y, Zhang J, Tan D, Zhang F, Cheng X, Tan X, Zhang B, Han B, Zheng L, Zhang J. Hierarchically macro-meso-microporous metal-organic framework for photocatalytic oxidation. Chem Commun (Camb) 2020; 56:10754-10757. [PMID: 32789401 DOI: 10.1039/d0cc04389c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The macro-meso-microporous and defective metal-organic framework constructed by transition metal Zn and 2,2'-bipyridine-5,5'-carboxylate was synthesized in CO2-expanded solvent. It shows high photocatalytic activity and selectivity for the oxidation of amines to imines under mild conditions, i.e., air as an oxidant, room temperature, and involving no photosensitizer or cocatalyst.
Collapse
Affiliation(s)
- Yufei Sha
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Garg R, Mondal S, Sahoo L, Vinod CP, Gautam UK. Nanocrystalline Ag 3PO 4 for Sunlight- and Ambient Air-Driven Oxidation of Amines: High Photocatalytic Efficiency and a Facile Catalyst Regeneration Strategy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29324-29334. [PMID: 32484649 DOI: 10.1021/acsami.0c05961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Selective oxidation of amines to imines using sunlight as clean and renewable energy source is an important but challenging chemical transformation because of high reactivity of the generated imines and lack of visible light-responsive materials with high conversion rates. In addition, oxygen gas has to be purged in the reaction mixture in order to increase the reaction efficiency which, in itself, is an energy-consuming process. Herein, we report, for the first time, the use of Ag3PO4 as an excellent photocatalyst for the oxidative coupling of benzyl amines induced by ambient air in the absence of any external source of molecular oxygen at room temperature. The conversion efficiency for the selective oxidation of benzyl amine was found to be greater than 95% with a selectivity of >99% after 40 min of light irradiation indicating an exceptionally high conversion efficiency with a rate constant of 0.002 min-1, a turnover frequency of 57 h-1, and a quantum yield of 19%, considering all of the absorbed photons. Ag3PO4, however, is known for its poor photostability owing to a positive conduction band position and a favorable reduction potential to metallic silver. Therefore, we further employed a simple catalyst regeneration strategy and showed that the catalyst can be recycled with negligible loss of activity and selectivity.
Collapse
Affiliation(s)
- Reeya Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-NCL, Pune 411008, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
28
|
Abstract
Solar radiation is becoming increasingly appreciated because of its influence on living matter and the feasibility of its application for a variety of purposes. It is an available and everlasting natural source of energy, rapidly gaining ground as a supplement and alternative to the nonrenewable energy feedstock. Actually, an increasing interest is involved in the development of efficient materials as the core of photocatalytic and photothermal processes, allowing solar energy harvesting and conversion for many technological applications, including hydrogen production, CO2 reduction, pollutants degradation, as well as organic syntheses. Particularly, photosensitive nanostructured hybrid materials synthesized coupling inorganic semiconductors with organic compounds, and polymers or carbon-based materials are attracting ever-growing research attention since their peculiar properties overcome several limitations of photocatalytic semiconductors through different approaches, including dye or charge transfer complex sensitization and heterostructures formation. The aim of this review was to describe the most promising recent advances in the field of hybrid nanostructured materials for sunlight capture and solar energy exploitation by photocatalytic processes. Beside diverse materials based on metal oxide semiconductors, emerging photoactive systems, such as metal-organic frameworks (MOFs) and hybrid perovskites, were discussed. Finally, future research opportunities and challenges associated with the design and development of highly efficient and cost-effective photosensitive nanomaterials for technological claims were outlined.
Collapse
|
29
|
Hou L, Zhang Y, Ma Y, Wang Y, Hu Z, Gao Y, Han Z. Reduced Phosphomolybdate Hybrids as Efficient Visible-Light Photocatalysts for Cr(VI) Reduction. Inorg Chem 2019; 58:16667-16675. [DOI: 10.1021/acs.inorgchem.9b02777] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lin Hou
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Yaqi Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Yuanyuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Yali Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Zhifei Hu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Yuanzhe Gao
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| | - Zhangang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People’s Republic of China
| |
Collapse
|