1
|
Gusatti M, Aragão Ribeiro de Souza D, Barozzi M, Dell’Anna R, Missale E, Vanzetti L, Bersani M, Nalin M. Fabrication and Performance Evaluation of a Nanostructured ZnO-Based Solid-State Electrochromic Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51253-51264. [PMID: 39283192 PMCID: PMC11440456 DOI: 10.1021/acsami.4c10545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
In this study, we present an all-solid-state electrochromic device (ECD) that eliminates the need for hard-to-obtain materials and conventional liquid/gel electrolytes. Using a cost-effective and industrially scalable spray coating technique, we developed an ECD containing a layer of zinc oxide nanorods (ZnOnano) synthesized via a simple solochemical route. The device configuration includes a preformed Al-coated glass substrate, acting as a counter electrode, within a glass/Al/ZnOnano/PEDOT:PSS architecture. The device exhibits reversible switching between light blue and dark blue states upon application of -1.2 V and +2.8 V, respectively, with a significant difference in transmittance between bleached and colored states in the visible-NIR spectrum, featuring a high coloration efficiency of 275.62 cm2/C at 600 nm. The response times required for both coloring and bleaching states were 9.92 s and 7.51 s, respectively, for a sample with an active area of 5.5 × 2.5 cm2. Regarding the electrochemical stability of the ZnO-based ECD, the transmittance modulation reached around 8.01% at 600 nm after 12,800 s, following initial variations observed during the first 10 cycles. These results represent significant progress in electrochromic technology, offering a sustainable and efficient alternative to traditional ECDs. The use of economical fabrication techniques and the exclusion of critical materials highlight the potential for widespread industrial adoption of this novel ECD design.
Collapse
Affiliation(s)
- Marivone Gusatti
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Daniel Aragão Ribeiro de Souza
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| | - Mario Barozzi
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Rossana Dell’Anna
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Elena Missale
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Lia Vanzetti
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Massimo Bersani
- Sensors
and Devices Center, Bruno Kessler Foundation (FBK), via Sommarive, 18, Povo, Trento 38123, Trentino, Italy
| | - Marcelo Nalin
- Institute
of Chemistry, Department of Analytical, Physical, and Inorganic Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, São Paulo, Brazil
| |
Collapse
|
2
|
Tang D, Wang J, Liu XA, Tong Z, Ji H, Qu HY. Low-Spin Fe Redox-Based Prussian Blue with excellent selective dual-band electrochromic modulation and energy-saving applications. J Colloid Interface Sci 2023; 636:351-362. [PMID: 36638574 DOI: 10.1016/j.jcis.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Dual-band electrochromic materials (DBEMs) are of utmost importance for smart windows to realize independent control of the visible (VIS) and near-infrared (NIR) light. However, very few single-component DBEMs are capable of independently and effectively controlling both VIS and NIR light. Here, we present Prussian blue (PB) with remarkable performance to replace the composite DBEMs that require deliberate design and complicated preparation. Excellent durability and capacity were achieved simultaneously due to the activated low-spin Fe in PB. A dual-band electrochromic device (DBED) by using PB thin films as electrochromic layers was constructed, exhibiting superior dual-band electrochromic performance, energy storage performance and memory effect. We show that the energy-saving DBED can be bleached without applying any external bias potential, and can be colored by using a commercial photovoltaic solar panel under ambient solar irradiation. The stored energy during coloration can be further used to light up the lights. Finally, the coloration mechanism of the DBED was studied by the density functional theory calculations, to shed light on the large optical transmittance modulation in both VIS and NIR regions. The new insights will advance the design of efficient and durable DBEMs and the development of bi-functional smart windows.
Collapse
Affiliation(s)
- Dajiang Tang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Junxin Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Xue-An Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongbing Ji
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hui-Ying Qu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Cai Q, Yan H, Yao R, Luo D, Li M, Zhong J, Yang Y, Qiu T, Ning H, Peng J. From Traditional to Novel Printed Electrochromic Devices: Material, Structure and Device. MEMBRANES 2022; 12:1039. [PMID: 36363594 PMCID: PMC9695232 DOI: 10.3390/membranes12111039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Electrochromic materials have been considered as a new way to achieve energy savings in the building sector due to their potential applications in smart windows, cars, aircrafts, etc. However, the high cost of manufacturing ECDs using the conventional manufacturing methods has limited its commercialization. It is the advantages of low cost as well as resource saving, green environment protection, flexibility and large area production that make printing electronic technology fit for manufacturing electrochromic devices. This paper reviews the progress of research on printed electrochromic devices (ECDs), detailing the preparation of ECDs by screen printing, inkjet printing and 3D printing, using the scientific properties of discrete definition printing method. Up to now, screen printing holds the largest share in the electrochromic industry due to its low cost and large ink output nature, which makes it suitable especially for printing on large surfaces. Though inkjet printing has the advantages of high precision and the highest coloration efficiency (CE) can be up to 542 ± 10 cm2C-1, it has developed smoothly, and has not shown rigid needs. Inkjet printing is suitable for the personalized printing production of high precision and small batch electronic devices. Since 3D printing is a new manufacturing technology in the 21st century, with the characteristics of integrated molding and being highly controllable, which make it suitable for customized printing of complex devices, such as all kinds of sensors, it has gained increasing attention in the past decade. Finally, the possibility of combining screen printing with inkjet printing to produce high performance ECDs is discussed.
Collapse
Affiliation(s)
- Qingyue Cai
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haoyang Yan
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Rihui Yao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Dongxiang Luo
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Huangpu Hydrogen Innovation Center, Guangzhou University, Guangzhou 510006, China
| | - Muyun Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jinyao Zhong
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuexin Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Honglong Ning
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Li B, Dang J, Zhuang Q, Lv Z. Recent Advances in Inorganic Electrochromic Materials from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Chem Asian J 2022; 17:e202200022. [PMID: 35191172 DOI: 10.1002/asia.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Indexed: 11/10/2022]
Abstract
For the assembly of electrochromic devices (ECDs) generally with multilayer structures, supportive components usually are needed to be incorporated with EC materials. The reasonable project and development of ECDs will achieve broad expected applications. In this study, we reviewed several impressive methods to design and fabricate ECDs with high-performance and versatility based on recent frontier research. The first part of the review is centered on the desirability and strengthening mechanism of nanostructured inorganic EC materials. The second part illustrates the recent advances in transparent conductors. We then summarize the demands and means to modify the formation of electrolytes for practicable ECDs. Moreover, efforts to increase the compatibility with the EC layer and ion capacity are delineated. In the end, the application prospects of inorganic ECDs are further explored, which offers a guideline for the industrialization process of ECDs.
Collapse
Affiliation(s)
- Borui Li
- National Innovation Center of high speed train, National Innovation center of high speed train, CHINA
| | - Jie Dang
- Chongqing University, College of Materials Science and Engineering, Shapingba Strict 174, 400044, Chongqing, CHINA
| | - Qianyu Zhuang
- National innovation (Qingdao) high speed train material research institute Co. LTD, National innovation (Qingdao) high speed train material research insitute Co. LTD, CHINA
| | - Zepeng Lv
- Chongqing University, College of Materials Science and Engineering, CHINA
| |
Collapse
|
5
|
Ma D, Lee-Sie Eh A, Cao S, Lee PS, Wang J. Wide-Spectrum Modulated Electrochromic Smart Windows Based on MnO 2/PB Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1443-1451. [PMID: 34957823 DOI: 10.1021/acsami.1c20011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inorganic materials have been extensively studied for visible electrochromism in the past few decades. However, the single inorganic electrochromic (EC) material commonly exhibits a single color change, leading to a narrow spectrum of modulation, which offsets or limits the maximally energy-saving ability. Here, we present a wide-spectrum modulated EC device designed by combining the complementary EC nanocomposite of manganese dioxide (MnO2) and Prussian blue (PB) for enhanced energy savings. Porous MnO2 nanostructures serve as host frameworks for the templated growth of PB, resulting in MnO2/PB nanocomposites. The complementary optical modulation ranges of MnO2 and PB enable a widen-spectrum modulation across the solar region with the development of the MnO2/PB nanocomposite. The colored MnO2/PB device exhibited an optical modulation of 32.1% in the wide solar spectrum range of 320-1100 nm and blocked 72.0% of the solar irradiance. Furthermore, fast switching responses (2.7 s for coloration and 2.1 s for bleaching) and a high coloration efficiency (83.1 cm2·C-1) of the MnO2/PB EC device are also achieved. The high EC performance of the MnO2/PB nanocomposite device provides a new strategy for the design of high-performance energy-saving EC smart windows.
Collapse
Affiliation(s)
- Dongyun Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai200093, P. R. China
| | - Alice Lee-Sie Eh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore138602, Singapore
| | - Sheng Cao
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi530004, China
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Nanomaterials for Energy and Energy Water Nexus (NEW), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore138602, Singapore
| | - Jinmin Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 334 Jungong Road, Shanghai200093, P. R. China
| |
Collapse
|
6
|
Lu Z, Zhong X, Liu X, Wang J, Diao X. Energy storage electrochromic devices in the era of intelligent automation. Phys Chem Chem Phys 2021; 23:14126-14145. [PMID: 34164640 DOI: 10.1039/d1cp01398j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The current intelligent automation society faces increasingly severe challenges in achieving efficient storage and utilization of energy. In the field of energy applications, various energy technologies need to be more intelligent and efficient to produce, store, transform and save energy. In addition, many smart electronic devices facing the future also require newer, lighter, thinner and even transparent multi-functional power supplies. The unique properties of electrochromic energy storage devices (ECESDs) have attracted widespread attention. In the field of energy applications, they have high potential value and competitiveness. This review focuses on the electrochromic basic principles, and the latest technological examples of ECESDs, which are related to materials and device structures. Simultaneously, this review makes a detailed comparison and summary of example performances. Moreover, the review compares the current mainstream energy storage devices: lithium batteries and supercapacitors, and the main challenges of ECESDs are discussed. Finally, the future development directions in the field of electrochromic energy storage are predicted.
Collapse
Affiliation(s)
- Zelin Lu
- School of Physics, Beihang University, Beijing, 100191, P. R. China.
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing, 100191, P. R. China.
| | - Xueqing Liu
- School of Physics, Beihang University, Beijing, 100191, P. R. China.
| | - Jinliang Wang
- School of Physics, Beihang University, Beijing, 100191, P. R. China.
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China.
| |
Collapse
|
7
|
Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. MICROMACHINES 2021; 12:mi12010080. [PMID: 33466688 PMCID: PMC7828803 DOI: 10.3390/mi12010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022]
Abstract
Nickel oxide (NiO) is a wide band gap semiconductor material that is used as an electrochromic layer or an ion storage layer in electrochromic devices. In this work, the effect of annealing temperature on sol-gel NiO films was investigated. Fourier transform infrared spectroscopy (FTIR) showed that the formation of NiO via decomposition of the precursor nickel acetate occurred at about 300 °C. Meanwhile, an increase in roughness was observed by Atomic force microscope (AFM), and precipitation of a large number of crystallites was observed at 500 °C. X-ray Diffraction (XRD) showed that the NiO film obtained at such a temperature showed a degree of crystallinity. The film crystallinity and crystallite size also increased with increasing annealing temperature. An ultraviolet spectrophotometer was used to investigate the optical band gap of the colored NiO films, and it was found that the band gap increased from 3.65 eV to 3.74 eV with the increase in annealing temperature. An electrochromic test further showed that optical modulation density and coloring efficiency decreased with the increase in crystallite size. The electrochromic reaction of the nickel oxide film is more likely to occur at the crystal interface and is closely related to the change of the optical band gap. An NiO film with smaller crystallite size is more conducive to ion implantation and the films treated at 300 °C exhibit optimum electrochromic behavior.
Collapse
|
8
|
Mondal S, Ninomiya Y, Yoshida T, Mori T, Bera MK, Ariga K, Higuchi M. Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31896-31903. [PMID: 32543825 DOI: 10.1021/acsami.0c05921] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly dense hexagonal Fe(II)-based coordination nanosheets (CONASHs) were designed by dual-branching, at the metal-coordination moieties and the tritopic ligands, which successfully obtained a liquid/liquid interface by the complexation of Fe(II) ions and the tritopic bidentate ligands. The 1:1 complexation was confirmed by titration. The obtained Fe(II)-based nanosheets were fully characterized by small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). A monolayer of the sheets was obtained, employing the Langmuir-Blodgett (LB) method, and the determined thickness was ∼2.5 nm. The polymer nanosheets exhibited red-to-colorless electrochromism because the electrochemical redox transformation between Fe(II) and Fe (III) ions controlled the appearance/disappearance of the metal (ion)-to-ligand charge-transfer (MLCT) absorption. The poor π-conjugation in the tritopic ligands contributed to the highly colorless electrochromic state. A solid-state device, with the robust polymer film, exhibited excellent electrochromic (EC) properties, with high optical contrast (ΔT > 65%) and high durability after repeated color changes for >15 000 cycles, upon applying low-operating voltages (+1.5/0 V).
Collapse
Affiliation(s)
- Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Taizo Mori
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Manas Kumar Bera
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|