1
|
Wang L, Gao L, Rao X, Li F, Zu D, Liu Y, Hu BL. High-performance elastic ferroelectrics via low-temperature carbene crosslinking and high-temperature annealing. Chem Sci 2025:d5sc01467k. [PMID: 40375865 PMCID: PMC12076213 DOI: 10.1039/d5sc01467k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
With the increasing demand for wearable electronics, elastic ferroelectrics with high polarization intensity and Curie temperature have become essential. However, balancing high ferroelectric performance with elasticity in polymeric ferroelectrics remains a challenge, as higher crosslinking density to improve elasticity often compromises Curie temperature and remnant polarization. To address this trade-off, we introduce unsaturated bonds into commercial P(VDF-TrFE), forming P(VDF-TrFE-DB) with enhanced crosslinking reactivity while retaining its inherent ferroelectric properties. A novel two-step LT-HT processing strategy is developed to achieve this balance. The low-temperature (LT) step leverages carbene-mediated crosslinking with diazirine-based crosslinkers below the polymer's Curie temperature, preventing premature crystallization and forming amorphous regions essential for mechanical flexibility. The high-temperature (HT) annealing step promotes the formation and alignment of well-ordered ferroelectric crystalline structures, optimizing remnant polarization and Curie temperature while preserving the crosslinked amorphous regions critical for elasticity. This approach enables high elasticity with minimal crosslinker content while maintaining excellent ferroelectric performance. The resulting elastic P(VDF-TrFE-DB) polymer exhibits a significantly elevated Curie temperature (∼140 °C) and high remnant polarization (7.63 μC cm-2), comparable to commercial P(VDF-TrFE). This method offers a versatile pathway for advanced flexible electronics, soft actuators, and wearable devices requiring robust mechanical and ferroelectric properties.
Collapse
Affiliation(s)
- Linping Wang
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
| | - Liang Gao
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| | - Xiaocui Rao
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- Ordered Matter Science Research Center, Nanchang University 339 Beijing East Road, Qingshanhu District Nanchang Jiangxi Province 330029 P. R. China
| | - Fangzhou Li
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| | - Da Zu
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, School of Materials Science and Engineering, Xiangtan University Yuhu District Xiangtan Hunan 411105 P. R. China
| | - Yunya Liu
- Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, School of Materials Science and Engineering, Xiangtan University Yuhu District Xiangtan Hunan 411105 P. R. China
| | - Ben-Lin Hu
- Advanced Interdisciplinary Sciences Research (AiR) Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences 1219 West Zhongguan Road, Zhenhai District Ningbo 315201 P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences No. 1 Yanqihu East Rd, Huairou District Beijing 101408 P. R. China
| |
Collapse
|
2
|
Dai S, Xu L, Han K, Chen P, Wang K, Huang Z, Wu W, Chen F. Anomalous Lattice Evolution-Mediated Electrical Properties in Transparent KNN-Based Lead-Free Ferroelectric Films. Inorg Chem 2022; 61:19399-19406. [DOI: 10.1021/acs.inorgchem.2c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Song Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Liqiang Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kun Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Pingfan Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ke Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China
| | - Wenbin Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Feng Chen
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Condition, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
3
|
Yu L, Wang L, Dou Y, Zhang Y, Li P, Li J, Wei W. Recent Advances in Ferroelectric Materials-Based Photoelectrochemical Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3026. [PMID: 36080063 PMCID: PMC9457969 DOI: 10.3390/nano12173026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Inorganic perovskite ferroelectric-based nanomaterials as sustainable new energy materials, due to their intrinsic ferroelectricity and environmental compatibility, are intended to play a crucial role in photoelectrochemical field as major functional materials. Because of versatile physical properties and excellent optoelectronic properties, ferroelectric-based nanomaterials attract much attention in the field of photocatalysis, photoelectrochemical water splitting and photovoltaic. The aim of this review is to cover the recent advances by stating the different kinds of ferroelectrics separately in the photoelectrochemical field as well as discussing how ferroelectric polarization will impact functioning of photo-induced carrier separation and transportation in the interface of the compounded semiconductors. In addition, the future prospects of ferroelectric-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Limin Yu
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Lijing Wang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Yanmeng Dou
- Shandong Yuhuang New Energy Technology Co., Ltd., Heze 274000, China
| | - Yongya Zhang
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Pan Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Jieqiong Li
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| |
Collapse
|
4
|
Ma Y, Yang S, Zhao C, Lin C, Lin J, Wu X, Gao M, Lin T, Fang C. Photochromic and Electric Field-Regulating Luminescence in High-Transparent (K,Na)NbO 3-Based Ferroelectric Ceramics with Two-Phase Coexistence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35940-35948. [PMID: 35914230 DOI: 10.1021/acsami.2c09564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rare earth Tb3+ doped (K0.465Na0.465Li0.07)(Nb0.93Bi0.07)O3 (KNNLB-x%Tb) lead-free transparent ferroelectric ceramics were designed and prepared. The effects of Tb3+ on phase structure, microstructure, optical transmittance, photoluminescence, and photochromic behaviors were studied. Although two ferroelectric phases coexist, the optical transmittance can reach the high value of 74% in the visible light region because of the fine grains, dense ceramic microstructure, large optical energy band gap, and relatively high symmetry of coexisting ferroelectric phases. In addition, Tb3+ works as a luminescent center, and the reversible photochromic modulation is achieved by alternate stimulation of illumination and heat treatment. Meanwhile, the luminescence contrast can be improved under in situ electric field stimulation due to the easy change of lattice symmetry in coexisting ferroelectric phases. The generation of color centers after illumination and the local crystal field around the luminescent center caused by in situ electric field contributes to above phenomena. These ceramics exhibit the great potential in optical data storage and anticounterfeiting.
Collapse
Affiliation(s)
- Yiming Ma
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Shaoxin Yang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunlin Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Cong Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jinfeng Lin
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiao Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Min Gao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Tengfei Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Changqing Fang
- Faculty of Printing Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
5
|
Cui B, Fan Z, Li W, Chen Y, Dong S, Tan Z, Cheng S, Tian B, Tao R, Tian G, Chen D, Hou Z, Qin M, Zeng M, Lu X, Zhou G, Gao X, Liu JM. Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision. Nat Commun 2022; 13:1707. [PMID: 35361828 PMCID: PMC8971381 DOI: 10.1038/s41467-022-29364-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nowadays the development of machine vision is oriented toward real-time applications such as autonomous driving. This demands a hardware solution with low latency, high energy efficiency, and good reliability. Here, we demonstrate a robust and self-powered in-sensor computing paradigm with a ferroelectric photosensor network (FE-PS-NET). The FE-PS-NET, constituted by ferroelectric photosensors (FE-PSs) with tunable photoresponsivities, is capable of simultaneously capturing and processing images. In each FE-PS, self-powered photovoltaic responses, modulated by remanent polarization of an epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 layer, show not only multiple nonvolatile levels but also sign reversibility, enabling the representation of a signed weight in a single device and hence reducing the hardware overhead for network construction. With multiple FE-PSs wired together, the FE-PS-NET acts on its own as an artificial neural network. In situ multiply-accumulate operation between an input image and a stored photoresponsivity matrix is demonstrated in the FE-PS-NET. Moreover, the FE-PS-NET is faultlessly competent for real-time image processing functionalities, including binary classification between 'X' and 'T' patterns with 100% accuracy and edge detection for an arrow sign with an F-Measure of 1 (under 365 nm ultraviolet light). This study highlights the great potential of ferroelectric photovoltaics as the hardware basis of real-time machine vision.
Collapse
Affiliation(s)
- Boyuan Cui
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhen Fan
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
| | - Wenjie Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yihong Chen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Shuai Dong
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhengwei Tan
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Shengliang Cheng
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Ruiqiang Tao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guo Tian
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Deyang Chen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhipeng Hou
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Minghui Qin
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Min Zeng
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xubing Lu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xingsen Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Laboratory of Solid State Microstructures and Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
6
|
Liu Q, Gao S, Xu L, Yue W, Zhang C, Kan H, Li Y, Shen G. Nanostructured perovskites for nonvolatile memory devices. Chem Soc Rev 2022; 51:3341-3379. [PMID: 35293907 DOI: 10.1039/d1cs00886b] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Perovskite materials have driven tremendous advances in constructing electronic devices owing to their low cost, facile synthesis, outstanding electric and optoelectronic properties, flexible dimensionality engineering, and so on. Particularly, emerging nonvolatile memory devices (eNVMs) based on perovskites give birth to numerous traditional paradigm terminators in the fields of storage and computation. Despite significant exploration efforts being devoted to perovskite-based high-density storage and neuromorphic electronic devices, research studies on materials' dimensionality that has dominant effects on perovskite electronics' performances are paid little attention; therefore, a review from the point of view of structural morphologies of perovskites is essential for constructing perovskite-based devices. Here, recent advances of perovskite-based eNVMs (memristors and field-effect-transistors) are reviewed in terms of the dimensionality of perovskite materials and their potentialities in storage or neuromorphic computing. The corresponding material preparation methods, device structures, working mechanisms, and unique features are showcased and evaluated in detail. Furthermore, a broad spectrum of advanced technologies (e.g., hardware-based neural networks, in-sensor computing, logic operation, physical unclonable functions, and true random number generator), which are successfully achieved for perovskite-based electronics, are investigated. It is obvious that this review will provide benchmarks for designing high-quality perovskite-based electronics for application in storage, neuromorphic computing, artificial intelligence, information security, etc.
Collapse
Affiliation(s)
- Qi Liu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Song Gao
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Lei Xu
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Wenjing Yue
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Chunwei Zhang
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Hao Kan
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China.
| | - Yang Li
- School of Information Science and Engineering & Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan 250022, China. .,State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures Institute of Semiconductors & Chinese Academy of Sciences and Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100083, China.
| |
Collapse
|
7
|
Cheng YYS, Liu L, Huang Y, Shu L, Liu YX, Wei L, Li JF. All-Inorganic Flexible (K, Na)NbO 3-Based Lead-Free Piezoelectric Thin Films Spin-Coated on Metallic Foils. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39633-39640. [PMID: 34382760 DOI: 10.1021/acsami.1c11418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible piezoelectric thin films are raising interest in energy harvesting and wearable electronics, although their direct fabrication is challenging in the selection of substrates and thermal processing. In this work, we developed direct fabrication of flexible lead-free (K, Na)NbO3 (KNN)-based piezoelectric films on commercially available metallic foils by sol-gel processing. Stainless steel and platinum foils are selected as flexible substrates because of their good thermal stability, robust flexibility, and cost-efficiency. The sol-gel-processed KNN-based thin films on both of the metallic foils show good flexibility, with the bending radii reaching ±3 mm. The flexible thin films grown on stainless steel and platinum foils present high breakdown electric fields that reach 1760 and 2530 kV/cm, respectively, resulting from the fine-grained dense structure, limited leakage current density, and suppressed mobility of charged carriers. Improved effective piezoelectric coefficient d33, eff* (75.4 pm/V) with a slight decrease after bending was obtained in the flexible thin films on Pt when compared to their rigid counterparts. The flexible lead-free piezoelectric thin films with combined high breakdown electric fields and piezoelectric and energy storage properties may pave the way for integrating KNN-based multifunctional thin films into flexible electronics.
Collapse
Affiliation(s)
- Yue-Yu-Shan Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Lisha Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yu Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liang Shu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yi-Xuan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Liyu Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Yao Y, Peng Y, Li L, Zhang X, Liu X, Hong M, Luo J. Exploring a Fatigue‐Free Layered Hybrid Perovskite Ferroelectric for Photovoltaic Non‐Volatile Memories. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yunpeng Yao
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
- University of the Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
9
|
Yao Y, Peng Y, Li L, Zhang X, Liu X, Hong M, Luo J. Exploring a Fatigue-Free Layered Hybrid Perovskite Ferroelectric for Photovoltaic Non-Volatile Memories. Angew Chem Int Ed Engl 2021; 60:10598-10602. [PMID: 33247864 DOI: 10.1002/anie.202012601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/14/2020] [Indexed: 11/07/2022]
Abstract
Through a functional unit-transmutation strategy, a fatigue-free layered hybrid perovskite ferroelectric (C6 H5 CH2 NH3 )2 CsPb2 Br7 (BCPB) has been developed, which demonstrates stable spontaneous polarization (Ps ) of 6.5 μC cm-2 and high Curie temperature up to 425 K. Meanwhile, BCPB shows splendid bulk photovoltaic effect (BPVE) properties with noticeable zero-bias photocurrent density (5 μA cm-2 ), and high on/off switching ratio of current (over 3×105 ); these merits even overmatch the most known ferroelectric semiconductor BiFeO3 . The unique structure with self-regulated net electrical charged layers gives rise to the fatigue-free feature of Ps and BPVE (no significant fatigue after 108 polarity switching cycles), promoting the potential applications of BCPB in photovoltaic non-volatile memories. This work offers an efficient approach for exploring fatigue-free semiconducting ferroelectrics as well as excavates their further applications in next-generation electronic devices.
Collapse
Affiliation(s)
- Yunpeng Yao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Xinyuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
10
|
Zhou Y, Wang P, Lin J, Lu Q, Wu X, Gao M, Lin T, Lin C, Zheng X. High-contrast photochromic Eu-doped K 0.5Na 0.5NbO 3 ceramics with prominent pellucidity. Dalton Trans 2021; 50:4914-4922. [PMID: 33877188 DOI: 10.1039/d1dt00467k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Eu-doped K0.5Na0.5NbO3 pellucid ceramics were first prepared via a conventional solid-state reaction, and they exhibited light illumination-induced high-contrast photochromism of both optical transmittance and photoluminescence behaviors. Through thermal treatment, the optical performances could return to their initial states and displayed excellent reversibility. Eu3+ ions were selected as the luminescent activator for detecting the local environment of the K0.5Na0.5NbO3 host. Meanwhile, the effects of the amount of Eu3+ present on phase structures, microstructures, optical transmittance and photoluminescence intensities were systematically investigated. The results suggest that Eu-doped K0.5Na0.5NbO3 transparent ceramics possess multifunctionality including photochromism, photoluminescence and optical switching properties, and that they exhibit promising potential for non-destructive optical data storage application.
Collapse
Affiliation(s)
- Yang Zhou
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Bitla Y, Chu YH. van der Waals oxide heteroepitaxy for soft transparent electronics. NANOSCALE 2020; 12:18523-18544. [PMID: 32909023 DOI: 10.1039/d0nr04219f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substrates via van der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.
Collapse
Affiliation(s)
- Yugandhar Bitla
- Department of Physics, School of Physical Sciences, Central University of Rajasthan, Ajmer 305817, India
| | | |
Collapse
|