1
|
Huang S, Wang M, Feng Y, Li Q, Yang Z, Chen J, Guo B, Ma Z, Yu B, Huang Y, Li X. Dual-Driven Ion/Electron Migration and Sodium Storage by In Situ Introduction of Copper Ions and a Carbon-Conductive Framework in a Tin-Based Sulfide Anode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57228-57238. [PMID: 39378302 DOI: 10.1021/acsami.4c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Tin sulfide (SnS) has emerged as a promising anode material for sodium ion batteries (SIBs) due to its high theoretical capacity and large interlayer spacing. However, several challenges, such as severe insufficient electrochemical reactivity, rapid capacity degradation, and poor rate performance, still hinder its application in SIBs. In this study, in situ introduction of copper ions and a carbon conductive framework to form SnS nanocrystals embedded in a Cu2SnS3 lamellar structure heterojunction composite (SnS/Cu2SnS3/RGO) with graphene as the supporting material is proposed to achieve dual-driven sodium ion/electron migration during the continuous electrochemical process. The designed structure facilitates the preferential electrochemical reduction of copper ions into copper nanocrystals during the discharge process and functions as a catalytically active center to promote multivalence tin sodiation reaction. Furthermore, during the charging process, the presence of copper nanocrystals also facilitates efficient desodiation of NaxSn and further activates to form higher valence state sulfides. As a result, the SnS/Cu2SnS3/RGO composite demonstrates high cycling stability with a high reversible capacity of 395 mAh g-1 at 5A g-1 after 500 cycles with a capacity retention of 85.6%. In addition, the assembled Na3V2(PO4)3∥SnS/Cu2SnS3/RGO sodium ion full cell achieves 93.7% capacity retention after 80 cycles at 0.5 A g-1.
Collapse
Affiliation(s)
- Siming Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Mingshan Wang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yuanlong Feng
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Qian Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zhenliang Yang
- Institute of Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621908, P. R. China
| | - Junchen Chen
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Bingshu Guo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Zhiyuan Ma
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Bo Yu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yun Huang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Xing Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
2
|
Bisht P, Belle BD, Aggarwal P, Ghosh A, Xing W, Kaur N, Singh JP, Mehta BR. Gas Sensing Properties of PLD Grown 2D SnS Film: Effect of Film Thickness, Metal Nanoparticle Decoration, and In Situ KPFM Investigation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307037. [PMID: 38178272 DOI: 10.1002/smll.202307037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Indexed: 01/06/2024]
Abstract
This study employs novel growth methodologies and surface sensitization with metal nanoparticles to enhance and manipulate gas sensing behavior of two-dimensional (2D)SnS film. Growth of SnS films is optimized by varying substrate temperature and laser pulses during pulsed laser deposition (PLD). Thereafter, palladium (Pd), gold (Au), and silver (Ag) nanoparticles are decorated on as-grown film using gas-phase synthesis techniques. X-ray diffraction (XRD), Raman spectroscopy, and Field-emission scanning electron microscopy (FESEM) elucidate the growth evolution of SnS and the effect of nanoparticle decoration. X-ray photoelectron spectroscopy (XPS) analyses the chemical state and composition. Pristine SnS, Ag, and Au decorated SnS films are sensitive and selective toward NO2 at room temperature (RT). Ag nanoparticle increases the response of pristine SnS from 48 to 138% toward 2 ppm NO2, which indicates electronic and chemical sensitization effect of Ag. Pd decoration on SnS tunes its selectivity toward H2 gas with a response of 55% toward 70 ppm H2 and limit of detection (LOD) < 1 ppm. In situ Kelvin probe force microscopy (KPFM) maps the work function changes, revealing catalytic effect of Ag toward NO2 in Ag-decorated SnS and direct charge transfer between Pd and SnS during H2 exposure in Pd-decorated SnS.
Collapse
Affiliation(s)
- Prashant Bisht
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Branson D Belle
- SINTEF INDUSTRY, Materials Physics, Forskningsveien 1, Oslo, NO - 0373, Norway
| | - Pallavi Aggarwal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Abhishek Ghosh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Wen Xing
- SINTEF INDUSTRY, Materials Physics, Forskningsveien 1, Oslo, NO - 0373, Norway
| | - Narinder Kaur
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - J P Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - B R Mehta
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Directorate of Research, Innovation and Development, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| |
Collapse
|
3
|
Zhang H, Liu B, Wang S, Yuan C, Lu Z, Hu J, Xie J, Cao Y. 2D heterostructural Mn 2O 3 quantum dots embedded N-doped carbon nanosheets with strongly stable interface enabling high-performance sodium-ion hybrid capacitors. J Colloid Interface Sci 2023; 656:545-555. [PMID: 38011773 DOI: 10.1016/j.jcis.2023.11.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The ingenious architectural structural engineering is extensively identified as a cogent means for facilitating the electrochemical properties of conversion-type anode materials for sodium-ion storage. Herein, a delicate, scalable and controllable solvent-free strategy is proposed to synthesize ultrafine Mn2O3 quantum dots embedded into N-doped carbon to generate two-dimensional (2D) composites (MNC) with robust interfacial heterostructural interactions for high sodium ion storage and fast reaction kinetics, which averts the use of solvents and environmental pollution, greatly reduces time and production costs. The introduction of metallic Mn species simultaneously achieves the construction of ultrafine Mn2O3 quantum dots and strong interfacial heterostructural COMn bonds between metal species and 2D N-doped carbon matrix. The synergistic effect of the formation of oxide quantum dots, the combination of 2D N-doped carbon and the construction of robust interfacial interactions provides the stable electrode structure, fast reaction kinetics and high electrochemical storage capability of anode materials. Hence, MNC composites in SIBs convey remarkable reversible rate capability. Its superior capacity reaches 215 mAh g-1 for 50 cycles at 0.2 A g-1 and 155 mAh g-1 for 1000 cycles at a high current density of 5 A g-1, which shows good long-term stability. The assembled sodium-ion hybrid capacitors (SIHCs) device delivers outstanding energy density of 138 Wh kg-1 at a power density of 126 W kg-1 and 98% capacity retention after 2000 cycles at 2 A g-1, and tremendous capability for practical applications (69 LEDs can be easily lighted). This work not merely offers guidance for the rational interfacial engineering design of high-capacity Mn-based electrode materials in a feasible and scalable solvent-free tactics for Na+ storage, but also broadens the routes for projecting a better electrode material for other battery systems.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Shiqiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Chun Yuan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
4
|
Cheng Q, Li Y, Gao P, Xia G, He S, Yang Y, Pan H, Yu X. Lithium Azides Induced SnS Quantum Dots for Ultra-Fast and Long-Term Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302188. [PMID: 37259260 DOI: 10.1002/smll.202302188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Indexed: 06/02/2023]
Abstract
Tin sulfide (SnS) is an attractive anode for sodium ion batteries (NIBs) because of its high theoretical capacity, while it seriously suffers from the inherently poor conductivity and huge volume variation during the cycling process, leading to inferior lifespan. To intrinsically maximize the sodium storage of SnS, herein, lithium azides (LiN3 )-induced SnS quantum dots (QDs) are first reported using a simple electrospinning strategy, where SnS QDs are uniformly distributed in the carbon fibers. Taking the advantage of LiN3 , which can effectively prevent the growth of crystal nuclei during the thermal treatment, the well-dispersed SnS QDs performs superior Na+ transfer kinetics and pseudocapacitive when used as an anode material for NIBs. The 3D SnS quantum dots embedded uniformly in N-doped nanofibers (SnS QDs@NCF) electrodes display superior long cycling life-span (484.6 mAh g-1 after 5800 cycles at 2 A g-1 and 430.9 mAh g-1 after 7880 cycles at 10 A g-1 ), as well as excellent rate capability (422.3 mAh g-1 at 20 A g-1 ). This fabrication of transition metal sulfides QDs composites provide a feasible strategy to develop NIBs with long life-span and superior rate capability to pave its practical implementation.
Collapse
Affiliation(s)
- Qiaohuan Cheng
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yingxue Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Panyu Gao
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Shengnan He
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Zhang H, Liu B, Lu Z, Hu J, Xie J, Hao A, Cao Y. Sulfur-Bridged Bonds Heightened Na-Storage Properties in MnS Nanocubes Encapsulated by S-Doped Carbon Matrix Synthesized via Solvent-Free Tactics for High-Performance Hybrid Sodium Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207214. [PMID: 36670333 DOI: 10.1002/smll.202207214] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The exploitation of electrode materials with ability to balance capacity and kinetics between cathode and anode is a challenge for sodium-ion hybrid capacitors (SIHCs). Mn-based anode materials are limited by poor electrical conductivity, sluggish reaction kinetics, large volume variation, weak cycling stability, and inferior reversible capacity. Herein, MnS nanocubes encapsulated in S-doped porous carbon matrix (MSC) with strong sulfur-bridged bond interactions (CSMn) are successfully synthesized by solvent-free tactics. The CSMn bonds generated between MnS and carbon significantly inhibit the aggregation of nanostructural MnS cubes, restrict the volume expansion, and stabilize the nanostructure, which improves the Na+ storage reversibility and stability. Moreover, S-doped porous carbon enhances the electrical conductivity and electrons/ions diffusion rate, which boosts a fast kinetic reaction. As expected, MSC anode presents an outstanding reversible capacity of 600 mAh g-1 at 0.2 A g-1 and a long-term stable capacity of 357 mAh g-1 for 1000 cycles at a high current density of 10 A g-1 in sodium-ion batteries (SIBs). The as-assembled SIHCs deliver a high energy density of 109 W h kg-1 and a high power output of 98 W kg-1 , with 88% capacity retention at 2 A g-1 after 2000 cycles and practical applications (55 LEDs can be lighted for 10 min).
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Aize Hao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
6
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
7
|
Deng S, Xiong S, Wang X, Wang S, Zhao Z, Hou L, Jiang Y, Gao F. Surfactant-Assisted RGO Limited Spherical FeS with Superior Stability and High Capacity as An Anode for Lithium-Ion Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
Liu F, Ren X, Zhao J, Wu H, Wang J, Han X, Deng Y, Hu W. Inhibiting Sulfur Dissolution and Enhancing Activity of SnS for CO 2 Electroreduction via Electronic State Modulation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fei Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Xixi Ren
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Jun Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Han Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou570228, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin300072, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, P. R. China
| |
Collapse
|
9
|
Lei W, Wang F, Lu B, Ye Z, Pan X. Zn-doped SnS with sulfur vacancies for enhanced photocatalytic hydrogen evolution from water. NEW J CHEM 2022. [DOI: 10.1039/d2nj03520k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tin sulfide has attracted considerable attention due to its adjustable optoelectronic properties. However, few present pieces of literature focus on the photocatalytic water splitting performance of stannous sulfide (SnS), despite...
Collapse
|
10
|
Zi Y, Zhu J, Hu L, Wang M, Huang W. Nanoengineering of Tin Monosulfide (SnS)‐Based Structures for Emerging Applications. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering Nantong University Nantong Jiangsu 226019 P. R. China
| |
Collapse
|
11
|
Yuan X, Qiu S, Zhao X. Covalent Fixing of MoS 2 Nanosheets with SnS Nanoparticles Anchored on g-C 3N 4/Graphene Boosting Fast Charge/Ion Transport for Sodium-Ion Hybrid Capacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34238-34247. [PMID: 34254766 DOI: 10.1021/acsami.1c07535] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sluggish layered structural sodium reaction kinetics and the easy restacking property are major obstacles hindering the practical application of MoS2-based electrodes for sodium storage. Herein, covalently assembled two-phase MoS2-SnS supported by a hierarchical graphitic carbon nitride/graphene (MoS2-SnS@g-C3N4/G) composite is constructed to improve cycling cyclability and rate performances for Na storage. The multiphase MoS2-SnS@g-C3N4/G is featured with a covalent assembly strategy and an interconnected network architecture. This unique structural design can not only enhance the conductivity and facilitate fast interfacial electron transport, which is confirmed by experiments and density functional theory, but also buffer the volumetric changes of MoS2-SnS. As a result, the as-obtained MoS2-SnS@g-C3N4/G anode delivers a high reversible capacity of 834 mA h g-1 at 0.1 A g-1, a high rate capability of 452 mA h g-1 at 5 A g-1, and a long-term cycling stability (320 mA h g-1 at 2 A g-1 with 54.7% retention after 500 cycles) for the Na half-cell. Coupling with activated carbon (AC), our MoS2-SnS@g-C3N4/G||AC sodium-ion hybrid capacitor delivers high energy/power densities (193.1 W h kg-1/90 W kg-1 and 41.5 W h kg-1/18,000 W kg-1) and a stable cycle life in the potential range of 0-4.0 V.
Collapse
Affiliation(s)
- Xing Yuan
- Xi'an University, Xi'an 710065, P. R. China
| | - Shuting Qiu
- Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiaojun Zhao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| |
Collapse
|
12
|
Ma CJ, Li N, Chen LL, Chen H, Song WL. Strain Engineering in Electrochemical Activity and Stability of BiFeO 3 Perovskites. J Phys Chem Lett 2021; 12:4104-4111. [PMID: 33885308 DOI: 10.1021/acs.jpclett.0c03768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Strain engineering is widely employed to manipulate the intrinsic relationship of activity and the crystal structure, while the mechanism and rational strategy toward high-performance devices are still under investigation. Here straining engineering is utilized to manipulate a series of a typical perovskite structures via introducing different types of heteroions (Bi1-xMxFeO3, M = Ca2+ or Y3+ ion). The space group R3c in BiFeO3 perovskites is found to be maintained with substituting a certain amount of heteroions at Bi3+ sites (<5%), while it would shift into either space groups P4mm (with Ca2+ substitute) or Pnma (with Y3+ substitute) beyond some critical doping amounts (>5%). Such a transformation is linked with the mismatched crystal strain induced by the heteroions substituted at Bi3+ sites, while the activity, stability, and energy storage capability of Bi1-xMxFeO3 have been essentially varied. The results offer a strategy for manipulating stability and activity of perovskites in electrochemical energy conversion and storage.
Collapse
Affiliation(s)
- Chao-Jie Ma
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Na Li
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Li-Li Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Haosen Chen
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| | - Wei-Li Song
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Laboratory of Lightweight Multi-functional Composite Materials and Structures, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
13
|
Design of kinetic well-matched Mo2C nanoparticles anchored into 3D hierarchical porous carbon towards high-rate sodium ion storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Su X, Su D, Sang Z, Yan X, Liang J. Shielded SnS2/SnS heterostructures on three-dimensional graphene framework for high-rate and stable sodium-ion storage. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137800] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Zhang S, Ying H, Huang P, Wang J, Zhang Z, Yang T, Han WQ. Rational Design of Pillared SnS/Ti 3C 2T x MXene for Superior Lithium-Ion Storage. ACS NANO 2020; 14:17665-17674. [PMID: 33301296 DOI: 10.1021/acsnano.0c08770] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
MXenes have been widely explored in energy storage because of their extraordinary properties; however, the majority of research on their application was staged at multilayered MXenes or assisted by carbon materials. Scientifically speaking, the two most distinctive properties of MXenes are usually neglected, composed of large interlayer spacing and abundant surface chemistry, which distinguish MXenes from other two-dimensional materials. Herein, few-layered MXene (f-MXene) nanosheet powders can be easily prepared according to the modified solution-phase flocculation method, completely avoiding the restacking phenomenon of f-MXene nanosheets in preparation and oxidation issues during the storage process. Via further employing the solvothermal reaction and annealing treatment, we successfully constructed pillared SnS/Ti3C2Tx composites decorated with in situ formed TiO2 nanoparticles. In the composites, MXenes can play the role of a conductive network, a buffer matrix for volume expansion of SnS, while the active SnS nanoplates can fully deliver the advantage of high capacity and further induce interlayer engineering of Ti3C2Tx during cycling. As a result, the pillared SnS/Ti3C2Tx MXene composites exhibit obvious improvement in electrochemical performance. Interestingly, there is an apparent enhancement of capacity at succedent cycling, which can be ascribed to the "pillar effect" of Ti3C2Tx MXenes. The efforts and attempts made in this work can further broaden the development of pillared MXene composites.
Collapse
Affiliation(s)
- Shunlong Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hangjun Ying
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Pengfei Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianli Wang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tiantian Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
16
|
Chen Z, Chen W, Wang H, Xiao Z, Yu F. N-doped carbon-coated ultrasmall Nb 2O 5 nanocomposite with excellent long cyclability for sodium storage. NANOSCALE 2020; 12:18673-18681. [PMID: 32970080 DOI: 10.1039/d0nr04922k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Niobium pentoxide (Nb2O5) has drawn significant interest as a promising anode for sodium ion batteries (SIBs) due to its large interplanar lattice spacing and relatively high diffusion efficiency. However, the intrinsic drawbacks of low electrical conductivity and substantial volume change greatly impede its practical applications in large-scale energy storage systems. In this work, ultrasmall Nb2O5 nanoparticles wrapped with nitrogen-doped carbon (denoted as Nb2O5@NC) were delicately synthesized via a facile sol-gel method and subsequent heat treatment. The unique structure of ultrasmall Nb2O5 nanoparticles in a carbonaceous matrix can not only effectively shorten the transmission distance for both ions/electrons but also relieve the strain and stress caused by volume variation during the sodiation/desodiation process. In addition, the synergistic effect of nitrogen doping and carbon coating can further improve the electronic conductivity and pseudocapacitive behavior of the active materials, thus promoting the rapid electrochemical reaction kinetics of the Nb2O5@NC composite. The obtained 600-Nb2O5@NC-2 anode exhibits superior rate capability and outstanding cycling stability, delivering a reversible capacity of 196 mA h g-1 at 1 A g-1 after 1000 cycles. Even at high current densities of 5 A g-1 and 10 A g-1, the long-life cycling tests show that the reversible capacities still remain at 128.4 mA h g-1 and 95.9 mA h g-1 after 3000 cycles, respectively, which is the best performance of Nb2O5-based anodes at high current densities so far. These results indicate that the feasible synthetic strategy of Nb2O5@NC is an effective approach to develop high-performance Nb2O5-based anodes for large-scale energy storage.
Collapse
Affiliation(s)
- Zhigao Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P.R. China.
| | | | | | | | | |
Collapse
|
17
|
Cheng W, Wan B, Xu S, Zhang M, Zeng R, Liu Z, Zhang C, Yin F, Wang G, Gou H. Three-Dimensional Topotactic Host Structure-Secured Ultrastable VP-CNO Composite Anodes for Long Lifespan Lithium- and Sodium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:29218-29227. [PMID: 32490658 DOI: 10.1021/acsami.0c04963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Performance degradation of lithium/sodium-ion capacitors (LICs/SICs) mainly originates from anode pulverization, particularly the alloying and conversion types, and has spurred research for alternatives with an insertion mechanism. Three-dimensional (3D) topotactic host materials remain much unexplored compared to two-dimensional (2D) ones (graphite, etc.). Herein, vanadium monophosphide (VP) is designed as a 3D topotactic host anode. Ex situ electrochemical characterizations reveal that there are no phase changes during (de)intercalation, which follows the topotactic intercalation mechanism. Computational simulations also confirm the metallic feature and topotactic structure of VP with a spacious interstitial position for the accommodation of guest species. To boost the electrochemical performance, carbon nano-onions (CNOs) are coupled with 3D VP. Superior specific capacity and rate capability of VP-CNOs vs lithium/sodium can be delivered due to the fast ion diffusion nature. An exceptional capacity retention of above 86% is maintained after 20 000 cycles, benefitting from the topotactic intercalation process. The optimized LICs/SICs exhibit high energy/power densities and an ultrastable lifespan of 20 000 cycles, which outperform most of the state-of-the-art LICs and SICs, demonstrating the potential of VP-CNOs as insertion anodes. This exploration would draw attention with regard to insertion anodes with 3D topotactic host topology and provide new insights into anode selection for LICs/SICs.
Collapse
Affiliation(s)
- Wenbo Cheng
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Biao Wan
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Shishuai Xu
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Miaoxin Zhang
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Rongguang Zeng
- Institute of Materials, China Academy of Engineering Physics, P.O. Box 9071, Jiangyou, Sichuan 621907, China
| | - Zexin Liu
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chengwei Zhang
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Fuxing Yin
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Gongkai Wang
- School of Material Science and Engineering, Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300130, China
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin 300130, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| |
Collapse
|
18
|
Huang T, Jiang Y, Shen G, Chen D. Recent Advances of Two-Dimensional Nanomaterials for Electrochemical Capacitors. CHEMSUSCHEM 2020; 13:1093-1113. [PMID: 31943844 DOI: 10.1002/cssc.201903260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/12/2020] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) nanomaterials have drawn a wide range of research interests because of their unique ultrathin layered structures and attractive properties. In particular, the electrochemical properties and great variety of 2D nanomaterials make them highly attractive candidates for electrochemical capacitors, such as supercapacitors, lithium-ion capacitors, and sodium-ion capacitors. Herein, a comprehensive review of recent progress towards the application of 2D nanomaterials for electrochemical capacitors is provided. Several typical types of 2D nanomaterials are first briefly introduced, followed by detailed descriptions of their electrochemical capacitor applications. Finally, research perspectives and future research directions of these interesting areas are also provided.
Collapse
Affiliation(s)
- Tingting Huang
- College of Physics and Mathematics and Beijing Key Laboratory, for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, PR China
- State key Laboratory for Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China
| | - Yuan Jiang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Guozhen Shen
- State key Laboratory for Superlattices and Microstructures, Institution of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, PR China
| | - Di Chen
- College of Physics and Mathematics and Beijing Key Laboratory, for Magneto-Photoelectrical Composite and Interface Science, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
19
|
Yang F, Zhong W, Ren M, Liu W, Li M, Li G, Su L. Poplar flower-like nitrogen-doped carbon nanotube@VS4 composites with excellent sodium storage performance. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00985g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As a new anode material for sodium-ion batteries (SIBs), VS4 shows impressive energy storage potential due to its unique one-dimensional parallel chain structure, large chain spacing and high sulfur content.
Collapse
Affiliation(s)
- Fei Yang
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
| | - Wen Zhong
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
| | - Manman Ren
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| | - Weiliang Liu
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
| | - Mei Li
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
| | - Guangda Li
- School of Materials Science and Engineering
- Qilu University of Technology (ShandongAcademy of Sciences)
- Jinan 250353
- PR China
| | - Liwei Su
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| |
Collapse
|