1
|
Chao Y, Han Y, Chen Z, Chu D, Xu Q, Wallace G, Wang C. Multiscale Structural Design of 2D Nanomaterials-based Flexible Electrodes for Wearable Energy Storage Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305558. [PMID: 38115755 PMCID: PMC10916616 DOI: 10.1002/advs.202305558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/22/2023] [Indexed: 12/21/2023]
Abstract
2D nanomaterials play a critical role in realizing high-performance flexible electrodes for wearable energy storge devices, owing to their merits of large surface area, high conductivity and high strength. The electrode is a complex system and the performance is determined by multiple and interrelated factors including the intrinsic properties of materials and the structures at different scales from macroscale to atomic scale. Multiscale design strategies have been developed to engineer the structures to exploit full potential and mitigate drawbacks of 2D materials. Analyzing the design strategies and understanding the working mechanisms are essential to facilitate the integration and harvest the synergistic effects. This review summarizes the multiscale design strategies from macroscale down to micro/nano-scale structures and atomic-scale structures for developing 2D nanomaterials-based flexible electrodes. It starts with brief introduction of 2D nanomaterials, followed by analysis of structural design strategies at different scales focusing on the elucidation of structure-property relationship, and ends with the presentation of challenges and future prospects. This review highlights the importance of integrating multiscale design strategies. Finding from this review may deepen the understanding of electrode performance and provide valuable guidelines for designing 2D nanomaterials-based flexible electrodes.
Collapse
Affiliation(s)
- Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387China
| | - Zhiqi Chen
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Dewei Chu
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Qun Xu
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052China
| | - Gordon Wallace
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| | - Caiyun Wang
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityInnovation CampusUniversity of WollongongWollongongNSW2522Australia
| |
Collapse
|
2
|
Jian H, Wang T, Deng K, Li A, Liang Z, Kan E, Ouyang B. Optimized Pinecone-Squama-Structure MoS 2-Coated CNT and Graphene Framework as Binder-Free Anode for Li-Ion Battery with High Capacity and Cycling Stability. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3218. [PMID: 37110052 PMCID: PMC10143248 DOI: 10.3390/ma16083218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Extensive research has been conducted on the development of high-rate and cyclic stability anodes for lithium batteries (LIBs) due to their high energy density. Molybdenum disulfide (MoS2) with layered structure has garnered significant interest due to its exceptional theoretic Li+ storage behavior as anodes (670 mA h g-1). However, achieving a high rate and long cyclic life of anode materials remains a challenge. Herein, we designed and synthesized a free-standing carbon nanotubes-graphene (CGF) foam, then presented a facile strategy to fabricate the MoS2-coated CGF self-assembly anodes with different MoS2 distributions. Such binder-free electrode possesses the advantages of both MoS2 and graphene-based materials. Through rational regulation of the ratio of MoS2, the MoS2-coated CGF with uniformly distributed MoS2 exhibits a nano pinecone-squama-like structure that can accommodate the large volume change during the cycle process, thereby significantly enhancing the cycling stability (417 mA h g-1 after 1000 cycles), ideal rate performance, and high pseudocapacitive behavior (with a 76.6% contribution at 1 mV s-1). Such a neat nano-pinecone structure can effectively coordinate MoS2 and carbon framework, providing valuable insights for the construction of advanced anode materials.
Collapse
|
3
|
Ruan K, Gu J. Ordered Alignment of Liquid Crystalline Graphene Fluoride for Significantly Enhancing Thermal Conductivities of Liquid Crystalline Polyimide Composite Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00491] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kunpeng Ruan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Junwei Gu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
4
|
Zhang Y, Zhang Z, Zhu Y, Zhang Y, Yang M, Li S, Suo K, Li K. N-doped graphene encapsulated MoS 2nanosphere composite as a high-performance anode for lithium-ion batteries. NANOTECHNOLOGY 2022; 33:235703. [PMID: 35240588 DOI: 10.1088/1361-6528/ac5a84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
MoS2is widely used in lithium-ion batteries (LIBs) due to its high capacity (670 mAh g-1) and unique two-dimensional structure. However, the further application was limited of MoS2as anode materials suffer from its volume expansion and low conductivity. In this work, N-doped graphene encapsulated MoS2nanosphere composite (MoS2@NG) were prepared and its unique sandwich structure containing abundant mesopores and defects can efficiently enhance reaction kinetics. The MoS2@NG electrode shows a reversible capacity of 975.9 mAh g-1at 0.1 A g-1after 100 cycles, and a reversible capacity of 325.2 mAh g-1is still maintained after 300 cycles at 5 A g-1. In addition, the MoS2@NG electrode exhibites an excellent rate performance benefiting from the electrochemical properties dominated by capacitive behavior. This suggests that MoS2@NG composite can be used as potential anode materials for LIBs.
Collapse
Affiliation(s)
- Yating Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zhanrui Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Youyu Zhu
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Yongling Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Mengnan Yang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Siyi Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Ke Suo
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Keke Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| |
Collapse
|
5
|
Cao C, Liang F, Zhang W, Liu H, Liu H, Zhang H, Mao J, Zhang Y, Feng Y, Yao X, Ge M, Tang Y. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102233. [PMID: 34350695 DOI: 10.1002/smll.202102233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Indexed: 05/07/2023]
Abstract
Current lithium-ion battery technology is approaching the theoretical energy density limitation, which is challenged by the increasing requirements of ever-growing energy storage market of electric vehicles, hybrid electric vehicles, and portable electronic devices. Although great progresses are made on tailoring the electrode materials from methodology to mechanism to meet the practical demands, sluggish mass transport, and charge transfer dynamics are the main bottlenecks when increasing the areal/volumetric loading multiple times to commercial level. Thus, this review presents the state-of-the-art developments on rational design of the commercialization-driven electrodes for lithium batteries. First, the basic guidance and challenges (such as electrode mechanical instability, sluggish charge diffusion, deteriorated performance, and safety concerns) on constructing the industry-required high mass loading electrodes toward commercialization are discussed. Second, the corresponding design strategies on cathode/anode electrode materials with high mass loading are proposed to overcome these challenges without compromising energy density and cycling durability, including electrode architecture, integrated configuration, interface engineering, mechanical compression, and Li metal protection. Finally, the future trends and perspectives on commercialization-driven electrodes are offered. These design principles and potential strategies are also promising to be applied in other energy storage and conversion systems, such as supercapacitors, and other metal-ion batteries.
Collapse
Affiliation(s)
- Chunyan Cao
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Fanghua Liang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Hongchao Liu
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Hui Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Haifeng Zhang
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
| | - Jiajun Mao
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yu Feng
- State Key Laboratory of Clean and Efficient Coal Utilization, Key Laboratory of Coal Science and Technology, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mingzheng Ge
- School of Textile and Clothing, Nantong University, Nantong, 226019, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|