1
|
Hamsan MH, Abdul Halim N, Demon SZN, Sa'aya NSN, Kadir MFZ, Abidin ZHZ, Ahmad Poad N, Abu Kasim NF, Razali NAM, Aziz SB, Ahmad KA, Miskon A, Nor NM. SCOBY-based bacterial cellulose as free standing electrodes for safer, greener and cleaner energy storage technology. Heliyon 2022; 8:e11048. [PMID: 36281392 PMCID: PMC9587280 DOI: 10.1016/j.heliyon.2022.e11048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/18/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Bacterial Cellulose (BC) derived from local market or symbiotic culture of bacteria and yeast (SCOBY) was employed as the polymer matrix for hydroxyl multi-walled carbon nanotube (MWCNT-OH)-based electrochemical double-layer capacitor (EDLC). Chitosan (CS)-sodium iodide (NaI)-glycerol (Gly) electrolyte systems were used as the polymer electrolyte. CS-NaI-Gly electrolyte possesses conductivity, potential stability and ionic transference number of (1.20 ± 0.26) × 10-3 S cm-2, 2.5 V and 0.99, respectively. For the electrodes, MWCNT-OH was observed to be well dispersed in the matrix of BC which was obtained via FESEM analysis. The inclusion of MWCNT-OH reduced the crystallinity of the BC polymeric structure. From EIS measurement, it was verified that the presence of MWCNT-OH decreased the electron transfer resistance of BC-based electrodes. Cyclic voltammetry (CV) showed that the shape of the CV plots changed to a rectangular-like shape plot as more MWCNT were added, thus verifying the capacitive behavior. Various amount of MWCNT-OH was used in the fabrication of the EDLC where it was discovered that more MWCNT-OH leads to a better EDLC performance. The EDLC was tested for 5000 complete charge-discharge cycles. The optimum performance of this low voltage EDLC was obtained with 0.1 g MWCNT where the average specific capacitance was 8.80 F g-1. The maximum power and energy density of the fabricated EDLC were 300 W kg-1 and 1.6 W h kg-1, respectively.
Collapse
Affiliation(s)
- Muhamad Hafiz Hamsan
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Norhana Abdul Halim
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia,Corresponding author.
| | - Siti Zulaikha Ngah Demon
- Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia,Centre for Tropicalization, National Defence University of Malaysia, Sungai Besi Camp, Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Nurul Syahirah Nasuha Sa'aya
- Faculty of Defence Science & Technology, National Defence University of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Fakhrul Zamani Kadir
- Physics Department, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia,University Malaya Centre for Ionic Liquids (UMCiL), Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zul Hazrin Zainal Abidin
- Centre for Ionics Universiti Malaya (C.I.U.M.), Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nursaadah Ahmad Poad
- Faculty of Defence Science & Technology, National Defence University of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur, Malaysia
| | - Nurul Farhana Abu Kasim
- Faculty of Defence Science & Technology, National Defence University of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur, Malaysia
| | - Nur Amira Mamat Razali
- Faculty of Defence Science & Technology, National Defence University of Malaysia, Sg Besi Camp, Sungai Besi, Kuala Lumpur, Malaysia
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq,The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region of Iraq, Sulaymaniyah 46001, Iraq
| | - Khairol Amali Ahmad
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| | - Norazman Mohamad Nor
- Faculty of Engineering, National Defence University of Malaysia, Kem Sg Besi, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
2
|
Cao J, Yang X, Rao J, Mitriashkin A, Fan X, Chen R, Cheng H, Wang X, Goh J, Leo HL, Ouyang J. Stretchable and Self-Adhesive PEDOT:PSS Blend with High Sweat Tolerance as Conformal Biopotential Dry Electrodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39159-39171. [PMID: 35973944 DOI: 10.1021/acsami.2c11921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dry epidermal electrodes that can always form conformal contact with skin can be used for continuous long-term biopotential monitoring, which can provide vital information for disease diagnosis and rehabilitation. But, this application has been limited by the poor contact of dry electrodes on wet skin. Herein, we report a biocompatible fully organic dry electrode that can form conformal contact with both dry and wet skin even during physical movement. The dry electrodes are prepared by drop casting an aqueous solution consisting of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), poly(vinyl alcohol) (PVA), tannic acid (TA), and ethylene glycol (EG). The electrodes can exhibit a conductivity of 122 S cm-1 and a mechanical stretchability of 54%. Moreover, they are self-adhesive to not only dry skin but also wet skin. As a result, they can exhibit a lower contact impedance to skin than commercial Ag/AgCl gel electrodes on both dry and sweat skins. They can be used as dry epidermal electrodes to accurately detect biopotential signals including electrocardiogram (ECG) and electromyogram (EMG) on both dry and wet skins for the users at rest or during physical movement. This is the first time to demonstrate dry epidermal electrodes self-adhesive to wet skin for accurate biopotential detection.
Collapse
Affiliation(s)
- Jian Cao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xingyi Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - Jiancheng Rao
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Aleksandr Mitriashkin
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Xing Fan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Rui Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
| | - Xinchao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117574
| | - James Goh
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Hwa Liang Leo
- Biomedical Engineering Department, College of Design and Engineering, National University of Singapore, Singapore 117574
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574
- NUS Research Institute, No. 16 South Huashan Road, Liangjiang New Area, Chongqing 119077, China
| |
Collapse
|
3
|
Katsuyama Y, Kobayashi H, Iwase K, Gambe Y, Honma I. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200187. [PMID: 35266645 PMCID: PMC9036039 DOI: 10.1002/advs.202200187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Indexed: 05/29/2023]
Abstract
While organic batteries have attracted great attention due to their high theoretical capacities, high-voltage organic active materials (> 4 V vs Li/Li+ ) remain unexplored. Here, density functional theory calculations are combined with cyclic voltammetry measurements to investigate the electrochemistry of croconic acid (CA) for use as a lithium-ion battery cathode material in both dimethyl sulfoxide and γ-butyrolactone (GBL) electrolytes. DFT calculations demonstrate that CA dilitium salt (CA-Li2 ) has two enolate groups that undergo redox reactions above 4.0 V and a material-level theoretical energy density of 1949 Wh kg-1 for storing four lithium ions in GBL-exceeding the value of both conventional inorganic and known organic cathode materials. Cyclic-voltammetry measurements reveal a highly reversible redox reaction by the enolate group at ≈4 V in both electrolytes. Battery-performance tests of CA as lithium-ion battery cathode in GBL show two discharge voltage plateaus at 3.9 and 3.1 V, and a discharge capacity of 102.2 mAh g-1 with no capacity loss after five cycles. With the higher discharge voltages compared to the known, state-of-the-art organic small molecules, CA promises to be a prime cathode-material candidate for future high-energy-density lithium-ion organic batteries.
Collapse
Affiliation(s)
- Yuto Katsuyama
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
- Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Hiroaki Kobayashi
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Yoshiyuki Gambe
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University2‐1‐1 Katahira, Aoba‐kuSendaiMiyagi980–8577Japan
| |
Collapse
|
4
|
Gong Z, Zheng S, Zhang J, Duan Y, Luo Z, Cai F, Yuan Z. Cross-Linked PVA/HNT Composite Separator Enables Stable Lithium-Organic Batteries under Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11474-11482. [PMID: 35213142 DOI: 10.1021/acsami.1c23962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Li-organic batteries (LOBs) are promising advanced battery systems because of their unique advantages in capacity, cost, and sustainability. However, the shuttling effect of soluble organic redox intermediates and the intrinsic dissolution of small-molecular electrodes have hindered the practical application of these cells, especially under high operating temperatures. Herein, a cross-linked membrane with abundant negative charge for high-temperature LOBs is prepared via electrospinning of poly(vinyl alcohol) containing halloysite nanotubes (HNTs). The translocation of negatively charged organic intermediates can be suppressed by the electronic repulsion and the cross-linked network while the positively charged Li+ are maintained, which is attributed to the intrinsic electronegativity of HNTs and their well-organized and homogeneous distribution in the PVA matrix. A battery using a PVA/HNT composite separator (EPH-10) and an anthraquinone (AQ) cathode exhibits a high initial discharge capacity of 231.6 mAh g-1 and an excellent cycling performance (91.4% capacity retention, 300 cycles) at 25 °C. Even at high temperatures (60 and 80 °C), its capacity retention is more than 89.2 and 80.4% after 100 cycles, respectively. Our approach demonstrates the potential of the EPH-10 composite membrane as a separator for high-temperature LOB applications.
Collapse
Affiliation(s)
- Zongshuai Gong
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Silin Zheng
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Zhang
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yueqin Duan
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiqiang Luo
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fengshi Cai
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhihao Yuan
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
A comparative study of polymer nanocomposites containing multi-walled carbon nanotubes and graphene nanoplatelets. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Qi L, Jia YJ, An YC, Zhi XX, Zhang Y, Liu JG, Li JS. Photo-Patternable, High-Speed Electrospun Ultrafine Fibers Fabricated by Intrinsically Negative Photosensitive Polyimide. ACS OMEGA 2021; 6:18458-18464. [PMID: 34308077 PMCID: PMC8296557 DOI: 10.1021/acsomega.1c02535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 05/13/2023]
Abstract
This work describes polyimide (PI) ultrafine fibrous membranes (UFMs) with aligned fibrous structures, fabricated via the high-speed electrospinning procedure. Organo-soluble intrinsically photosensitive PI is utilized as the fiber-forming agent. The effects of different rotating speeds on the fiber morphology and properties are studied. The aligned UFMs possess hydrophobicity, favorable optical properties, and improved deformation durability. The extension strength of the UFMs reinforces obviously with the increased rotating speed and reaches the maximum of 9.18 MPa at 2500 rpm. In addition, due to the photo-cross-link nature of the PI resin, the UFMs present lithography capability, which can obtain micro-sized patterns on aluminum substrates, and even part of the fibrous structure was retained after development. This work shows promise in manufacturing fiber-based photolithographic hierarchical structures on flexible substrates, which exhibit potential in achieving multiple functions on fiber-based electronic devices.
Collapse
Affiliation(s)
- Lin Qi
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Yan-jiang Jia
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Yuan-cheng An
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Xin-xin Zhi
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Yan Zhang
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Jin-gang Liu
- Beijing Key
Laboratory of Materials Utilization of Nonmetallic Minerals and Solid
Wastes, National Laboratory of Mineral Materials, School of Materials
Science and Technology, China University
of Geosciences, Beijing 100083, China
| | - Jia-shen Li
- Lecturer
of Nano-functional Fibres, School of Materials, The University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|