1
|
Wu B, Li Y, Liu L, Yang Y, Wu H, He M, Tang BZ, Zheng Z. Aggregation-Assisted Three-Photon Fluorescence Resonance Energy Transfer Boosts Phosphorescence for Deep-Tissue Time-Resolved Intravital Brain Imaging. Adv Healthc Mater 2025; 14:e2405306. [PMID: 40296309 DOI: 10.1002/adhm.202405306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Three-photon phosphorescence microscopic bioimaging holds promise for deep-tissue time-resolved brain imaging with high spatial resolution and contrast. However, developing probes with bright phosphorescence and strong second near-infrared (NIR-II) three-photon absorption suitable for biological applications remains a formidable challenge. Herein, a kind of fluorescence resonance energy transfer (FRET)-based nanoparticles (NPFA-PorPt NPs) is proposed by co-encapsulation of a three-photon absorbing aggregation-induced emission luminogen (NPFA), and a phosphorescent platinum octaethylporphyrin (PorPt) using 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] as the encapsulation matrix. NPFA is well designed to display superior three-photon absorption properties in the NIR-II region and its emission overlaps well with the absorption of PorPt, allowing efficient energy transfer to PorPt in nanoparticles. The phosphorescence of PorPt in the optimal NPFA-2%PorPt NPs is boosted by 350-fold as compared to that of pure PorPt aggregates upon the same excitation. The strong three-photon excited phosphorescence enables NPFA-2%PorPt NPs to be successfully applied for in vivo time-resolved brain and muscle vascular imaging with deep penetration, high spatial resolution, and contrast, and even the small capillaries in the deep tissue can be recognized. This study paves the way for the development of highly efficient multiphoton-absorbing phosphorescent probes for biomedical applications.
Collapse
Affiliation(s)
- Bingshun Wu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Yifei Li
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lan Liu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Yuchen Yang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Han Wu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Mubin He
- State Key Laboratory of Extreme Photonics and Instrumentation, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, People's Republic of China
| | - Zheng Zheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei University of Technology, Hefei, 230009, People's Republic of China
| |
Collapse
|
2
|
Yang C, Shi SY, Zhang J, Wang L, Yu ZP, Zhou H. Unveiling the Impact of Light-Induced Acceptor-Generated ROS on Device Stability in Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16573-16579. [PMID: 38511295 DOI: 10.1021/acsami.3c19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The intrinsic stability of the acceptor is a crucial component of the photovoltaic device stability. In this study, we investigated the efficiency and stability of the nonfused-ring acceptors LC8 and BC8 under indoor light conditions. Interestingly, we found that devices based on BC8 with terminal side chains exhibited a higher indoor efficiency and stability. Through accelerated aging experiments, we discovered that the acceptors generate singlet oxygen under light exposure with BC8 demonstrating lower levels of ROS compared to LC8. We attribute this difference to the modulation of the acceptor aggregation orientation. Furthermore, the generated reactive oxygen species (ROS) further deteriorate the acceptor structure, and this phenomenon is also observed in high-efficiency acceptor structures, such as Y6. Our research reveals important mechanisms of acceptor photo-oxidation processes, providing a theoretical basis for enhancing the intrinsic stability of acceptors.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Sheng-Yu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jie Zhang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Lianke Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Zhi-Peng Yu
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Hongping Zhou
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
3
|
Chen HY, Xu HB, Lv J, Chang S, Wu MS, Chen ZC, Zhu SC, He Y, Qian RC, Li DW. Smart Nanoplatform for Visualizing Hydrogen Sulfide and Amplifying Oxidative Stress to Tumor Apoptosis. ACS Sens 2023; 8:3555-3562. [PMID: 37607401 DOI: 10.1021/acssensors.3c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, H2S), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis. The Au@Raman reporter@Ag (Au@M@Ag) nanoparticles, where a 4-mercaptobenzonitrile molecule as a Raman reporter was embedded between layers of gold and silver to obtain sensitive SERS response, were coated with a covalent organic framework (COF) shell to form a core-shell structure (Au@M@Ag@COFs) as the SERS nanoplatform. The COF shell loading doxorubicin (DOX) of Au@M@Ag@COFs exhibited the GSH-responsive degradation capacity to release DOX, and its Ag layer as the sensing agent was oxidized to Ag2S by H2S to result in its prominent changes in SERS signals with a low detection limit of 0.33 nM. Moreover, the releasing DOX can inhibit the generation of H2S to promote the production of reactive oxygen species, and the depletion of reactive sulfur species (GSH and H2S) in cancer cells can further enhance the oxidative stress to induce tumor apoptosis. Overall, the SERS strategy could provide a powerful tool to monitor the dynamic changes of oxidative stress during therapeutic processes in a tumor microenvironment.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhen-Chi Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shi-Cheng Zhu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yue He
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
5
|
Wu Y, He Y, Luo H, Jin T, He F. AIEE-Active Flavones as a Promising Tool for the Real-Time Tracking of Uptake and Distribution in Live Zebrafish. Int J Mol Sci 2023; 24:10183. [PMID: 37373329 DOI: 10.3390/ijms241210183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, aggregation-induced emission enhancement (AIEE) molecules have shown great potential for applications in the fields of bio-detection, imaging, optoelectronic devices, and chemical sensing. Based on our previous studies, we investigated the fluorescence properties of six flavonoids and confirmed that compounds 1-3 have good aggregation-induced emission enhancement (AIEE) properties through a series of spectroscopic experiments. Compounds with AIEE properties have addressed the limitation imposed by the aggregation-caused quenching (ACQ) of classic organic dyes owing to their strong fluorescence emission and high quantum yield. Based on their excellent fluorescence properties, we evaluated their performance in the cell and we found that they could label mitochondria specifically by comparing their Pearson correlation coefficients (R) with Mito Tracker Red and Lyso-Tracker Red. This suggests their future application in mitochondrial imaging. Furthermore, studies of uptake and distribution characterization in 48 hpf zebrafish larvae revealed their potential for monitoring real-time drug behavior. The uptake of compounds by larvae varies significantly across different time cycles (between uptake and utilization in the tissue). This observation has important implications for the development of visualization techniques for pharmacokinetic processes and can enable real-time feedback. More interestingly, according to the data presented, tested compounds aggregated in the liver and intestine of 168 hpf larvae. This finding suggests that they could potentially be used for monitoring and diagnosing liver and intestinal diseases.
Collapse
Affiliation(s)
- Yi Wu
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ying He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huiqing Luo
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tingting Jin
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| | - Feng He
- School of Pharmaceutical Science, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Li Z, Li Z, Wang J. Visualization of Phototherapy Evolution by Optical Imaging. Molecules 2023; 28:molecules28103992. [PMID: 37241733 DOI: 10.3390/molecules28103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is a non-invasive and effective approach used for cancer treatment, in which phototherapeutic agents are irradiated with an appropriate light source to produce cytotoxic reactive oxygen species (ROS) or heat to ablate cancer cells. Unfortunately, traditional phototherapy lacks a facile imaging method to monitor the therapeutic process and efficiency in real time, usually leading to severe side effects due to high levels of ROS and hyperthermia. To realize precise cancer treatment methods, it is highly desired to develop phototherapeutic agents possessing an imaging ability to evaluate the therapeutic process and efficacy in real time during cancer phototherapy. Recently, a series of self-reporting phototherapeutic agents were reported to monitor PDT and PTT processes by combining optical imaging technologies with phototherapy. Due to the real-time feedback provided by optical imaging technology, therapeutic responses or dynamic changes in the tumor microenvironment could be evaluated in a timely manner, thereby achieving personalized precision treatment and minimizing toxic side effects. In this review, we focus on the advances in the development of self-reporting phototherapeutic agents for a cancer phototherapy evaluation based on optical imaging technology to realize precision cancer treatments. Additionally, we propose the current challenges and future directions of self-reporting agents for precision medicine.
Collapse
Affiliation(s)
- Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Zheng Li
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Ingle J, Basu S. Mitochondria Targeted AIE Probes for Cancer Phototherapy. ACS OMEGA 2023; 8:8925-8935. [PMID: 36936289 PMCID: PMC10018722 DOI: 10.1021/acsomega.3c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 06/01/2023]
Abstract
In recent years, mitochondrion (powerhouse of the cells) gained lots of interest as one of the unorthodox targets for futuristic cancer therapy. As a result, novel small molecules were developed to damage and image mitochondria in cancer models. In this context, aggregation-induced emission probes (AIEgens) received immense attention due to their applications in mitochondria-targeted biosensing, imaging, and biomedical theranostics. On the other hand, phototherapy (photodynamic and photothermal) has emerged as a powerful alternative to manage cancer due to its less invasive nature. However, merging these two areas to engineer mitochondria-targeted phototherapeutic probes for cancer diagnosis and treatment has remained a major challenge. In this mini-review, we will outline the development of novel mitochondria-targeted small molecule AIEgens as imaging agents and photosensitizers for photodynamic therapy along with dual photodymanic-phototheramal therapy and chemo-photodynamic therapy. We will also highlight the current challenges in developing mitochondria-targeted photothermal therapy probes for future biomedical theranostic applications to manage cancer.
Collapse
|
8
|
Wang J, Li H, Zhu Y, Yang M, Huang J, Zhu X, Yu ZP, Lu Z, Zhou H. Unveiling upsurge of photogenerated ROS: control of intersystem crossing through tuning aggregation patterns. Chem Sci 2023; 14:323-330. [PMID: 36687347 PMCID: PMC9811492 DOI: 10.1039/d2sc06445f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Photo-induced reactive oxygen species (ROS) generation by organic photosensitizers (PSs), which show potential in significant fields such as photodynamic therapy (PDT), are highly dependent on the formation of the excited triplet state through intersystem crossing (ISC). The current research on ISC of organic PSs generally focuses on molecular structure optimization. In this manuscript, the influence of aggregation patterns on ISC was investigated by constructing homologous monomers (S-TPA-PI and L-TPA-PI) and their homologous dimers (S-2TPA-2PI and L-2TPA-2PI). In contrast to J-aggregated S-TPA-PI, S-2TPA-2PI-aggregate forming "end-to-end" stacking through π-π interaction could generate ROS more efficiently, due to a prolonged exciton lifetime and enhanced ISC rate constant (k ISC), which were revealed by femtosecond transient absorption spectroscopy and theoretical calculations. This finding was further validated by the regulation of aggregation patterns induced by host-guest interaction. Moreover, S-2TPA-2PI could target mitochondria and achieve rapid mitophagy to cause more significant cancer cell suppression. Overall, the delicate supramolecular dimerization tactics not only revealed the structure-property relationship of organic PSs but also shed light on the development of a universal strategy in future PDT and photocatalysis fields.
Collapse
Affiliation(s)
- Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Yicai Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Mingdi Yang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Jing Huang
- School of Materials and Chemical Engineering, Anhui Jianzhu UniversityHefei 230601P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology School of Physics and Electronic Information, Anhui Normal UniversityWuhu 241002China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of EducationHefei230601P.R. China
| |
Collapse
|
9
|
Zhang H, He C, Shen L, Tao W, Zhu J, Song J, Li Z, Yin J. Membrane-targeting amphiphilic AIE photosensitizer for broad-spectrum bacteria imaging and photodynamic killing of bacteria. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
10
|
Li J, Wang J, Zhu Y, Zhu X, Yu Z, Zhang J, Wang L, Yu J, Liu Z, Zhou H. A FLIM photosensitizer: Targeting “Affinal” suborganelles to accelerate cancer cell oxidative stress and apoptosis. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Zhou J, Qi F, Chen Y, Zhang S, Zheng X, He W, Guo Z. Aggregation-Induced Emission Luminogens for Enhanced Photodynamic Therapy: From Organelle Targeting to Tumor Targeting. BIOSENSORS 2022; 12:1027. [PMID: 36421144 PMCID: PMC9688568 DOI: 10.3390/bios12111027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Photodynamic therapy (PDT) has attracted much attention in the field of anticancer treatment. However, PDT has to face challenges, such as aggregation caused by quenching of reactive oxygen species (ROS), and short 1O2 lifetime, which lead to unsatisfactory therapeutic effect. Aggregation-induced emission luminogen (AIEgens)-based photosensitizers (PSs) showed enhanced ROS generation upon aggregation, which showed great potential for hypoxic tumor treatment with enhanced PDT effect. In this review, we summarized the design strategies and applications of AIEgen-based PSs with improved PDT efficacy since 2019. Firstly, we introduce the research background and some basic knowledge in the related field. Secondly, the recent approaches of AIEgen-based PSs for enhanced PDT are summarized in two categories: (1) organelle-targeting PSs that could cause direct damage to organelles to enhance PDT effects, and (2) PSs with tumor-targeting abilities to selectively suppress tumor growth and reduce side effects. Finally, current challenges and future opportunities are discussed. We hope this review can offer new insights and inspirations for the development of AIEgen-based PSs for better PDT effect.
Collapse
Affiliation(s)
- Jiahe Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoxue Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing 210000, China
| |
Collapse
|
12
|
Mundekkad D, Cho WC. Mitophagy Induced by Metal Nanoparticles for Cancer Treatment. Pharmaceutics 2022; 14:2275. [PMID: 36365094 PMCID: PMC9699542 DOI: 10.3390/pharmaceutics14112275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
Research on nanoparticles, especially metal nanoparticles, in cancer therapy is gaining momentum. The versatility and biocompatibility of metal nanoparticles make them ideal for various applications in cancer therapy. They can bring about apoptotic cell death in cancer cells. In addition to apoptosis, nanoparticles mediate a special type of autophagy facilitated through mitochondria called mitophagy. Interestingly, nanoparticles with antioxidant properties are capable of inducing mitophagy by altering the levels of reactive oxygen species and by influencing signaling pathways like PINK/Parkin pathway and P13K/Akt/mTOR pathway. The current review presents various roles of metal nanoparticles in inducing mitophagy in cancer cells. We envision this review sheds some light on the blind spots in the research related to mitophagy induced by nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Deepa Mundekkad
- Centre for NanoBioTechnology (CNBT), Vellore Institute of Technology, Vellore 632014, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Maroń AM, Cannelli O, Socie EC, Lodowski P, Machura B. Push-Pull Effect of Terpyridine Substituted by Triphenylamine Motive—Impact of Viscosity, Polarity and Protonation on Molecular Optical Properties. Molecules 2022; 27:molecules27207071. [PMID: 36296665 PMCID: PMC9606908 DOI: 10.3390/molecules27207071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
The introduction of an electron-donating triphenylamine motive into a 2,2′,6′,2′′-terpyridine (terpy) moiety, a cornerstone molecular unit in coordination chemistry, opens new ways for a rational design of photophysical properties of organic and inorganic compounds. A push-pull compound, 4′-(4-(di(4-tert-butylphenyl)amine)phenyl)-2,2′,6′,2′′-terpyridine (tBuTPAterpy), was thoroughly investigated with the use of steady-state and time-resolved spectroscopies and Density Functional Theory (DFT) calculations. Our results demonstrate that solvent parameters have an enormous influence on the optical properties of this molecule, acting as knobs for external control of its photophysics. The Intramolecular Charge Transfer (ICT) process introduces a remarkable solvent polarity effect on the emission spectra without affecting the lowest absorption band, as confirmed by DFT simulations, including solvation effects. The calculations ascribe the lowest absorption transitions to two singlet ICT excited states, S1 and S2, with S1 having several orders of magnitude higher oscillator strength than the “dark” S2 state. Temperature and viscosity investigations suggest the existence of two emitting excited states with different structural conformations. The phosphorescence emission band observed at 77 K is assigned to a localized 3terpy state. Finally, protonation studies show that tBuTPAterpy undergoes a reversible process, making it a promising probe of the pH level in the context of acidity determination.
Collapse
Affiliation(s)
- Anna Maria Maroń
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
- Correspondence: (A.M.M.); (O.C.)
| | - Oliviero Cannelli
- Laboratory of Ultrafast Spectroscopy (LSU), Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Correspondence: (A.M.M.); (O.C.)
| | - Etienne Christophe Socie
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Machura
- Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
14
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
15
|
Li RT, Chen M, Yang ZC, Chen YJ, Huang NH, Chen WH, Chen J, Chen JX. AIE-based gold nanostar-berberine dimer nanocomposites for PDT and PTT combination therapy toward breast cancer. NANOSCALE 2022; 14:9818-9831. [PMID: 35771232 DOI: 10.1039/d2nr03408e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We designed and synthesized three new berberine-based compounds, namely, pyridine-2,6-dimethyl-/2,2'-bipyridine-3,3'-dimethyl-tethered berberine dimers BD1 and BD2, and a tetrakis(4-benzyl)ethylene linked berberine tetramer BD4. We identified that the dimer BD2 and tetramer BD4, as well as 1,10-phenanthroline-2,9-dimethyl-linked berberine dimer BD3 previously reported by us, showed remarkable aggregation-induced emission (AIE) properties which endowed them with higher singlet oxygen (1O2) production ability than berberine. Of the four compounds, BD3 exhibits the lowest ΔEST energy with the highest 1O2 generation ability and thus was selected for further construction of AuNSs-BD3@HA (denoted as ABH, AuNSs = gold nanostars; HA = hyaluronic acid). The nanosystem of ABH shows a remarkable therapeutic effect toward breast cancer by combining photodynamic therapy (PDT) from BD3, photothermal therapy (PTT) from AuNSs, and the CD44-targeting capability of HA. The synergistically enhanced PDT and PTT induce superior cancer cell apoptosis/necrosis in vitro and anti-breast cancer activity in vivo. This study provides a new concept for PDT using natural product derivatives and their combination with PTT for efficient treatment of tumors.
Collapse
Affiliation(s)
- Rong-Tian Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Ming Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Zi-Chuan Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Yong-Jian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Nai-Han Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, International Healthcare Innovation Institute (Jiangmen), Wuyi University, 529040, Jiangmen, China.
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
16
|
Yu K, Pan J, Tian M, Zhang H, Jin C, Zhang H, Mao Z, He Q. Unusual Electron Donor-Acceptor sequenced NIR AIEgen for Highly Efficient Mitochondria-Targeted Cancer Cell Photodynamic Therapy. Chem Asian J 2022; 17:e202200571. [PMID: 35789116 DOI: 10.1002/asia.202200571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/02/2022] [Indexed: 11/06/2022]
Abstract
Photodynamic therapy (PDT) is recognized to be a promising strategy for anticancer treatment. Considering the progressive application of PDT in clinical trials, highly efficient and photostable photosensitizers (PSs) are in strong demand. Aggregation-induced emission (AIE) based PSs are promising phototheranostic materials for tumor imaging and PDT due to their high fluorescence efficiency and photostability. Herein, a mitochondria-targeted PS, TPA-2TCP with AIE characteristics is developed by adopting an acceptor-π-donor-π-acceptor (A-π-D-π-A) structure. The untypical sequence of the electron donors and electron acceptors endows the derived AIE PS with evident redshift of the absorption and emission, and efficient generation of reactive oxygen species. With the positively charged pyridinium groups, nanoparticulated AIE PS (TPA-2TCP NPs) exhibits high cell binding efficiency towards 4T1 breast cancer cells, leading to the massive cell death via the apoptotic pathway under white light irradiation, demonstrating its potential application in cancer imaging and PDT.
Collapse
Affiliation(s)
- Kaiwu Yu
- Zhejiang University, College of Chemical and Biological Engineering, CHINA
| | - Jiayue Pan
- The second hospical of Zhejiang University, Department of Nuclear Medicine and PET Center, CHINA
| | - Mei Tian
- The second Hospital of Zhejiang University, Department of Nuclear Medicine and PET Center, CHINA
| | - Haoke Zhang
- Zhejiang University, Department of Polymer Science and Engineering, CHINA
| | - Chentao Jin
- Zhejiang University School of Medicine Second Affiliated Hospital, Nuclear Medicine and PET/CT Center, CHINA
| | - Hong Zhang
- The second hospital of Zhejiang University, Department of Nuclear Medicine and PET Center, CHINA
| | - Zhengwei Mao
- Zhejiang University, Department of Polymer Science and Engineering, CHINA
| | - Qinggang He
- Zhejiang University, Chemical Engineering, 38 Zheda Rd., 310027, Hangzhou, CHINA
| |
Collapse
|
17
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022; 61:e202201815. [DOI: 10.1002/anie.202201815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
18
|
Zuo Y, Shen H, Sun F, Li P, Sun J, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission Luminogens for Cell Death Research. ACS BIO & MED CHEM AU 2022; 2:236-257. [PMID: 37101570 PMCID: PMC10114857 DOI: 10.1021/acsbiomedchemau.1c00066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell death is closely related to various diseases, and monitoring and controlling cell death is a promising strategy to develop efficient therapy. Aggregation-induced emission luminogens (AIEgens) are ideal candidates for developing novel theranostic agents because of their intriguing properties in the aggregate state. The rational application of AIE materials in cell death-related research is still in its infancy but has shown great clinical potential. This review discussed the research frontier and our understanding of AIE materials in various subroutines of cell death, including apoptosis, necrosis, immunogenic cell death, pyroptosis, autophagy, lysosome-dependent cell death, and ferroptosis. We hope that the new insights can be offered to this growing field and attract more researchers to provide valuable contributions.
Collapse
Affiliation(s)
- Yunfei Zuo
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Hanchen Shen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Feiyi Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Pei Li
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Department
of Gastrointestinal Surgery, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, 518020, China
| | - Jianwei Sun
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, Division of Life Science, and State Key Laboratory of Molecular
Neuroscience, The Hong Kong University of
Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P.R. China
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen, 2001
Longxiang Boulevard, Longgang District, Shenzhen
City, Guangdong 518172, China
| |
Collapse
|
19
|
Liu J, Chen H, Wang B, Luo Y, Yang G, Zhang S, Li S. Triarylboron-Based High Photosensitive Probes for Apoptosis Detection, Tumor-Targeted Imaging, and Selectively Inducing Apoptosis of Tumor Cells by Photodynamics. Anal Chem 2022; 94:8483-8488. [PMID: 35635074 DOI: 10.1021/acs.analchem.2c01364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a series of triarylboron-based fluorescent probes were developed for distinguishing apoptosis from living cells and even necrosis. They also demonstrate high photosensitivity because they can produce detectable reactive oxygen species (ROS) under an ultra-low light power density (1.5 mW/cm2). By changing the peripheral groups to regulate the performance, we identified a multifunctional probe, TAB-6-amyl, which can be used not only for selectively imaging apoptosis but also for the targeted imaging of SKOV-3 cells in vitro and in vivo. It could further specifically induce the apoptosis of SKOV-3 cells under light irradiation. During the study, we also found that TAB-6-amyl can cross the blood-brain barrier (BBB). Therefore, another probe based on this kind of structure, TAB-5-M-1-cRGD, was constructed for the targeted imaging of brain glioma cells and inducing their apoptosis. This study offers some promising tools for apoptosis detection and tumor photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Hongyu Chen
- Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, People's Republic of China
| | - Bing Wang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Yingping Luo
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Guoqiang Yang
- Institute of Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shilu Zhang
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan 637100, China
| | - Shayu Li
- College of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| |
Collapse
|
20
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
21
|
Huang H, Zhu Y, Yu ZP, Wang J, Chen L, Wu Z, Yu J, Zhong F, Zhu X, Zhou H. Near-Infrared multifunctional theranostic agent with Wave-Like aggregates modulated by substituent position effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120881. [PMID: 35042042 DOI: 10.1016/j.saa.2022.120881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Precise design of organic photosensitizers (PSs) promoted the technological innovation for multimodal imaging-guided synergistic therapy. Nonetheless, various group substitution could not only optimize the basic photophysical behavior, but possibly change the aggregate, which handicaps the deep understanding of the "Formula-Aggergete-Property" relationship. Bearing this in mind, herein two isomers, named 6-TDE and 7-TDE, were prepared via substituting position modification. Among them, 6-TDE exhibited the grid-like structure, while 7-TDE presented wavy-like structure. Despite the aggregates were different, 6-TDE and 7-TDE shared common features including partly twisted backbone and non-overlapped-orbit, hence resulting in similar optical physical behavior such as decent extinction coefficient, near-IR emission, large stockes shifts, etc. Meanwhile, though two PSs could both generated Type-I and Type-II ROS, 7-TDE possessed smaller singlet-triplet splitting (ΔEST), which exhibited favorable ROS as well as outstanding mitochondrial targeting, achieving efficient photodynamic therapy (PDT) effect. During this process, mitochondrial autophagy could be tracked and observed effectively and in real-time. Moreover, 7-TDE presented outstanding performance in multimodal imaging, including fluorescence imaging (FLI), photoacousticimaging (PAI) and photothermal imaging (PTI). This study enriches the strategy of precise molecular engineering to optimize theranostic agents.
Collapse
Affiliation(s)
- Houshi Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Yuhan Zhu
- College of Life Science, Anhui University, Hefei, 230601, PR China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Lei Chen
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Zhichao Wu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Jianhua Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Feng Zhong
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui Province Key Laboratory of Environment-friendly Polymer Materials, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China.
| |
Collapse
|
22
|
Dong X, Zhang C, Dai X, Wang Q, Zhang YM, Xu X, Liu Y. Induced Near-Infrared Emission and Controlled Photooxidation based on Sulfonated Crown Ether in Water. Chemistry 2022; 28:e202200005. [PMID: 35129237 DOI: 10.1002/chem.202200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 12/12/2022]
Abstract
Regulation of physio-chemical properties and reaction activities via noncovalent methodology has become one of increasingly significant topics in supramolecular chemistry and showed inventive applications in miscellaneous fields. Herein, we demonstrate that sulfonated crown ether can form very stable host-guest complexes with a series of push-pull-type photosensitizers, eventually leading to the dramatic fluorescence enhancement in visible and near-infrared regions. Meanwhile, severe suppression in singlet oxygen (1 O2 ) production is found, mainly due to the higher energy barriers between the excited single and triple states upon host-guest complexation. Moreover, such complexation-induced tuneable 1 O2 generation systems has been utilized in adjusting the photochemical oxidation reactions of polycyclic aromatic hydrocarbons (anthracene) and sulfides ((methylthio)benzene) in water. This supramolecularly controlled photooxidation based on the selective molecular binding of crown ether with photosensitizers may provide a feasible and applicable strategy for monitoring and modulating many photocatalysis processes in aqueous phase.
Collapse
Affiliation(s)
- Xiaoyun Dong
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cong Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qi Wang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
23
|
Zhang Z, Kang M, Tan H, Song N, Li M, Xiao P, Yan D, Zhang L, Wang D, Tang BZ. The fast-growing field of photo-driven theranostics based on aggregation-induced emission. Chem Soc Rev 2022; 51:1983-2030. [PMID: 35226010 DOI: 10.1039/d1cs01138c] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photo-driven theranostics, also known as phototheranostics, relying on the diverse excited-state energy conversions of theranostic agents upon photoexcitation represents a significant branch of theranostics, which ingeniously integrate diagnostic imaging and therapeutic interventions into a single formulation. The combined merits of photoexcitation and theranostics endow photo-driven theranostics with numerous superior features. The applications of aggregation-induced emission luminogens (AIEgens), a particular category of fluorophores, in the field of photo-driven theranostics have been intensively studied by virtue of their versatile advantageous merits of favorable biocompatibility, tuneable photophysical properties, unique aggregation-enhanced theranostic (AET) features, ideal AET-favored on-site activation ability and ready construction of one-for-all multimodal theranostics. This review summarised the significant achievements of photo-driven theranostics based on AIEgens, which were detailedly elaborated and classified by their diverse theranostic modalities into three groups: fluorescence imaging-guided photodynamic therapy, photoacoustic imaging-guided photothermal therapy, and multi-modality theranostics. Particularly, the tremendous advantages and individual design strategies of AIEgens in pursuit of high-performance photosensitizing output, high photothermal conversion and multimodal function capability by adjusting the excited-state energy dissipation pathways are emphasized in each section. In addition to highlighting AIEgens as promising templates for modulating energy dissipation in the application of photo-driven theranostics, current challenges and opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Zhijun Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Hui Tan
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Nan Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Meng Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Liping Zhang
- Pneumology Department, Shenzhen Children's Hospital, Shenzhen 518026, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Material Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China.
| |
Collapse
|
24
|
Wang S, Rong M, Li H, Xu T, Bu Y, Chen L, Chen X, Yu ZP, Zhu X, Lu Z, Zhou H. Unveiling Mechanism of Organic Photogenerator for Hydroxyl Radicals Generation by Molecular Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104857. [PMID: 34850563 DOI: 10.1002/smll.202104857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) with organic photosensitizers generally goes through the oxygen-dependent process, generating singlet oxygen and/or superoxide anion. However, the generation of reactive oxygen species is often suppressed as a result of hypoxia, one of the common features in tumors, therefore limiting the effectiveness of the tumor treatments. Consequently, it is urgent and significant to develop an oxygen-independent hydroxyl radical photogenerator and unveil the mechanism. In this work, a hydroxyl radical (·OH) photogenerator originating from the electron transfer process is engineered. Detailed mechanism studies reveal that the optimized photosensitizer, WS2D, which contains a bithiophene unit, could both promote charge carrier generation and accelerate reaction efficiency, resulting in the efficient production of ·OH. In addition, WS2D nanoparticles are constructed to improve the polydispersity and stability in aqueous solution, which exhibit excellent biocompatibility and mitochondrial targeting. Bearing the above advantages, WS2D is employed in phototheranostics, which could release ·OH effectively and damage mitochondria precisely, achieving high PDT efficiency in vitro and in vivo. Overall, this work successfully provides valuable insights into the structural design of a hydroxyl radicals (·OH) photogenerator with great practical perspectives.
Collapse
Affiliation(s)
- Shengnan Wang
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Mengtao Rong
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Tianren Xu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Lei Chen
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Xiaoqin Chen
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Zhi-Peng Yu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, P. R. China
| |
Collapse
|
25
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 803] [Impact Index Per Article: 200.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
26
|
Zhou Q, Lyu X, Cao B, Liu X, Liu J, Zhao J, Lu S, Zhan M, Hu X. Fast Broad-Spectrum Staining and Photodynamic Inhibition of Pathogenic Microorganisms by a Water-Soluble Aggregation-Induced Emission Photosensitizer. Front Chem 2021; 9:755419. [PMID: 34796162 PMCID: PMC8593337 DOI: 10.3389/fchem.2021.755419] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 01/10/2023] Open
Abstract
Pathogenic microorganisms pose great challenges to public health, which is constantly urgent to develop extra strategies for the fast staining and efficient treatments. In addition, once bacteria form stubborn biofilm, extracellular polymeric substance (EPS) within biofilm can act as protective barriers to prevent external damage and inward diffusion of traditional antibiotics, which makes it frequently develop drug-resistant ones and even hard to treat. Therefore, it is imperative to develop more efficient methods for the imaging/detection and efficient inhibition of pathogenic microorganisms. Here, a water-soluble aggregation-induced emission (AIE)-active photosensitizer TPA-PyOH was employed for fast imaging and photodynamic treatment of several typical pathogens, such as S. aureus, methicillin-resistant Staphylococcus aureus, L. monocytogenes, C. albicans, and E. coli. TPA-PyOH was non-fluorescent in water, upon incubation with pathogen, positively charged TPA-PyOH rapidly adhered to pathogenic membrane, thus the molecular motion of TPA-PyOH was restricted to exhibit AIE-active fluorescence for turn-on imaging with minimal background. Upon further white light irradiation, efficient reactive oxygen species (ROS) was in-situ generated to damage the membrane and inhibit the pathogen eventually. Furthermore, S. aureus biofilm could be suppressed in vitro. Thus, water-soluble TPA-PyOH was a potent AIE-active photosensitizer for fast fluorescent imaging with minimal background and photodynamic inhibition of pathogenic microorganisms.
Collapse
Affiliation(s)
- Qi Zhou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Bing Cao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xueping Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jing Liu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jiarui Zhao
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Siyu Lu
- Green Catalysis Center and College of Chem, Guangzhou, China
| | - Meixiao Zhan
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science and Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
27
|
Ren X, Zhang S, Liu L, Xu B, Tian W. Recent advances in assembled AIEgens for image-guided anticancer therapy. NANOTECHNOLOGY 2021; 32:502008. [PMID: 34469876 DOI: 10.1088/1361-6528/ac22df] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Image-guided therapy, with simultaneous imaging and therapy functions, has the potential to greatly enhance the therapeutic efficacy of anticancer therapy, and reduce the incidence of side effects. Fluorescence imaging has the advantages of easy operation, abundant signal, high contrast, and fast response for real-time and non-invasive tracking. Luminogens with aggregation-induced emission characteristics (AIEgens) can emit strong luminescence in an aggregate state, which makes them ideal materials to construct applicative fluorophores for fluorescence imaging. The opportunity for image-guided cancer treatment has inspired researchers to explore the theranostic application of AIEgens combined with other therapy methods. In recent years, many AIEgens with efficient photosensitizing or photothermal abilities have been designed by precise molecular engineering, with superior performance in image-guided anticancer therapy. Owing to the hydrophobic property of most AIEgens, an assembly approach has been wildly utilized to construct biocompatible AIEgen-based nanostructures in aqueous systems, which can be used for image-guided anticancer therapy. In the present review, we summarize the recent advances in the assembled AIEgens for image-guided anticancer therapy. Five types of image-guided anticancer therapy using assembled AIEgens are included: chemotherapy, photodynamic therapy, photothermal therapy, gene therapy, and synergistic therapy. Moreover, a brief conclusion with the discussion of current challenges and future perspectives in this area is further presented.
Collapse
Affiliation(s)
- Xue Ren
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
- Department of Oncological Gynecology, the First Hospital of Jilin University, Changchun, Jilin Province, 130021, People's Republic of China
| | - Song Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Leijing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin Province, 130012, People's Republic of China
| |
Collapse
|
28
|
Bu Y, Zhu X, Wang H, Zhang J, Wang L, Yu Z, Tian Y, Zhou H, Xie Y. Self-Monitoring the Endo-Lysosomal Escape and Near-Infrared-Activated Mitophagy To Guide Synergistic Type-I Photodynamic and Photothermal Therapy. Anal Chem 2021; 93:12059-12066. [PMID: 34433261 DOI: 10.1021/acs.analchem.1c02310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Considering the multiple biological barriers before the entry of photosensitizers (PSs) into cytoplasm, it is of paramount importance to track PSs to elucidate their behaviors and distributions to guide the photodynamic therapy (PDT). Also, the developed PSs suffer from strong oxygen dependency. However, reports on such ideal theranostic platforms are rare. Herein, we developed a theranostic platform (CMTP-2) based on the coumarin-based D-π-A system, which, for the first time, can reveal the holistic intracellular delivery pathway and near-infrared (NIR)-activated mitophagy to guide synergistic type-I PDT and photothermal therapy. The dynamic endo-lysosomal escape of CMTP-2 was monitored, as well as its changeable distributions in endosomes, lysosomes, and mitochondria, demonstrating the preferential accumulation in mitochondria at the end. Upon NIR-I irradiation, CMTP-2 generated toxic radicals and heat, triggering the execution of mitophagy and apoptosis. In vivo experiments on mice indicated that CMTP-2 under 808 nm irradiation realized complete cancer ablation, showing great potential for advancements in synergistic phototherapy.
Collapse
Affiliation(s)
- Yingcui Bu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Haoran Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Jie Zhang
- Institution of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Lianke Wang
- Institution of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Zhipeng Yu
- Institution of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui University, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Yi Xie
- Hefei National Laboratory for Physical Science at Microscale, iChem, University of Science and Technology of China, Hefei 230051, P.R. China
| |
Collapse
|
29
|
Chen Z, Pascal S, Daurat M, Lichon L, Nguyen C, Godefroy A, Durand D, Ali LMA, Bettache N, Gary-Bobo M, Arnoux P, Longevial JF, D'Aléo A, Marchand G, Jacquemin D, Siri O. Modified Indulines: From Dyestuffs to In Vivo Theranostic Agents. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30337-30349. [PMID: 34159778 DOI: 10.1021/acsami.1c05933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The efficient, versatile, and straightforward synthesis of the first N-alkyl analogues of induline 3B (8a and 8b) is reported. Thanks to the introduction of lipophilic substituents and their attractive photophysical properties (far-red emission and production of singlet oxygen), phenazinium 8b can be used as a theranostic agent and shows, at very low concentrations (100 nM), a remarkable ability to (i) image cells and zebrafish embryos with high quality under both mono- (514 nm) and biphotonic (790 and 810 nm) excitations, (ii) efficiently and quickly penetrate cancer cells rather than healthy fibroblasts, and (iii) induce a total or almost total cancer cell death in vitro and in vivo after illumination (λexc = 540-560 nm). The molecular structure of 8b is based on a triamino-phenazinium core only, with no need for additional components, highlighting the emergence of a minimalistic and versatile class of fluorescent probes for targeted photodynamic cancer therapy.
Collapse
Affiliation(s)
- Zhongrui Chen
- Aix Marseille Université, CNRS, CINaM, UMR 7325, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Simon Pascal
- Aix Marseille Université, CNRS, CINaM, UMR 7325, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Morgane Daurat
- Faculté de Pharmacie, NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, Cedex 5 France
| | - Laure Lichon
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
| | - Christophe Nguyen
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
| | - Anastasia Godefroy
- Faculté de Pharmacie, NanoMedSyn, 15 Avenue Charles Flahault, 34093 Montpellier, Cedex 5 France
| | - Denis Durand
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
| | - Lamiaa M A Ali
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
- Department of Biochemistry Medical Research Institute, University of Alexandria, 21561 Alexandria, Egypt
| | - Nadir Bettache
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
| | - Magali Gary-Bobo
- Université Montpellier, CNRS, IBMM, UMR 5247, ENSCM, 34093 Montpellier, France
| | - Philippe Arnoux
- Université de Lorraine, CNRS, LRGP, UMR 7274, 54000 Nancy, France
| | - Jean-François Longevial
- Aix Marseille Université, CNRS, CINaM, UMR 7325, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Anthony D'Aléo
- Aix Marseille Université, CNRS, CINaM, UMR 7325, Campus de Luminy, 13288 Marseille Cedex 09, France
| | - Gabriel Marchand
- Université de Nantes, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Olivier Siri
- Aix Marseille Université, CNRS, CINaM, UMR 7325, Campus de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
30
|
Wu M, Gu M, Leung J, Li X, Yuan Y, Shen C, Wang L, Zhao E, Chen S. A Membrane-Targeting Photosensitizer with Aggregation-Induced Emission Characteristics for Highly Efficient Photodynamic Combat of Human Coronaviruses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101770. [PMID: 34190409 PMCID: PMC8420407 DOI: 10.1002/smll.202101770] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/26/2021] [Indexed: 05/18/2023]
Abstract
COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in global social and economic disruption, putting the world economy to the largest global recession since the Great Depression. To control the spread of COVID-19, cutting off the transmission route is a critical step. In this work, the efficient inactivation of human coronavirus with photodynamic therapy (PDT) by employing photosensitizers with aggregation-induced emission characteristics (DTTPB) is reported. DTTPB is designed to bear a hydrophilic head and two hydrophobic tails, mimicking the structure of phospholipids on biological membranes. DTTPB demonstrates a broad absorption band covering the whole visible light range and high molar absorptivity, as well as excellent reactive oxygen species sensitizing ability, making it an excellent candidate for PDT. Besides, DTTPB can target membrane structure, and bind to the envelope of human coronaviruses. Upon light irradiation, DTTPB demonstrates highly effective antiviral behavior: human coronavirus treated with DTTPB and white-light irradiation can be efficiently inactivated with complete loss of infectivity, as revealed by the significant decrease of virus RNA and proteins in host cells. Thus, DTTPB sensitized PDT can efficiently prevent the infection and the spread of human coronavirus, which provides a new avenue for photodynamic combating of COVID-19.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong Kong999077China
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong Kong999077China
| | - Xinmei Li
- College of Life Sciences and China Center for Type Culture CollectionWuhan UniversityWuhanHubei430071China
| | - Yuncong Yuan
- College of Life Sciences and China Center for Type Culture CollectionWuhan UniversityWuhanHubei430071China
| | - Chao Shen
- College of Life Sciences and China Center for Type Culture CollectionWuhan UniversityWuhanHubei430071China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryMinistry of EducationSchool of Pharmaceutical SciencesWuhan UniversityWuhanHubei430071China
| | - Engui Zhao
- School of ScienceHarbin Institute of TechnologyShenzhenHIT Campus of University TownShenzhen518055China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong Kong999077China
| |
Collapse
|
31
|
Ma H, Zhao C, Meng H, Li R, Mao L, Hu D, Tian M, Yuan J, Wei Y. Multifunctional Organic Fluorescent Probe with Aggregation-Induced Emission Characteristics: Ultrafast Tumor Monitoring, Two-Photon Imaging, and Image-Guide Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7987-7996. [PMID: 33560829 DOI: 10.1021/acsami.0c21309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The development of multifunctional photosensitizers (PSs) with aggregation-induced emission (AIE) properties plays a critical role in promoting the progress of the photodynamic therapy (PDT). In this work, a multifunctional PS (named DSABBT NPs) with AIE activity has been designed and prepared to carry out ultrafast staining, excellent two-photon bioimaging, and high-efficiency image-guided PDT. Simply, DSABBT with AIE characteristic was synthesized by one-step Schiff reaction of 4-(diethylamino)-salicylaldehyde (DSA) and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BBT). Then, DSABBT and DSPE-PEG2000-cRGD generate nanoparticles (NPs) easily in an ultrapure water/tetrahydrofuran mixture through a facile nanoprecipitation at room temperature. We found that DSABBT NPs exhibit bright solid-state fluorescence with large stokes shifts (180 nm) and two-photon absorption cross-section (1700 GM). Importantly, DSABBT NPs exhibited excellent ability of ultrafast staining and two-photon imaging, which can readily label suborganelles by subtly shaking the living cells for 5 s under mild conditions. Moreover, DSABBT NPs displayed high singlet oxygen (1O2) generation capacity and remarkable image-guided PDT efficiency. Therefore, DSABBT NPs can act as the promising candidate for multifunctional PSs, which can destroy cancer cells and block malignant tumor growth via the production of reactive oxygen species upon irradiation conditions. These outcomes provide us with a selectable strategy for developing multifunctional theranostic systems.
Collapse
Affiliation(s)
- Haijun Ma
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chong Zhao
- School of Pharmacy & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New District, Guizhou 550025, China
| | - Haibing Meng
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruoxin Li
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liucheng Mao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Danning Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
32
|
Huang H, Wu Z. 2-(2,4-Di-nitro-phen-yl)-1-(pyridin-4-yl)ethanol monohydrate. IUCRDATA 2021; 6:x201640. [PMID: 36338859 PMCID: PMC9462314 DOI: 10.1107/s2414314620016405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
In the title compound, C13H11N3O5·H2O, the dihedral angle between the aromatic rings is 9.60 (7)° and the chain linking the rings has an anti conformation with a torsion angle of -178.28 (12)°. In the crystal, the components are linked by O-H⋯O and O-H⋯N hydrogen bonds, generating (010) sheets.
Collapse
Affiliation(s)
- Houshi Huang
- Department of Chemistry, Anhui University, Hefei, Anhui 230039, People’s Republic of China
| | - Zhichao Wu
- Department of Chemistry, Anhui University, Hefei, Anhui 230039, People’s Republic of China
| |
Collapse
|
33
|
Potopnyk MA, Kravets M, Luboradzki R, Volyniuk D, Sashuk V, Grazulevicius JV. Carbazole-modified thiazolo[3,2- c][1,3,5,2]oxadiazaborinines exhibiting aggregation-induced emission and mechanofluorochromism. Org Biomol Chem 2021; 19:406-415. [PMID: 33313635 DOI: 10.1039/d0ob02225j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two highly emissive carbazole-containing thiazole-fused oxadiazaborinines were designed and synthesized. These N,O-chelated organoboron dyes displayed large Stokes shifts and remarkable solvatofluorochromism in solutions, as well as good thermal stability and comparatively high photoluminescence quantum yields (up to 34%) in the solid state. The presence of a carbazole donor unit, linked with the oxadiazaborinine acceptor via a phenyl linker, restricted intramolecular rotation, leading to enhanced aggregation-induced emission properties of the compounds: in THF/water mixtures with a large water percentage, they demonstrated the formation of emissive nanoaggregates with an average size of 79 and 89 nm for complexes 2 and 3, respectively. The introduction of bulky tert-butyl groups attached to the carbazole moiety induced significant mechanofluorochromic properties of the compounds.
Collapse
Affiliation(s)
- Mykhaylo A Potopnyk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland. and Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| | - Mykola Kravets
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Juozas Vidas Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas, Lithuania.
| |
Collapse
|
34
|
Li Y, Zhou Y, Yao Y, Gao T, Yan P, Li H. White-light emission from the quadruple-stranded dinuclear Eu( iii) helicate decorated with pendent tetraphenylethylene (TPE). NEW J CHEM 2021. [DOI: 10.1039/d1nj00700a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hybrid film doped with a quadruple-stranded Eu3+ helicate displayed tuneable emission and white light.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| |
Collapse
|
35
|
Huang Y, Zhang G, Zhao R, Zhang D. Aggregation-Induced Emission Luminogens for Mitochondria-Targeted Cancer Therapy. ChemMedChem 2020; 15:2220-2227. [PMID: 33094568 DOI: 10.1002/cmdc.202000632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Indexed: 12/24/2022]
Abstract
The importance of mitochondria in tumorigenesis makes these organelles an ideal target for cancer therapy. In recent years, luminogens with the aggregation-induced emission (AIE) effect have been developed for mitochondrial targeting and cancer treatment. The induction of mitochondrial dysfunction can be an effective pathway of chemotherapy, photodynamic therapy, and combination therapy against cancer. This review focuses on recent progress in the field of AIE luminogens (AIEgens) for cancer theranostics based on mitochondrial targeting and dysfunction. AIEgens for cancer treatment, including chemotherapy, photodynamic therapy, and combination therapy, are summarized herein. Molecular design efforts toward mitochondrial targeting and mitochondria-damaging mechanisms are also discussed. Finally, we discuss the challenges and future directions of development for AIEgens in mitochondria-targeted cancer treatment.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratories of Organic Solids and Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Zhang H, Liu J, Sun YQ, Liu M, Guo W. Carbon–Dipyrromethenes: Bright Cationic Fluorescent Dyes and Potential Application in Revealing Cellular Trafficking of Mitochondrial Glutathione Conjugates. J Am Chem Soc 2020; 142:17069-17078. [DOI: 10.1021/jacs.0c06916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan-Qiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Mengxing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, Yu J, Wu Z, Zhou H. In Situ Monitoring of Mitochondria Regulating Cell Viability by the RNA-Specific Fluorescent Photosensitizer. Anal Chem 2020; 92:10815-10821. [PMID: 32615754 DOI: 10.1021/acs.analchem.0c02298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell viability is greatly affected by external stimulus eliciting correlated dynamical physiological processes for cells to choose survival or death. A few fluorescent probes have been designed to detect whether the cell is in survival state or apoptotic state, but monitoring the regulation process of the cell undergoing survival to death remains a long-standing challenge. Herein, we highlight the in situ monitor of mitochondria regulating the cell viability by the RNA-specific fluorescent photosensitizer L. At normal conditions, L anchored mitochondria and interacted with mito-RNA to light up the mitochondria with red fluorescence. With external light stimulus, L generated reactive oxide species (ROS) and cause damage to mitochondria, which activated mitochondrial autophagy to prevent death, during which the red fluorescence of L witnessed dynamical distribution in accordance with the evolution of vacuole structures containing damaged mitochondria into autophagosomes. However, with ROS continuously increasing, the mitochondrial apoptosis was eventually commenced and L with red fluorescent was gradually accumulated in the nucleoli, indicating the programmed cell death. This work demonstrated how the delicate balance between survival and death are regulated by mitochondria.
Collapse
Affiliation(s)
- Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Gang Liu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Yingcui Bu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, P. R. China
| | - Lianke Wang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, P. R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Jianhua Yu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Zhichao Wu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei 230601, P.R. China
| |
Collapse
|
38
|
Zheng Z, Liu H, Zhai S, Zhang H, Shan G, Kwok RTK, Ma C, Sung HHY, Williams ID, Lam JWY, Wong KS, Hu X, Tang BZ. Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AIEgens. Chem Sci 2020; 11:2494-2503. [PMID: 34084415 PMCID: PMC8157451 DOI: 10.1039/c9sc06441a] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Photosensitizers (PSs) with multiple characteristics, including efficient singlet oxygen (1O2) generation, cancer cell-selective accumulation and subsequent mitochondrial localization as well as near-infrared (NIR) excitation and bright NIR emission, are promising candidates for imaging-guided photodynamic therapy (PDT) but rarely concerned. Herein, a simple rational strategy, namely modulation of donor-acceptor (D-A) strength, for molecular engineering of mitochondria-targeting aggregation-induced emission (AIE) PSs with desirable characteristics including highly improved 1O2 generation efficiency, NIR emission (736 nm), high specificity to mitochondria, good biocompatibility, high brightness and superior photostability is demonstrated. Impressively, upon light irradiation, the optimal NIR AIE PS (DCQu) can generate 1O2 with efficiency much higher than those of commercially available PSs. The excellent two-photon absorption properties of DCQu allow two-photon fluorescence imaging of mitochondria and subsequent two-photon excited PDT. DCQu can selectively differentiate cancer cells from normal cells without the aid of extra targeting ligands. Upon ultralow-power light irradiation at 4.2 mW cm-2, in situ mitochondrial photodynamic activation to specifically damage cancer cells and efficient in vivo melanoma ablation are demonstrated, suggesting superior potency of the AIE PS in imaging-guided PDT with minimal side effects, which is promising for future precision medicine.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Haixiang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Shaodong Zhai
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Guogang Shan
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Chao Ma
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China
| | - Kam Sing Wong
- Department of Physics, HKUST Clear Water Bay Kowloon Hong Kong China
| | - Xianglong Hu
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, College of Biophotonics, South China Normal University 55 Zhongshan Avenue West Guangzhou 510631 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST) Clear Water Bay Kowloon Hong Kong China .,HKUST-Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan Shenzhen 518057 China.,Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| |
Collapse
|