1
|
Chowdhury RA, Ghose B, Choudhuri D. Uncovering the Role of Critical Bonds in the Thermomechanical Response of Zn 2(1,4-benzenedicarboxylate) 2(1,4-diazabicyclo[2,2,2]octane) Using Ab Initio Simulations and Physics-Constrained Neural Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40331865 DOI: 10.1021/acs.langmuir.5c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Metal-organic frameworks (MOFs) are susceptible to harsh conditions involving high temperatures, mechanical loading, host/guest chemical interactions, or a combination thereof due to the disruption of underlying bonds. Here, we probed the thermomechanical response of Zn2(BDC)2(DABCO) (BDC = 1,4-benzenedicarboxylate and DABCO = 1,4-diazabicyclo[2,2,2]octane) MOF or Zn-DMOF, whose metal nodes are connected to two BDC and DABCO linkers via Zn-O and N-Zn bonds, respectively. We have examined the relative contributions of such bonds toward Zn-MOF's thermomechanical response at 200 and 300 K, by training a physics-constrained neural network with ab initio molecular dynamics (AIMD)-derived interatomic vibration data, and quantitatively estimated interatomic bond strengths within a local environment in the MOF body. We quantitatively show that N-Zn and Zn-O bonds near the Zn-based metal nodes are weaker than their surroundings. These findings were followed up by separately annealing Zn-DMOF at 920 K-AIMD (above its thermal decomposition temperature), mechanically straining it to failure using 0 K-DFT, and examining host/guest interactions in aqueous and acidic environments with 300 K-AIMD. Together, they indicated that structural instability in Zn-DMOF was initiated by the disruption of N-Zn and Zn-O bonds under harsh conditions and that Zn-O bonds are weaker than N-Zn bonds at T ≥ 300 K. Broadly, we show that bond strength estimates are a reasonable indicator of Zn2(BDC)2(DABCO)'s performance at high temperatures and mechanical loading, and demonstrate the viability of employing AIMD simulations and physics-constrained neural networks to quantify interatomic bond strengths of hybrid organic-inorganic materials.
Collapse
Affiliation(s)
- Rashedul Alam Chowdhury
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Biswajit Ghose
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Deep Choudhuri
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| |
Collapse
|
2
|
Romero-Muñiz I, Loukopoulos E, Xiong Y, Zamora F, Platero-Prats AE. Exploring porous structures without crystals: advancements with pair distribution function in metal- and covalent organic frameworks. Chem Soc Rev 2024; 53:11772-11803. [PMID: 39400325 DOI: 10.1039/d4cs00267a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The pair distribution function (PDF) is a versatile characterisation tool in materials science, capable of retrieving atom-atom distances on a continuous scale (from a few angstroms to nanometres), without being restricted to crystalline samples. Typically, total scattering experiments are performed using high-energy synchrotron X-rays, neutrons or electrons to achieve a high atomic resolution in a short time. Recently, PDF analysis provides a powerful approach to target current characterisation challenges in the field of metal- and covalent organic frameworks. By identifying molecular interactions on the pore surfaces, tracking complex structural transformations involving disorder states, and elucidating nucleation and growth mechanisms, structural analysis using PDF has provided invaluable insights into these materials. This review article highlights the significance of PDF analysis in advancing our understanding of MOFs and COFs, paving the way for innovative applications and discoveries in porous materials research.
Collapse
Affiliation(s)
- Ignacio Romero-Muñiz
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Edward Loukopoulos
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Ying Xiong
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Félix Zamora
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ana E Platero-Prats
- Departamento de Química Inorgánica Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Hurlock MJ, Christian MS, Small LJ, Percival SJ, Rademacher DX, Schindelholz ME, Nenoff TM. Exceptional Electrical Detection of Trace NO 2 via Mixed Metal MOF-on-MOF Film-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63818-63830. [PMID: 39504256 DOI: 10.1021/acsami.4c15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The tunability of metal-organic frameworks (MOFs) makes them exceptional materials for the development of highly selective, low-power sensors for toxic gas detection. Herein, we demonstrate enhanced detection of NO2 gas by a MOF-based electrical impedance sensor made using a unique mixed metal MOF-on-MOF synthesis. A combined experimental and computational study was performed using the exemplar NixMg1-x-MOF-74 to understand the fundamental structure-property relationships behind metal mixing and MOF film synthesis methods on sensor performance. Density functional theory results indicated that the presence of Ni in Mg-MOF-74 increased framework stability and increased the electron density of states at lower energies near the HOMO, as well as enhanced the NO2-Mg adsorption interaction. Impedance data of the NixMg1-x-MOF-74 films with larger Ni contents showed greater impedance change after exposure to 1 ppm of NO2 gas. Furthermore, when synthesized through either a drop-cast or direct solvothermal film growth approach, the monometallic Ni-based sensors had the best performance. However, the mixed metal NixMg1-x-MOF-74 sensors synthesized through a MOF-on-MOF approach resulted in the highest impedance change, outperforming all monometallic Ni-based sensors. In particular, the mixed metal Ni-on-Mg-MOF-74 film was the best-performing sensor with an impedance change of 309 upon trace NO2 exposure. Change in impedance response after NO2 exposure was improved by 52% compared to the best monometallic Ni-on-Ni-MOF-74 sensor. Structural analysis of the Ni-on-Mg film showed that the first Mg-MOF-74 layer acts as a structural template controlling the structural features of the final film after metal exchange with Ni. This led to improved film quality, evidenced by the greater crystallinity and larger MOF grain sizes, and resulted in enhanced sensor performance which was not achievable through other metal mixing methods. Altogether, this study identifies structure-property relationships and synthetic templating methods that inform MOF-based sensor design, allowing for improved detection of toxic compounds.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David X Rademacher
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Boyd B, Choudhuri D, Bobbitt NS. Ab Initio Molecular Dynamics Investigation of Water and Butanone Adsorption on UiO-66 with Defects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23654-23672. [PMID: 39479889 DOI: 10.1021/acs.langmuir.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Volatile organic compounds (VOCs) are harmful chemicals that are found in minute quantities in the atmosphere and are emitted from a variety of industrial and biological processes. They can be harmful to breathe or serve as biomarkers for disease detection. Therefore, capture and detection of VOCs is important. Here, we have examined if the Zr-based UiO-66 metal-organic framework (MOF) can be used to capture butanone─a well-known VOC. Toward that end, we have performed Born-Oppenheimer ab initio molecular dynamics (AIMD) at 300 and 500 K to probe the energetics and molecular interactions between butanone [CH3C(O)CH2CH3] and open-cage Zr-UiO-66. Such interactions were systematically interrogated using three MOF structures: defective MOF with a missing 1,4-benzene-dicarboxylate linker and two H2O; pristine MOF with two H2O; and pristine dry MOF. These structures were loaded with one and four molecules of butanone to examine the effect of concentration as well. One-molecule loading interacted favorably with the defective structure at 300 K, only. In comparison, interactions with four-molecule loading were energetically favorable for all conditions. Persistent hydrogen bonds between the O atom of butanone, H2O, and μ3-OH hydroxyl attachments at Zr nodes substantially contributed to the intermolecular interactions. At higher loadings, butanone also showed a pronounced tendency to diffuse into the adjoining cages of Zr-UiO-66. The effect of such movement on interaction energies was rationalized using simple statistical mechanics-based models of interacting and noninteracting gases. Broadly, we learn that the presence of prior moisture within the interstitial cages of Zr-UiO-66 significantly impacts the adsorption behavior of butanone.
Collapse
Affiliation(s)
- Brianne Boyd
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Deep Choudhuri
- Department of Materials and Metallurgical Engineering, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - N Scott Bobbitt
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
5
|
Li S, Shen T, Gao M, Wang H. Yttrium-based metal-organic frameworks built on hexanuclear clusters. Dalton Trans 2024; 53:17132-17139. [PMID: 39297803 DOI: 10.1039/d4dt01658k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Yttrium-based metal-organic frameworks built on hexanuclear clusters (Y6-MOFs) represent an important subgroup of MOFs that are assembled from Y6 clusters and diverse organic linkers, featuring a variety of topologies. Due to the robust Y-O bonds and high connectivity of hexanuclear SBUs, Y6-MOFs are generally thermally stable and resistant to water. Additionally, their pore structures are highly tunable through the practice of the reticular chemistry strategy, resulting in excellent performance in gas adsorption and separation related applications. Y6-MOFs are structurally analogous to Zr6-MOFs; however, the existence of charge-balancing cations in Y6-MOFs serves as an additional pore structure regulator, enhancing their tailorability with respect to pore shape and dimensions. In this Frontier article, we summarize the main advances in the design and synthesis of Y6-MOFs, with a particular focus on the precise engineering of their pore structure for gas separation. Future directions of research efforts in this field are also discussed.
Collapse
Affiliation(s)
- Shenfang Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P.R. China.
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd., Shenzhen, Guangdong 518055, P.R. China.
| | - Tao Shen
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd., Shenzhen, Guangdong 518055, P.R. China.
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P.R. China.
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd., Shenzhen, Guangdong 518055, P.R. China.
| |
Collapse
|
6
|
Rimsza JM, Duwal S, Root HD. Impact of Vertex Functionalization on Flexibility of Porous Organic Cages. ACS OMEGA 2024; 9:29025-29034. [PMID: 38973899 PMCID: PMC11223230 DOI: 10.1021/acsomega.4c04186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.
Collapse
Affiliation(s)
- Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Sakun Duwal
- Dynamic
Material Properties Department, Sandia National
Laboratories, Albuquerque, New Mexico 87123, United States
| | - Harrison D. Root
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
7
|
Mao XL, Cai YJ, Luo QX, Liu X, Jiang QQ, Zhang CR, Zhang L, Liang RP, Qiu JD. Europium(III) Functionalized Covalent Organic Framework as Sensitive and Selective Fluorescent Switch for Detection of Uranium. Anal Chem 2024; 96:5037-5045. [PMID: 38477697 DOI: 10.1021/acs.analchem.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Uranium poses severe health risks due to its radioactivity and chemical toxicity if released into the environment. Therefore, there is an urgent demand to develop sensing materials in situ monitoring of uranium with high sensitivity and stability. In this work, a fluorescent Eu3+-TFPB-Bpy is synthesized by grafting Eu3+ cation onto TFPB-Bpy covalent organic framework (COF) synthesized through Schiff base condensation of monomers 1,3,5-tris(4-formylphenyl)benzene (TFPB) and 5,5'-diamino-2,2'-bipyridine (Bpy). The fluorescence of Eu3+-TFPB-Bpy is enhanced compared with that of TFPB-Bpy, which is originated from the intramolecular rotations of building blocks limited by the bipyridine units of TFPB-Bpy coordinated with Eu3+. More significantly, Eu3+-TFPB-Bpy is a highly efficient probe for sensing UO22+ in aqueous solution with the luminescence intensity efficiently amplified by complexation of UO22+ with Eu3+. The turn-on sensing capability was derived from the resonance energy transfer occurring from UO22+ to the Eu3+-TFPB-Bpy. The developed probe displayed desirable linear range from 5 nM to 5 μM with good selectivity and rapid response time (2 s) for UO22+ in mining wastewater. This strategy provides a vivid illustration for designing luminescence lanthanide COF hybrid materials with applications in environmental monitoring.
Collapse
Affiliation(s)
- Xiang-Lan Mao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yuan-Jun Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
8
|
Sánchez F, Gutiérrez M, Douhal A. Taking Advantage of a Luminescent ESIPT-Based Zr-MOF for Fluorochromic Detection of Multiple External Stimuli: Acid and Base Vapors, Mechanical Compression, and Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56587-56599. [PMID: 37983009 DOI: 10.1021/acsami.3c14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Luminescent materials responsive to external stimuli have captivated great attention owing to their potential implementation in noninvasive photonic sensors. Luminescent metal-organic frameworks (LMOFs), a type of porous crystalline material, have emerged as one of the most promising candidates for these applications. Moreover, LMOFs constructed with organic linkers that undergo excited-state intramolecular proton-transfer (ESIPT) reactions are particularly relevant since changes in the surrounding environment induce modifications in their emission properties. Herein, an ESIPT-based LMOF, UiO-66-(OH)2, has been synthesized, spectroscopically and photodynamically characterized, and tested for detecting multiple external stimuli. First, the spectroscopic and photodynamic characterization of the organic linker (2,5-dihydroxyterephthalic acid (DHT)) and the UiO-66-(OH)2 MOF demonstrates that the emission properties are mainly governed by the enol → keto tautomerization, occurring in the organic linker via the ESIPT reaction. Afterward, the UiO-66-(OH)2 MOF proves for the first time to be a promising candidate to detect vapors of acid (HCl) and base (Et3N) toxic chemicals, changes in the mechanical compression (exercised pressure), and changes in the temperature. These results shed light on the potential of ESIPT-based LMOFs to be implemented in the development of advanced optical materials and luminescent sensors.
Collapse
Affiliation(s)
- Francisco Sánchez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Mario Gutiérrez
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain
| |
Collapse
|
9
|
Small LJ, Vornholt SM, Percival SJ, Meyerson ML, Schindelholz ME, Chapman KW, Nenoff TM. Impedance-Based Detection of NO 2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37675-37686. [PMID: 37498628 DOI: 10.1021/acsami.3c06864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF's capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF's surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
Collapse
Affiliation(s)
- Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Melissa L Meyerson
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Karena W Chapman
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
10
|
Christian MS, Nenoff TM, Rimsza JM. Effect of Linker Structure and Functionalization on Secondary Gas Formation in Metal-Organic Frameworks. J Phys Chem A 2023; 127:2881-2888. [PMID: 36947182 DOI: 10.1021/acs.jpca.2c07751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Rare-earth terephthalic acid (BDC)-based metal-organic frameworks (MOFs) are promising candidate materials for acid gas separation and adsorption from flue gas streams. However, previous simulations have shown that acid gases (H2O, NO2, and SO2) react with the hydroxyl on the BDC linkers to form protonated acid gases as a potential degradation mechanism. Herein, gas-phase computational approaches were used to identify the formation energies of these secondary protonated acid gases across multiple BDC linker molecules. Formation energies for secondary protonated acid gases were evaluated using both density functional theory (DFT) and correlated wave function methods for varying BDC-gas reaction mechanisms. Upon validation of DFT to reproduce wave function calculation results, rotated conformational linkers and chemically functionalized BDC linkers with -OH, -NH2, and -SH were investigated. The calculations show that the rotational conformation affects the molecule stability. Double-functionalized BDC linkers, where two functional groups are substituted onto BDC, showed varied reaction energies depending on whether the functional groups donate or withdraw electrons from the aromatic system. Based on these results, BDC linker design must balance adsorption performance with degradation via linker dehydrogenation for the design of stable MOFs for acid gas separations.
Collapse
Affiliation(s)
- Matthew S Christian
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Advanced Science & Technology, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, P.O. Box 5800, Eubank Boulevard SE, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
11
|
Orthogonal luminescence lifetime encoding by intermetallic energy transfer in heterometallic rare-earth MOFs. Nat Commun 2023; 14:981. [PMID: 36813785 PMCID: PMC9947006 DOI: 10.1038/s41467-023-36576-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform's relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.
Collapse
|
12
|
Rimsza J, Nenoff TM. Design of Enhanced Porous Organic Cage Solubility in Type 2 Porous Liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Zhu H, Wang R. Exceptionally high and reversible NO x uptake by hollow Mn-Fe composite nanocubes derived from Prussian blue analogues. NANOSCALE 2023; 15:1709-1717. [PMID: 36594592 DOI: 10.1039/d2nr06502a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noble metal-based catalysts are widely used as passive NOx adsorbers (PNA) for cold-start NOx emissions; however, efficient porous materials as an alternative have great development potential. Herein, porous Mn-Fe composites with hollow nanocubes derived from Prussian blue analogue (PBA) precursors were used as PNA. The effects of O2, the molar ratio of Mn/Fe, calcination temperature and reaction temperature on their adsorption capacity were explored. The physicochemical properties of the obtained catalysts were systematically characterized by XRD, SEM, BET surface area, TGA, XPS and DRIFT techniques. The developed Mn1Fe2-450 presented excellent NOx uptake (more than 2.16 mmol g-1 at 200 °C). Moreover, a high NOx adsorption performance was also retained in the presence of 10% water vapor. The existing Mn3+ and Fe2+ species could contribute to the NOx adsorption and gaseous O2 can accelerate NO activation to form more easily adsorbed NO2. Surface NO2 is further diffused and stored into the bulk of the Mn-Fe composite in the form of nitrite and nitrate. This work revealed a novel candidate for PNA catalysts, which might provide inspiration for the design of new adsorbent materials.
Collapse
Affiliation(s)
- Hongjian Zhu
- School of Environmental Science and Engineering, Shandong University, No. 72 Seaside Road, Qingdao 266237, China.
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, No. 72 Seaside Road, Qingdao 266237, China.
| |
Collapse
|
14
|
Percival SJ, Small LJ, Bachman WB, Schindelholz ME, Nenoff TM. Long-Term Durability and Cycling of Nanoporous Materials Based Impedance NO 2 Sensors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stephen J. Percival
- Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Leo J. Small
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - William B. Bachman
- Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mara E. Schindelholz
- Virtual Technologies and Engineering Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Physical, Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
15
|
Yang Y, Ibikunle IA, Sava Gallis DF, Sholl DS. Adapting UFF4MOF for Heterometallic Rare-Earth Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54101-54110. [PMID: 36399402 DOI: 10.1021/acsami.2c16726] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterometallic metal-organic frameworks based on rare-earth metals (RE-MOFs) have potential in a number of applications where energy transfer between nearby metal atoms is required. This observation implies that it is important to understand the level of local mixing that is achieved between metals of different types during synthesis of RE-MOFs. Density functional theory calculations can give quantitative information on the relative energy of different configurations of RE-MOFs, but these calculations cannot be applied to the full range of medium- and long-range orderings that are possible in heterometallic materials. This limitation can be overcome using force field (FF)-based calculations if appropriate FFs are available. We show that an existing generic FF for MOFs, UFF4MOF, does not accurately predict energies of mixing in heterometallic Nd/Yb MOFs and introduce a modified FF to address this shortcoming. The resulting FF is used to explore metal orderings in large simulation volumes for a Nd/Yb MOF, illustrating the complexities that can arise in the structure of heterometallic RE-MOFs.
Collapse
Affiliation(s)
- Yuhan Yang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Ifayoyinsola A Ibikunle
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David S Sholl
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, United States
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
16
|
Wang N, Cui HZ, Cao Y, Yang C, Li YF, Chen WW, Wang SP, Zhang C, Wang J. Syntheses, structures and electrochemical properties of lanthanide coordination polymers templated by cobalt-substituted heteropolyanion. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Tong YJ, Yu LD, Li N, Shen M, Peng X, Yang H, Ye YX, Zhu F, Pawliszyn J, Xu J, Ouyang G. Novel lanthanide nanoparticle frameworks for highly efficient photoluminescence and hypersensitive detection. Chem Sci 2022; 13:13948-13955. [PMID: 36544738 PMCID: PMC9710216 DOI: 10.1039/d2sc05915k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Despite the excellent luminescent properties of lanthanide clusters (LnCs), their suprastructures that inherit their characteristic luminescent properties are scarcely reported. Herein, novel and highly luminescent suprastructures are synthesized via a two-step assembly method to incorporate LnCs in covalent organic frameworks (COFs). COFs are pre-synthesized and decorated with rigid anchoring groups on their nanochannel walls, which provide one-dimensional confined spaces for the subsequent in situ assembly of luminescent LnCs. The confined LnCs are termed nanoparticles (NPs) to distinguish them from the pure LnCs. Secondary micropores with predictable sizes are successfully formed between the walls of the nanochannels and the orderly aligned NPs therein. By using a small organic ligand that can efficiently sensitize Ln(iii) cations in the assembly processes, the obtained composites show high quantum yields above 20%. The fluorescence can even be effectively maintained across nine pH units. The secondary micropores further enable the unambiguous discrimination of six methinehalides and ultrasensitive detection of uranyl ions. This study provides a new type of luminescent material that has potential for sensing and light emitting.
Collapse
Affiliation(s)
- Yuan-Jun Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Lu-Dan Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Nan Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Minhui Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Xiaoru Peng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Yu-Xin Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Janusz Pawliszyn
- Department of Chemistry, University of WaterlooWaterlooOntario N2L3G1Cananda
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen UniversityGuangzhouGuangdong 510006China,Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou UniversityKexue Avenue 100Zhengzhou 450001China,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangdong Academy of Sciences100 Xianlie Middle RoadGuangzhou 510070China
| |
Collapse
|
18
|
Hu J, Li L, Li H, Zhai Y, Tang F, Zhang Z, Chen B. Bimetal NiCo-MOF-74 for highly selective NO capture from flue gas under ambient conditions. RSC Adv 2022; 12:33716-33724. [PMID: 36505694 PMCID: PMC9685370 DOI: 10.1039/d2ra05974f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The mixed bimetal metal-organic framework Ni0.37Co0.63-MOF-74 has been constructed by the solvothermal method for NO adsorption. The results showed that bimetal Ni0.37Co0.63-MOF-74 takes up NO with a capacity of up to 174.3 cc g-1 under ambient conditions, which is 16.3% higher than that of the best single metal Co-MOF-74. The IAST adsorption selectivity for a NO/CO2 binary mixture can reach a maximum of 710 at low adsorption partial pressure, while the regeneration performance can be retained even after five cyclic adsorption-desorption experiments. Its separation performance was further confirmed by breakthrough experiments, indicating this new bimetal Ni0.37Co0.63-MOF-74 as one of the best materials for NO adsorption and separation in flue gas.
Collapse
Affiliation(s)
- Jie Hu
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Lei Li
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Hao Li
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Ying Zhai
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Fushun Tang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Zhe Zhang
- College of Chemistry and Bioengineering, Guilin University of Technology Guilin 541004 China
| | - Banglin Chen
- Department of Chemistry, The University of Texas at San Antonio Texas 78249 USA
| |
Collapse
|
19
|
|
20
|
Christian M, Fritzsching KJ, Harvey JA, Sava Gallis DF, Nenoff TM, Rimsza JM. Dramatic Enhancement of Rare-Earth Metal-Organic Framework Stability Via Metal Cluster Fluorination. JACS AU 2022; 2:1889-1898. [PMID: 36032529 PMCID: PMC9400048 DOI: 10.1021/jacsau.2c00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/15/2023]
Abstract
Rare-earth polynuclear metal-organic frameworks (RE-MOFs) have demonstrated high durability for caustic acid gas adsorption and separation based on gas adsorption to the metal clusters. The metal clusters in the RE-MOFs traditionally contain RE metals bound by μ3-OH groups connected via organic linkers. Recent studies have suggested that these hydroxyl groups could be replaced by fluorine atoms during synthesis that includes a fluorine-containing modulator. Here, a combined modeling and experimental study was undertaken to elucidate the role of metal cluster fluorination on the thermodynamic stability, structure, and gas adsorption properties of RE-MOFs. Through systematic density-functional theory calculations, fluorinated clusters were found to be thermodynamically more stable than hydroxylated clusters by up to 8-16 kJ/mol per atom for 100% fluorination. The extent of fluorination in the metal clusters was validated through a 19F NMR characterization of 2,5-dihydroxyterepthalic acid (Y-DOBDC) MOF synthesized with a fluorine-containing modulator. 19F magic-angle spinning NMR identified two primary peaks in the isotropic chemical shift (δiso) spectra located at -64.2 and -69.6 ppm, matching calculated 19F NMR δiso peaks at -63.0 and -70.0 ppm for fluorinated systems. Calculations also indicate that fluorination of the Y-DOBDC MOF had negligible effects on the acid gas (SO2, NO2, H2O) binding energies, which decreased by only ∼4 kJ/mol for the 100% fluorinated structure relative to the hydroxylated structure. Additionally, fluorination did not change the relative gas binding strengths (SO2 > H2O > NO2). Therefore, for the first time the presence of fluorine in the metal clusters was found to significantly stabilize RE-MOFs without changing their acid-gas adsorption properties.
Collapse
Affiliation(s)
- Matthew
S. Christian
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Keith J. Fritzsching
- Organic
Materials Science Department, Sandia National
Laboratories, Albuquerque, New Mexico 87123, United States
| | - Jacob A. Harvey
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Dorina F. Sava Gallis
- Nanoscale
Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Tina M. Nenoff
- Material,
Physical, and Chemical Sciences, Sandia
National Laboratories, Albuquerque, New Mexico 87123, United States
- Tina
M. Nenoff:
| | - Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
- Jessica M. Rimsza:
| |
Collapse
|
21
|
Lee DN, Kim YR, Yang S, Tran NM, Park BJ, Lee SJ, Kim Y, Yoo H, Kim SJ, Shin JH. Controllable Nitric Oxide Storage and Release in Cu-BTC: Crystallographic Insights and Bioactivity. Int J Mol Sci 2022; 23:ijms23169098. [PMID: 36012363 PMCID: PMC9409197 DOI: 10.3390/ijms23169098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/24/2023] Open
Abstract
Crystalline metal–organic frameworks (MOFs) are extensively used in areas such as gas storage and small-molecule drug delivery. Although Cu-BTC (1, MOF-199, BTC: benzene-1,3,5-tricarboxylate) has versatile applications, its NO storage and release characteristics are not amenable to therapeutic usage. In this work, micro-sized Cu-BTC was prepared solvothermally and then processed by ball-milling to prepare nano-sized Cu-BTC (2). The NO storage and release properties of the micro- and nano-sized Cu-BTC MOFs were morphology dependent. Control of the hydration degree and morphology of the NO delivery vehicle improved the NO release characteristics significantly. In particular, the nano-sized NO-loaded Cu-BTC (NO⊂nano-Cu-BTC, 4) released NO at 1.81 µmol·mg−1 in 1.2 h in PBS, which meets the requirements for clinical usage. The solid-state structural formula of NO⊂Cu-BTC was successfully determined to be [CuC6H2O5]·(NO)0.167 through single-crystal X-ray diffraction, suggesting no structural changes in Cu-BTC upon the intercalation of 0.167 equivalents of NO within the pores of Cu-BTC after NO loading. The structure of Cu-BTC was also stably maintained after NO release. NO⊂Cu-BTC exhibited significant antibacterial activity against six bacterial strains, including Gram-negative and positive bacteria. NO⊂Cu-BTC could be utilized as a hybrid NO donor to explore the synergistic effects of the known antibacterial properties of Cu-BTC.
Collapse
Affiliation(s)
- Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Yeong Rim Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
| | - Sohyeon Yang
- Nanobio-Energy Materials Center, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Korea
- Department of Chemistry, University of Sciences, Hue University, Hue City 530000, Vietnam
| | - Bong Joo Park
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (B.J.P.); (J.H.S.); Tel.: +82-2-940-8629 (B.J.P.); +82-2-940-5627 (J.H.S.)
| | - Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Youngmee Kim
- Nanobio-Energy Materials Center, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Korea
| | - Sung-Jin Kim
- Nanobio-Energy Materials Center, Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jae Ho Shin
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (B.J.P.); (J.H.S.); Tel.: +82-2-940-8629 (B.J.P.); +82-2-940-5627 (J.H.S.)
| |
Collapse
|
22
|
Vogel DJ, Nenoff TM, Rimsza JM. Design Elements for Enhanced Hydrogen Isotope Separations in Barely Porous Organic Cages. ACS OMEGA 2022; 7:7963-7972. [PMID: 35284770 PMCID: PMC8908774 DOI: 10.1021/acsomega.1c07041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 06/02/2023]
Abstract
Barely porous organic cages (POCs) successfully separate hydrogen isotopes (H2/D2) at temperatures below 100 K. Identifying the mechanisms that control the separation process is key to the design of next-generation hydrogen separation materials. Here, ab initio molecular dynamics (AIMD) simulations are used to elucidate the mechanisms that control D2 and H2 separation in barely POCs with varying functionalization. The temperature and pore size dependence were identified, including the selective capture of D2 in three different CC3 structures (RCC3, CC3-S, and 6ET-RCC3). The temperature versus capture trend was reversed for the 6ET-RCC3 structure, identifying that the D2 and H2 escape mechanisms are unique in highly functionalized systems. Analysis of calculated isotope velocities identified effective pore sizes that extend beyond the pore opening distances, resulting in increased capture in minimally functionalized CC3-S and RCC3. In a highly functionalized POC, 6ET-RCC3, higher velocities of the H isotopes were calculated moving through the restricted pore compared to the rest of the system, identifying a unique molecular behavior in the barely nanoporous pore openings. By using AIMD, mechanisms of H2 and D2 separation were identified, allowing for the targeted design of future novel materials for hydrogen isotope separation.
Collapse
Affiliation(s)
- Dayton J. Vogel
- Computational
Materials and Data Science Department, Sandia
National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Material,
Physical and Chemical Sciences, Sandia National
Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M. Rimsza
- Geochemistry
Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
23
|
Sava Gallis DF, Butler KS, Pearce CJ, Valdez N, Rodriguez MA. Programmable Photoluminescence via Intrinsic and DNA-Fluorophore Association in a Mixed Cluster Heterometallic MOF. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10566-10576. [PMID: 35170304 DOI: 10.1021/acsami.1c24477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A rapid and facile design strategy to create a highly complex optical tag with programmable, multimodal photoluminescent properties is described. This was achieved via intrinsic and DNA-fluorophore hidden signatures. As a first covert feature of the tag, an intricate novel heterometallic near-infrared (NIR)-emitting mesoporous metal-organic framework (MOF) was designed and synthesized. The material is constructed from two chemically distinct, homometallic hexanuclear clusters based on Nd and Yb. Uniquely, the Nd-based cluster is observed here for the first time in a MOF and consists of two staggered Nd μ3-oxo trimers. To generate controlled, multimodal, and tailorable emission with difficult to counterfeit features, the NIR-emissive MOF was post-synthetically modified via a fluorescent DNA oligo labeling design strategy. The surface attachment of several distinct fluorophores, including the simultaneous attachment of up to three distinct fluorescently labeled oligos was achieved, with excitation and emission properties across the visible spectrum (480-800 nm). The DNA inclusion as a secondary covert element in the tag was demonstrated via the detection of SYBR Gold dye association. Importantly, the approach implemented here serves as a rapid and tailorable way to encrypt distinct information in a facile and modular fashion and provides an innovative technology in the quest toward complex optical tags.
Collapse
Affiliation(s)
- Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Charles J Pearce
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Nichole Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
24
|
Panagiotou N, Moscoso FG, Lopes-Costa T, Pedrosa JM, Tasiopoulos AJ. 2-Dimensional rare earth metal–organic frameworks based on a hexanuclear secondary building unit as efficient detectors for vapours of nitroaromatics and volatile organic compounds. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00799a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of microporous 2-dimensional rare earth metal organic frameworks based on a hexanuclear secondary building unit with capability to selectively detect vapours of volatile organic compounds and nitroaromatic explosives is reported.
Collapse
Affiliation(s)
- Nikos Panagiotou
- Department of Chemistry, University of Cyprus, 1678 Nicosia, Cyprus
| | - Francisco García Moscoso
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Tânia Lopes-Costa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - José María Pedrosa
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | | |
Collapse
|
25
|
Novel cerium-based MOFs photocatalyst for photocarrier collaborative performance under visible light. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Lin JB, Nguyen TTT, Vaidhyanathan R, Burner J, Taylor JM, Durekova H, Akhtar F, Mah RK, Ghaffari-Nik O, Marx S, Fylstra N, Iremonger SS, Dawson KW, Sarkar P, Hovington P, Rajendran A, Woo TK, Shimizu GKH. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021; 374:1464-1469. [PMID: 34914501 DOI: 10.1126/science.abi7281] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jian-Bin Lin
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Tai T T Nguyen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramanathan Vaidhyanathan
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra, 411008, India
| | - Jake Burner
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jared M Taylor
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | - Hana Durekova
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Farid Akhtar
- Department of Materials Engineering, Luleå University of Technology, Luleå, Sweden
| | - Roger K Mah
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| | | | | | - Nicholas Fylstra
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Simon S Iremonger
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Karl W Dawson
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Partha Sarkar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Arvind Rajendran
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.,ZoraMat Solutions Inc., Calgary, Alberta, Canada
| |
Collapse
|
27
|
Henkelis SE, Vogel DJ, Metz PC, Valdez NR, Rodriguez MA, Rademacher DX, Purdy S, Percival SJ, Rimsza JM, Page K, Nenoff TM. Kinetically Controlled Linker Binding in Rare Earth-2,5-Dihydroxyterepthalic Acid Metal-Organic Frameworks and Its Predicted Effects on Acid Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56337-56347. [PMID: 34793131 DOI: 10.1021/acsami.1c17670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the pursuit of highly stable and selective metal-organic frameworks (MOFs) for the adsorption of caustic acid gas species, an entire series of rare earth MOFs have been explored. Each of the MOFs in this series (RE-DOBDC; RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; DOBDC = 2,5-dihydroxyterepthalic acid) was synthesized in the tetragonal space group I4/m. Crystallized MOF samples, specifically Eu-DOBDC, were seen to have a combination of monodentate and bidentate binding when synthesized under typical reaction conditions, resulting in a contortion of the structure. However, extended crystallization times determined that this binding is kinetically controlled and that the monodentate binding option was crystallographically eliminated by extended reaction times at higher temperatures. Furthermore, this series allows for the direct study of the effect of the metal center on the structure of the of the MOF; herein, the lanthanide metal ionic radii contraction across the periodic table results in a reduction of the MOF pore size and lattice parameters. Scanning electron microscopy-energy-dispersive spectroscopy was used to investigate the stages of crystal growth for these RE-DOBDC MOFs. All MOFs, except Er-DOBDC had a minimum of two stages of growth. These analogues were demonstrated by analysis of neutron diffraction (PND) to exhibit a cooperative rotational distortion of the secondary building unit, resulting in two crystallographically distinct linker sublattices. Computational modeling efforts were used to show distinct differences on acid gas (NO2 and SO2) binding energies for RE-DOBDC MOFs when comparing the monodentate/bidentate combined linker with the bidentate-only linker crystal structures.
Collapse
Affiliation(s)
- Susan E Henkelis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Peter C Metz
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nichole R Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David X Rademacher
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen Purdy
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephen J Percival
- Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geosciences Engineering Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Katharine Page
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Materials Science and Engineering Department, University of Tennessee, Knoxville, Tennessee 37912, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
28
|
Abstract
As an emerging class of hybrid nanoporous materials, metal-organic frameworks (MOFs) have attracted significant attention as promising multifunctional building blocks for the development of highly sensitive and selective gas sensors due to their unique properties, such as large surface area, highly diversified structures, functionalizable sites and specific adsorption affinities. Here, we provide a review of recent advances in the design and fabrication of MOF nanomaterials for the low-temperature detection of different gases for air quality and environmental monitoring applications. The impact of key structural parameters including surface morphologies, metal nodes, organic linkers and functional groups on the sensing performance of state-of-the-art sensing technologies are discussed. This review is concluded by summarising achievements and current challenges, providing a future perspective for the development of the next generation of MOF-based nanostructured materials for low-temperature detection of gas molecules in real-world environments.
Collapse
|
29
|
Vizuet JP, Mortensen ML, Lewis AL, Wunch MA, Firouzi HR, McCandless GT, Balkus KJ. Fluoro-Bridged Clusters in Rare-Earth Metal-Organic Frameworks. J Am Chem Soc 2021; 143:17995-18000. [PMID: 34677056 DOI: 10.1021/jacs.1c10493] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The modulator 2-fluorobenzoic acid (2-fba) is widely used to prepare RE clusters in metal-organic frameworks (MOFs). In contrast to known RE MOF structures containing hydroxide bridging groups, we report for the first time the possible presence of fluoro bridging groups in RE MOFs. In this report we discuss the synthesis of a holmium-UiO-66 analogue as well as a novel holmium MOF, where evidence of fluorinated clusters is observed. The mechanism of fluorine extraction from 2-fba is discussed as well as the implications that these results have for previously reported RE MOF structures.
Collapse
Affiliation(s)
- Juan P Vizuet
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Marie L Mortensen
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Abigail L Lewis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Melissa A Wunch
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Hamid R Firouzi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| | - Kenneth J Balkus
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, Texas 75080-3021, United States
| |
Collapse
|
30
|
Percival SJ, Henkelis SE, Li M, Schindelholz ME, Krumhansl JL, Small LJ, Lobo RF, Nenoff TM. Nickel-Loaded SSZ-13 Zeolite-Based Sensor for the Direct Electrical Readout Detection of NO 2. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Stephen J. Percival
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Susan E. Henkelis
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Muyuan Li
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mara E. Schindelholz
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - James L. Krumhansl
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Leo J. Small
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| | - Raul F. Lobo
- Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Tina M. Nenoff
- Sandia National Laboratories, PO Box 5800,
MS 1411, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
31
|
Small LJ, Schindelholz ME, Nenoff TM. Hold on Tight: MOF-Based Irreversible Gas Sensors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Leo J. Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Tina M. Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
32
|
Vogel DJ, Rimsza JM, Nenoff TM. Prediction of Reactive Nitrous Acid Formation in Rare-Earth MOFs via ab initio Molecular Dynamics. Angew Chem Int Ed Engl 2021; 60:11514-11522. [PMID: 33690943 PMCID: PMC8252009 DOI: 10.1002/anie.202102956] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 01/10/2023]
Abstract
Reactive gas formation in pores of metal-organic frameworks (MOFs) is a known mechanism of framework destruction; understanding those mechanisms for future durability design is key to next generation adsorbents. Herein, an extensive set of ab initio molecular dynamics (AIMD) simulations are used for the first time to predict competitive adsorption of mixed acid gases (NO2 and H2 O) and the in-pore reaction mechanisms for a series of rare earth (RE)-DOBDC MOFs. Spontaneous formation of nitrous acid (HONO) is identified as a result of deprotonation of the MOF organic linker, DOBDC. The unique DOBDC coordination to the metal clusters allows for proton transfer from the linker to the NO2 without the presence of H2 O and may be a factor in DOBDC MOF durability. This is a previously unreported mechanisms of HONO formation in MOFs. With the presented methodology, prediction of future gas interactions in new nanoporous materials can be achieved.
Collapse
Affiliation(s)
- Dayton J. Vogel
- Nanoscale Sciences DepartmentSandia National LaboratoriesAlbuquerqueNM87185USA
| | - Jessica M. Rimsza
- Geochemistry DepartmentSandia National LaboratoriesAlbuquerqueNM87185USA
| | - Tina M. Nenoff
- Material, Physical, and Chemical SciencesSandia National LaboratoriesAlbuquerqueNM87185USA
| |
Collapse
|
33
|
Vogel DJ, Rimsza JM, Nenoff TM. Prediction of Reactive Nitrous Acid Formation in Rare‐Earth MOFs via ab initio Molecular Dynamics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dayton J. Vogel
- Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Jessica M. Rimsza
- Geochemistry Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Tina M. Nenoff
- Material, Physical, and Chemical Sciences Sandia National Laboratories Albuquerque NM 87185 USA
| |
Collapse
|
34
|
Guo H, Wang F, Ma R, Zhang M, Fu L, Zhou T, Liu S, Guo X. Lanthanide post-functionalized UiO-67 type metal–organic frameworks for tunable light-emission and stable multi-sensors in aqueous media. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Henkelis SE, Percival SJ, Small LJ, Rademacher DX, Nenoff TM. Continuous MOF Membrane-Based Sensors via Functionalization of Interdigitated Electrodes. MEMBRANES 2021; 11:membranes11030176. [PMID: 33671066 PMCID: PMC8000374 DOI: 10.3390/membranes11030176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Three M-MOF-74 (M = Co, Mg, Ni) metal-organic framework (MOF) thin film membranes have been synthesized through a sensor functionalization method for the direct electrical detection of NO2. The two-step surface functionalization procedure on the glass/Pt interdigitated electrodes resulted in a terminal carboxylate group, with both steps confirmed through infrared spectroscopic analysis. This surface functionalization allowed the MOF materials to grow largely in a uniform manner over the surface of the electrode forming a thin film membrane over the Pt sensing electrodes. The growth of each membrane was confirmed through scanning electron microscopy (SEM) and X-ray diffraction analysis. The Ni and Mg MOFs grew as a continuous but non-defect free membrane with overlapping polycrystallites across the glass surface, whereas the Co-MOF-74 grew discontinuously. To demonstrate the use of these MOF membranes as an NO2 gas sensor, Ni-MOF-74 was chosen as it was consistently fabricated as the best thin and homogenous membrane, as confirmed by SEM. The membrane was exposed to 5 ppm NO2 and the impedance magnitude was observed to decrease 123× in 4 h, with a larger change in impedance and a faster response than the bulk material. Importantly, the use of these membranes as a sensor for NO2 does not require them to be defect-free, but solely continuous and overlapping growth.
Collapse
|
36
|
Henkelis SE, Judge PT, Hayes SE, Nenoff TM. Preferential SO x Adsorption in Mg-MOF-74 from a Humid Acid Gas Stream. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7278-7284. [PMID: 33533240 DOI: 10.1021/acsami.0c21298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preferential adsorption of SOx versus water in Mg-MOF-74 from a humid SOx gas stream has been investigated via materials studies and nuclear magnetic resonance (NMR). Mg-MOF-74 has been synthesized and subsequently loaded simultaneously with water vapor and SOx (62-96 ppm) in an adsorption chamber at room temperature over a time period of 4 days with a sample taken every 24 h. Each sample was analyzed by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA)-mass spectrometry, and scanning electron microscopy-energy-dispersive spectroscopy. The metal-organic framework (MOF) showed retained crystallinity and peak intensity in PXRD, and after 2 days, it showed no obvious degradation to the structure. Use of multiple techniques, including TGA, identified 10% by weight of SOx species, specifically H2S and SO2, within the MOF. 1H solid-state NMR shows a substantial reduction of H2O when SOx is present, which is consistent with SOx preferentially binding to the oxophilic metal site of the framework. After 14 weeks aging, the sulfur remains present in the three-dimensional MOF, with only half being desorbed after 23 weeks in air.
Collapse
Affiliation(s)
- Susan E Henkelis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Patrick T Judge
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Biochemistry, Biophysics & Structural Biology, Washington University in St. Louis, St. Louis, Missouri 63110, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
37
|
Deneff JI, Butler KS, Rohwer LES, Pearce CJ, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Encoding Multilayer Complexity in Anti-Counterfeiting Heterometallic MOF-Based Optical Tags. Angew Chem Int Ed Engl 2021; 60:1203-1211. [PMID: 33137241 DOI: 10.1002/anie.202013012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 11/06/2022]
Abstract
Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal-organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.
Collapse
Affiliation(s)
- Jacob I Deneff
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Kimberly S Butler
- Molecular and Microbiology Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Lauren E S Rohwer
- Microsystems Integration Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Charles J Pearce
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Nichole R Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Ting S Luk
- Nanostructure Physics Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| | - Dorina F Sava Gallis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, NM, 87185, USA
| |
Collapse
|
38
|
Yan B. Luminescence response mode and chemical sensing mechanism for lanthanide-functionalized metal–organic framework hybrids. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01153c] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This comprehensive review systematically summarizes the luminescence response mode and chemical sensing mechanism for lanthanide-functionalized MOF hybrids (abbreviated as LnFMOFH).
Collapse
Affiliation(s)
- Bing Yan
- School of Chemical Science and Engineering
- Tongji University
- Shanghai 200092
- China
- School of Materials Science and Engineering
| |
Collapse
|
39
|
Deneff JI, Butler KS, Rohwer LES, Pearce CJ, Valdez NR, Rodriguez MA, Luk TS, Sava Gallis DF. Encoding Multilayer Complexity in Anti‐Counterfeiting Heterometallic MOF‐Based Optical Tags. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jacob I. Deneff
- Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Kimberly S. Butler
- Molecular and Microbiology Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Lauren E. S. Rohwer
- Microsystems Integration Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Charles J. Pearce
- Nanoscale Sciences Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Nichole R. Valdez
- Materials Characterization and Performance Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Mark A. Rodriguez
- Materials Characterization and Performance Department Sandia National Laboratories Albuquerque NM 87185 USA
| | - Ting S. Luk
- Nanostructure Physics Department Sandia National Laboratories Albuquerque NM 87185 USA
| | | |
Collapse
|
40
|
Dietzel PDC, Blom R, Fjellvåg H. Variability in the Formation and Framework Polymorphism of Metal‐organic Frameworks based on Yttrium(III) and the Bifunctional Organic Linker 2,5‐Dihydroxyterephthalic Acid. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Helmer Fjellvåg
- Centre for Materials Science and Nanotechnology and Department of Chemistry University of Oslo 0315 Oslo Norway
| |
Collapse
|
41
|
Feng L, Pang J, She P, Li JL, Qin JS, Du DY, Zhou HC. Metal-Organic Frameworks Based on Group 3 and 4 Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004414. [PMID: 32902012 DOI: 10.1002/adma.202004414] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Metal-organic frameworks (MOFs) based on group 3 and 4 metals are considered as the most promising MOFs for varying practical applications including water adsorption, carbon conversion, and biomedical applications. The relatively strong coordination bonds and versatile coordination modes within these MOFs endow the framework with high chemical stability, diverse structures and topologies, and interesting properties and functions. Herein, the significant progress made on this series of MOFs since 2018 is summarized and an update on the current status and future trends on the structural design of robust MOFs with high connectivity is provided. Cluster chemistry involving Y, lanthanides (Ln, from La to Lu), actinides (An, from Ac to Lr), Ti, and Zr is initially introduced. This is followed by a review of recently developed MOFs based on group 3 and 4 metals with their structures discussed based on the types of inorganic or organic building blocks. The novel properties and arising applications of these MOFs in catalysis, adsorption and separation, delivery, and sensing are highlighted. Overall, this review is expected to provide a timely summary on MOFs based on group 3 and 4 metals, which shall guide the future discovery and development of stable and functional MOFs for practical applications.
Collapse
Affiliation(s)
- Liang Feng
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jia-Luo Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Dong-Ying Du
- National and Local United Engineering Lab for Power Battery, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843-3003, USA
| |
Collapse
|
42
|
Chen H, Fan L, Lv H, Zhang X. Robust Anionic LnIII–Organic Frameworks: Chemical Fixation of CO2, Tunable Light Emission, and Fluorescence Recognition of Fe3+. Inorg Chem 2020; 59:13407-13415. [DOI: 10.1021/acs.inorgchem.0c01782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Hongxiao Lv
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People’s Republic of China
| |
Collapse
|
43
|
Hidalgo-Rosa Y, Treto-Suárez MA, Schott E, Zarate X, Páez-Hernández D. Sensing mechanism elucidation of a europium(III) metal-organic framework selective to aniline: A theoretical insight by means of multiconfigurational calculations. J Comput Chem 2020; 41:1956-1964. [PMID: 32559320 DOI: 10.1002/jcc.26365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 01/20/2023]
Abstract
A theoretical procedure, via quantum chemical computations, to elucidate the detection principle of the turn-off luminescence mechanism of an Eu-based Metal-Organic Framework sensor (Eu-MOF) selective to aniline, is accomplished. The energy transfer channels that take place in the Eu-MOF, as well as understanding the luminescence quenching by aniline, were investigated using the well-known and accurate multiconfigurational ab initio methods along with sTD-DFT. Based on multireference calculations, the sensitization pathway from the ligand (antenna) to the lanthanide was assessed in detail, that is, intersystem crossing (ISC) from the S1 to the T1 state of the ligand, with subsequent energy transfer to the 5 D0 state of Eu3+ . Finally, emission from the 5 D0 state to the 7 FJ state is clearly evidenced. Otherwise, the interaction of Eu-MOF with aniline produces a mixture of the electronic states of both systems, where molecular orbitals on aniline now appear in the active space. Consequently, a stabilization of the T1 state of the antenna is observed, blocking the energy transfer to the 5 D0 state of Eu3+ , leading to a non-emissive deactivation. Finally, in this paper, it was demonstrated that the host-guest interactions, which are not taken frequently into account by previous reports, and the employment of high-level theoretical approaches are imperative to raise new concepts that explain the sensing mechanism associated to chemical sensors.
Collapse
Affiliation(s)
- Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile.,Millennium Nuclei on Catalytic Processes toward Sustainable Chemistry (CSC), Santiago, Chile
| | - Manuel A Treto-Suárez
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile
| | - Eduardo Schott
- Millennium Nuclei on Catalytic Processes toward Sustainable Chemistry (CSC), Santiago, Chile.,Departamento de Química Inorgánica, UC Energy Research Center, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Santiago de Chile, Chile.,Facultad de Ciencias Exactas, Universidad Andres Bello, Center of Applied Nanosciences (CANS), Santiago de Chile, Chile
| |
Collapse
|
44
|
Paolucci V, D'Olimpio G, Kuo CN, Lue CS, Boukhvalov DW, Cantalini C, Politano A. Self-Assembled SnO 2/SnSe 2 Heterostructures: A Suitable Platform for Ultrasensitive NO 2 and H 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34362-34369. [PMID: 32662970 DOI: 10.1021/acsami.0c07901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By means of experiments and theory, the gas-sensing properties of tin diselenide (SnSe2) were elucidated. We discover that, while the stoichiometric single crystal is chemically inert even in air, the nonstoichiometric sample assumes a subnanometric SnO2 surface oxide layer once exposed to ambient atmosphere. The presence of Se vacancies induces the formation of a metastable SeO2-like layer, which is finally transformed into a SnO2 skin. Remarkably, the self-assembled SnO2/SnSe2-x heterostructure is particularly efficient in gas sensing, whereas the stoichiometric SnSe2 sample does not show sensing properties. Congruently with the theoretical model, direct sensing tests carried out on SnO2/SnSe2-x at an operational temperature of 150 °C provided sensitivities of (1.06 ± 0.03) and (0.43 ± 0.02) [ppm]-1 for NO2 and H2, respectively, in dry air. The corresponding calculated limits of detection are (0.36 ± 0.01) and (3.6 ± 0.1) ppm for NO2 and H2, respectively. No detectable changes in gas-sensing performances are observed in a time period extended above six months. Our results pave the way for a novel generation of ambient-stable gas sensor based on self-assembled heterostructures formed taking advantage on the natural interaction of substoichiometric van der Waals semiconductors with air.
Collapse
Affiliation(s)
- Valentina Paolucci
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Gianluca D'Olimpio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Carlo Cantalini
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
- CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
45
|
Henkelis SE, Rademacher D, Vogel DJ, Valdez NR, Rodriguez MA, Rohwer LES, Nenoff TM. Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22845-22852. [PMID: 32337965 DOI: 10.1021/acsami.0c02829] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A novel metal-organic framework (MOF), Mn-DOBDC, has been synthesized in an effort to investigate the role of both the metal center and presence of free linker hydroxyls on the luminescent properties of DOBDC (2,5-dihydroxyterephthalic acid) containing MOFs. Co-MOF-74, RE-DOBDC (RE-Eu and Tb), and Mn-DOBDC have been synthesized and analyzed by powder X-ray diffraction (PXRD) and the fluorescent properties probed by UV-Vis spectroscopy and density functional theory (DFT). Mn-DOBDC has been synthesized by a new method involving a concurrent facile reflux synthesis and slow crystallization, resulting in yellow single crystals in monoclinic space group C2/c. Mn-DOBDC was further analyzed by single-crystal X-ray diffraction (SCXRD), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and photoluminescent emission. Results indicate that the luminescent properties of the DOBDC linker are transferred to the three-dimensional structures of both the RE-DOBDC and Mn-DOBDC, which contain free hydroxyls on the linker. In Co-MOF-74 however, luminescence is quenched in the solid state due to binding of the phenolic hydroxyls within the MOF structure. Mn-DOBDC exhibits a ligand-based tunable emission that can be controlled in solution by the use of different solvents.
Collapse
Affiliation(s)
- Susan E Henkelis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David Rademacher
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Nichole R Valdez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark A Rodriguez
- Materials Characterization and Performance Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Lauren E S Rohwer
- Microsystems Integration Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
46
|
Henkelis SE, Huber DL, Vogel DJ, Rimsza JM, Nenoff TM. Magnetic Tunability in RE-DOBDC MOFs via NO x Acid Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19504-19510. [PMID: 32250585 DOI: 10.1021/acsami.0c01813] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The magnetic susceptibility of NOx-loaded RE-DOBDC (rare earth (RE): Y, Eu, Tb, Yb; DOBDC: 2,5-dihydroxyterephthalic acid) metal-organic frameworks (MOFs) is unique to the MOF metal center. RE-DOBDC samples were synthesized, activated, and subsequently exposed to humid NOx. Each NOx-loaded MOF was characterized by powder X-ray diffraction, and the magnetic characteristics were probed by using a VersaLab vibrating sample magnetometer (VSM). Lanthanide-containing RE-DOBDC (Eu, Tb, Yb) are paramagnetic with a reduction in paramagnetism upon adsorption of NOx. Y-DOBDC has a diamagnetic moment with a slight reduction upon adsorption of NOx. The magnetic susceptibility of the MOF is determined by the magnetism imparted by the framework metal center. The electronic population of orbitals contributes to determining the extent of magnetism and change with NOx (electron acceptor) adsorption. Eu-DOBDC results in the largest mass magnetization change upon adsorption of NOx due to more available unpaired f electrons. Experimental changes in magnetic moment were supported by density functional theory (DFT) simulations of NOx adsorbed in lanthanide Eu-DOBDC and transition metal Y-DOBDC MOFs.
Collapse
Affiliation(s)
- Susan E Henkelis
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dale L Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Dayton J Vogel
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica M Rimsza
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M Nenoff
- Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
47
|
Islamoglu T, Chen Z, Wasson MC, Buru CT, Kirlikovali KO, Afrin U, Mian MR, Farha OK. Metal–Organic Frameworks against Toxic Chemicals. Chem Rev 2020; 120:8130-8160. [DOI: 10.1021/acs.chemrev.9b00828] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra T. Buru
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Vogel DJ, Nenoff TM, Rimsza JM. Tuned Hydrogen Bonding in Rare-Earth Metal-Organic Frameworks for Design of Optical and Electronic Properties: An Exemplar Study of Y-2,5-Dihydroxyterephthalic Acid. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4531-4539. [PMID: 31905286 DOI: 10.1021/acsami.9b20513] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Organic linkers in metal-organic framework (MOF) materials exhibit differences in hydrogen bonding (H-bonding), which can alter the geometric, electronic, and optical properties of the MOF. Density functional theory (DFT) simulations were performed on a photoluminescent Y-2,5-dihydroxyterephthalic acid (DOBDC) MOF with H-bonding concentrations between 0 and 100%; the H-bonds were located on both bidentate- and monodentate-bound DOBDC linkers. At 0% H-bond concentration in the framework, the lattice parameters contracted, the density increased, and simulated X-ray diffraction patterns shifted. Comparison with published experimental data identified that Y-DOBDC MOF structures must have a degree of H-bond concentration. The concentration of H-bonds in the system shifted the calculated band gap energy from 2.25 eV at 100% to 3.00 eV at 0%. The band gap energies also indicate a distinction of H-bonds formed on bidentate-coordinated linkers compared to those on monodentate linkers. Additionally, when the calculated optical spectra are compared with experimental data, the ligand-to-ligand charge-transfer luminescence in Y-DOBDC MOFs is expected to result from an average of 20-40% H-bonding with at least 50% of the bidentate linkers containing H-bonding. Therefore, the type of H-bonding within the DOBDC linker determines the electronic structure and the optical absorption of the MOF framework structure. Tuning of the H-bonding in rare-earth MOFs provides an opportunity to control the specific optical and adsorption properties of the MOF framework on the basis of reactions between the linker and the environment.
Collapse
|
49
|
Liu T, Yan B. A Stable Broad-Range Fluorescent pH Sensor Based on Eu3+ Post-Synthetic Modification of a Metal–Organic Framework. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tianyu Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|