1
|
Reimers A, Rank J, Greve E, Möller M, Kaps S, Bahr J, Adelung R, Schütt F. Graphene-Based Thermopneumatic Generator for On-Board Pressure Supply of Soft Robots. Soft Robot 2025; 12:124-134. [PMID: 39330933 DOI: 10.1089/soro.2023.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Various fields, including medical and human interaction robots, gain advantages from the development of bioinspired soft actuators. Many recently developed grippers are pneumatics that require external pressure supply systems, thereby limiting the autonomy of these robots. This necessitates the development of scalable and efficient on-board pressure generation systems. While conventional air compression systems are hard to miniaturize, thermopneumatic systems that joule heat a transducer material to generate pressure present a promising alternative. However, the transducer materials of previously reported thermopneumatic systems demonstrate high heat capacities and limited surface area resulting in long response times and low operation frequencies. This study presents a thermopneumatic pressure generator using aerographene, a highly porous (>99.99%) network of interconnected graphene microtubes, as lightweight and low heat capacity transducer material. An aerographene pressurizer module (AGPM) can pressurize a reservoir of 4.2 cm3 to ∼14 kPa in 50 ms. Periodic operation of the AGPM for 10 s at 0.66 Hz can further increase the pressure in the reservoir to ∼36 kPa. It is demonstrated that multiple AGPMs can be operated parallelly or in series for improved performance. For example, three parallelly operated AGPMs can generate pressure pulses of ∼21.5 kPa. Connecting AGPMs in series increase the maximum pressure achievable by the system. It is shown that three AGPMs working in series can pressurize the reservoir to ∼200 kPa in about 2.5 min. The AGPM's minimalistic design can be easily adapted to circuit boards, making the concept a promising fit for the on-board pressure supply of soft robots.
Collapse
Affiliation(s)
- Armin Reimers
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Jannik Rank
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Erik Greve
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Morten Möller
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Sören Kaps
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Jörg Bahr
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Ratnaparkhi MP, Salvankar SS, Tekade AR, Kulkarni GM. Core-Shell Nanoparticles for Pulmonary Drug Delivery. Pharm Nanotechnol 2025; 13:90-116. [PMID: 38265371 DOI: 10.2174/0122117385277725231120043600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 01/25/2024]
Abstract
Nanoscale drug delivery systems have provoked interest for application in various therapies on account of their ability to elevate the intracellular concentration of drugs inside target cells, which leads to an increase in efficacy, a decrease in dose, and dose-associated adverse effects. There are several types of nanoparticles available; however, core-shell nanoparticles outperform bare nanoparticles in terms of their reduced cytotoxicity, high dispersibility and biocompatibility, and improved conjugation with drugs and biomolecules because of better surface characteristics. These nanoparticulate drug delivery systems are used for targeting a number of organs, such as the colon, brain, lung, etc. Pulmonary administration of medicines is a more appealing method as it is a noninvasive route for systemic and locally acting drugs as the pulmonary region has a wide surface area, delicate blood-alveolar barrier, and significant vascularization. A core-shell nano-particulate drug delivery system is more effective in the treatment of various pulmonary disorders. Thus, this review has discussed the potential of several types of core-shell nanoparticles in treating various diseases and synthesis methods of core-shell nanoparticles. The methods for synthesis of core-shell nanoparticles include solid phase reaction, liquid phase reaction, gas phase reaction, mechanical mixing, microwave- assisted synthesis, sono-synthesis, and non-thermal plasma technology. The basic types of core-shell nanoparticles are metallic, magnetic, polymeric, silica, upconversion, and carbon nanomaterial- based core-shell nanoparticles. With this special platform, it is possible to integrate the benefits of both core and shell materials, such as strong serum stability, effective drug loading, adjustable particle size, and immunocompatibility.
Collapse
Affiliation(s)
- Mukesh P Ratnaparkhi
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Shailendra S Salvankar
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Avinash R Tekade
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| | - Gajanan M Kulkarni
- Department of Pharmaceutics, Marathwada Mitra Mandal's College of Pharmacy, Thergaon, Pune, Maharashtra, 411033, India
| |
Collapse
|
3
|
Liu N, Saure LM, Sriramdas R, Schütt F, Wang K, Nozariasbmarz A, Zhang Y, Adelung R, Baughman RH, Priya S, Li W, Poudel B. Underwater Thermoacoustic Generation by a Hierarchical Tetrapodal Carbon Nanotube Network. ACS NANO 2024; 18:8988-8995. [PMID: 38478913 DOI: 10.1021/acsnano.3c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Solid-state fabricated carbon nanotube (CNT) sheets have shown promise as thermoacoustic (TA) sound generators, emitting tunable sound waves across a broad frequency spectrum (1-105 Hz) due to their ultralow specific heat capacity. However, their applications as underwater TA sound generators are limited by the reduced mechanical strength of CNT sheets in aqueous environments. In this study, we present a mechanically robust underwater TA device constructed from a three-dimensional (3D) tetrapodal assembly of carbon nanotubes (t-CNTs). These structures feature a high porosity (>99.9%) and a double-hollowed network of well-interconnected CNTs. We systematically explore the impact of different dimensions of t-CNTs and various annealing procedures on sound generation performance. Furnace-annealed t-CNTs, in contrast to directly resistive Joule heating annealing, provide superior, continuous, and homogeneous hydrophobicity across the surface of bulk t-CNTs. As a result, the t-CNTs-based underwater TA device demonstrates stable, smooth, and broad-spectrum sound generation within the frequency range of 1 × 102 to 1 × 104 Hz, along with a weak resonance response. Furthermore, these devices exhibit enhanced and more stable sound generation performance at nonresonance frequencies compared to regular CNT-based devices. This study contributes to advancing the development of underwater TA devices with characteristics such as being nonresonant, high-performing, flexible, elastically compressible, and reliable, enabling operation across a broad frequency range.
Collapse
Affiliation(s)
- Na Liu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lena Marie Saure
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstrasse 2, 24143 Kiel, Germany
| | - Rammohan Sriramdas
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Coimbatore Campus, Coimbatore 641112, India
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstrasse 2, 24143 Kiel, Germany
| | - Kai Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amin Nozariasbmarz
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu Zhang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstrasse 2, 24143 Kiel, Germany
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75083, United States
| | - Shashank Priya
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wenjie Li
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bed Poudel
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Saure LM, Kohlmann N, Qiu H, Shetty S, Shaygan Nia A, Ravishankar N, Feng X, Szameit A, Kienle L, Adelung R, Schütt F. Hybrid Aeromaterials for Enhanced and Rapid Volumetric Photothermal Response. ACS NANO 2023; 17:22444-22455. [PMID: 37963588 PMCID: PMC10690840 DOI: 10.1021/acsnano.3c05329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023]
Abstract
Conversion of light into heat is essential for a broad range of technologies such as solar thermal heating, catalysis and desalination. Three-dimensional (3D) carbon nanomaterial-based aerogels have been shown to hold great promise as photothermal transducer materials. However, until now, their light-to-heat conversion is limited by near-surface absorption, resulting in a strong heat localization only at the illuminated surface region, while most of the aerogel volume remains unused. We present a fabrication concept for highly porous (>99.9%) photothermal hybrid aeromaterials, which enable an ultrarapid and volumetric photothermal response with an enhancement by a factor of around 2.5 compared to the pristine variant. The hybrid aeromaterial is based on strongly light-scattering framework structures composed of interconnected hollow silicon dioxide (SiO2) microtubes, which are functionalized with extremely low amounts (in order of a few μg cm-3) of reduced graphene oxide (rGO) nanosheets, acting as photothermal agents. Tailoring the density of rGO within the framework structure enables us to control both light scattering and light absorption and thus the volumetric photothermal response. We further show that by rapid and repeatable gas activation, these transducer materials expand the field of photothermal applications, like untethered light-powered and light-controlled microfluidic pumps and soft pneumatic actuators.
Collapse
Affiliation(s)
- Lena M. Saure
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Niklas Kohlmann
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Haoyi Qiu
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
| | - Shwetha Shetty
- Materials
Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Ali Shaygan Nia
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Dresden University of Technology, 01062 Dresden, Germany
| | - Narayanan Ravishankar
- Materials
Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Dresden University of Technology, 01062 Dresden, Germany
| | - Alexander Szameit
- Department for Physics and Department of Life,
Light & Matter, University of Rostock, 18059 Rostock, Germany
| | - Lorenz Kienle
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Rainer Adelung
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials and Synthesis and Real Structure, Department
for
Materials Science, Kiel University, Kaiser Str. 2, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz
4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Guo J, Cao G, Wei S, Han Y, Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon 2023; 9:e21872. [PMID: 38034743 PMCID: PMC10682167 DOI: 10.1016/j.heliyon.2023.e21872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/13/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
As bone and joint injuries from various causes become increasingly prominent, how to effectively reconstruct and repair bone defects presents a difficult problem for clinicians and researchers. In recent years, graphene and its derivatives have been the subject of growing body of research and have been found to promote the proliferation and osteogenic differentiation of stem cells. This provides a new idea for solving the clinical problem of bone defects. However, as as numerous articles address various aspects and have not been fully systematized, there is an urgent need to classify and summarize them. In this paper, for the first time, the effects of graphene and its derivatives on stem cells in solution, in 2D and 3D structures and in vivo and their possible mechanisms are reviewed, and the cytotoxic effects of graphene and its derivatives were summarized and analyzed. The toxicity of graphene and its derivatives is further reviewed. In addition, we suggest possible future development directions of graphene and its derivatives in bone tissue engineering applications to provide a reference for further clinical application.
Collapse
Affiliation(s)
- Jianbin Guo
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Guihua Cao
- Department of Geriatrics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Song Wei
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Peng Xu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Hauck M, Saure LM, Zeller-Plumhoff B, Kaps S, Hammel J, Mohr C, Rieck L, Nia AS, Feng X, Pugno NM, Adelung R, Schütt F. Overcoming Water Diffusion Limitations in Hydrogels via Microtubular Graphene Networks for Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302816. [PMID: 37369361 DOI: 10.1002/adma.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.
Collapse
Affiliation(s)
- Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| | - Sören Kaps
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Jörg Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Caprice Mohr
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Lena Rieck
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Ali Shaygan Nia
- Department of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento, I-38123, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
7
|
Liu S, Su J, Xie X, Huang R, Li H, Luo R, Li J, Liu X, He J, Huang Y, Wu P. Detection of methyltransferase activity and inhibitor screening based on rGO-mediated silver enhancement signal amplification strategy. Anal Biochem 2023:115207. [PMID: 37290576 DOI: 10.1016/j.ab.2023.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
DNA methylation refers to the chemical modification process of obtaining a methyl group by the covalent bonding of a specific base in DNA sequence with S-adenosyl methionine (SAM) as a methyl donor under the catalysis of methyltransferase (MTase), which is related to the occurrence of multiple diseases. Therefore, the detection of MTase activity is of great significance for disease diagnosis and drug screening. Because reduced graphene oxide (rGO) has a unique planar structure and remarkable catalytic performance, it is not clear whether rGO can rapidly catalyze silver deposition as an effective way of signal amplification. However, in this study, we were pleasantly surprised to find that using H2O2 as a reducing agent, rGO can rapidly catalyze silver deposition, and its catalytic efficiency of silver deposition is significantly better than that of GO. Therefore, based on further verifying the mechanism of catalytic properties of rGO, we constructed a novel electrochemical biosensor (rGO/silver biosensor) for the detection of dam MTase activity, which has high selectivity and sensitivity to MTase in the range of 0.1 U/mL to 10.0 U/mL, and the detection limit is as low as 0.07 U/mL. Besides, this study also used Gentamicin and 5-Fluorouracil as inhibitor models, confirming that the biosensor has a good application prospect in the high-throughput screening of dam MTase inhibitors.
Collapse
Affiliation(s)
- Shuyan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Su
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China; College of Chemistry & Chemical Engineering, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xixiang Xie
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Rongping Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiping Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ruiyu Luo
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jinghua Li
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jian He
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
Alshammari BH, Lashin MMA, Mahmood MA, Al-Mubaddel FS, Ilyas N, Rahman N, Sohail M, Khan A, Abdullaev SS, Khan R. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv 2023; 13:13735-13785. [PMID: 37152571 PMCID: PMC10162010 DOI: 10.1039/d3ra01421e] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 05/09/2023] Open
Abstract
Nanomaterials and nanoparticles are a burgeoning field of research and a rapidly expanding technology sector in a wide variety of application domains. Nanomaterials have made exponential progress due to their numerous uses in a variety of fields, particularly the advancement of engineering technology. Nanoparticles are divided into various groups based on the size, shape, and structural morphology of their bodies. The 21st century's defining feature of nanoparticles is their application in the design and production of semiconductor devices made of metals, metal oxides, carbon allotropes, and chalcogenides. For the researchers, these materials then opened a new door to a variety of applications, including energy storage, catalysis, and biosensors, as well as devices for conversion and medicinal uses. For chemical and thermal applications, ZnO is one of the most stable n-type semiconducting materials available. It is utilised in a wide range of products, from luminous materials to batteries, supercapacitors, solar cells to biomedical photocatalysis sensors, and it may be found in a number of forms, including pellets, nanoparticles, bulk crystals, and thin films. The distinctive physiochemical characteristics of semiconducting metal oxides are particularly responsible for this. ZnO nanostructures differ depending on the synthesis conditions, growth method, growth process, and substrate type. A number of distinct growth strategies for ZnO nanostructures, including chemical, physical, and biological methods, have been recorded. These nanostructures may be synthesized very simply at very low temperatures. This review focuses on and summarizes recent achievements in fabricating semiconductor devices based on nanostructured materials as 2D materials as well as rapidly developing hybrid structures. Apart from this, challenges and promising prospects in this research field are also discussed.
Collapse
Affiliation(s)
- Basmah H Alshammari
- Department of Chemistry, College of Science, University of Hail Hail 81451 Saudi Arabia
| | - Maha M A Lashin
- Department of Electrical Engineering, College of Engineering, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | | | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
- King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC) Riyadh 11451 Saudi Arabia
| | - Nasir Ilyas
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technologyof China Chengdu 611731 P.R. China
| | - Nasir Rahman
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Mohammad Sohail
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
| | - Aurangzeb Khan
- Department of Physics, Abdul Wali Khan University Mardan 23200 KP Pakistan
| | - Sherzod Shukhratovich Abdullaev
- Researcher, Faculty of Chemical Engineering, New Uzbekistan University Tashkent Uzbekistan
- Researcher of Scientific Department, Tashkent State Pedagogical University Named After Nizami Tashkent Uzbekistan
| | - Rajwali Khan
- Department of Physics, University of Lakki Marwat Lakki Marwat 28420 KP Pakistan
- School of Physics and Optoelectronic Engineering, Shenzhen University Nanshan 518000 Shenzhen Guangdong China
| |
Collapse
|
9
|
Wolff N, Braniste T, Krüger H, Mangelsen S, Islam MR, Schürmann U, Saure LM, Schütt F, Hansen S, Terraschke H, Adelung R, Tiginyanu I, Kienle L. Synthesis and Nanostructure Investigation of Hybrid β-Ga 2 O 3 /ZnGa 2 O 4 Nanocomposite Networks with Narrow-Band Green Luminescence and High Initial Electrochemical Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207492. [PMID: 36782364 DOI: 10.1002/smll.202207492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Indexed: 05/04/2023]
Abstract
The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid β-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of β-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-β-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.
Collapse
Affiliation(s)
- Niklas Wolff
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Tudor Braniste
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
| | - Helge Krüger
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sebastian Mangelsen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Md Redwanul Islam
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ulrich Schürmann
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Fabian Schütt
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Sandra Hansen
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Huayna Terraschke
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Solid State Chemistry and Catalysis, Department of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, D-24118, Kiel, Germany
| | - Rainer Adelung
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
- Functional Nanomaterials, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Ion Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, Stefan cel Mare 168, Chisinau, MD-2004, Moldova
- Academy of Sciences of Moldova, Stefan cel Mare av. 1, Chisinau, MD-2001, Moldova
| | - Lorenz Kienle
- Synthesis and Real Structure, Department of Material Science, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| |
Collapse
|
10
|
Kizhepat S, Rasal AS, Chang JY, Wu HF. Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091520. [PMID: 37177065 PMCID: PMC10180329 DOI: 10.3390/nano13091520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
New possibilities for the development of biosensors that are ready to be implemented in the field have emerged thanks to the recent progress of functional nanomaterials and the careful engineering of nanostructures. Two-dimensional (2D) nanomaterials have exceptional physical, chemical, highly anisotropic, chemically active, and mechanical capabilities due to their ultra-thin structures. The diversity of the high surface area, layered topologies, and porosity found in 2D nanomaterials makes them amenable to being engineered with surface characteristics that make it possible for targeted identification. By integrating the distinctive features of several varieties of nanostructures and employing them as scaffolds for bimolecular assemblies, biosensing platforms with improved reliability, selectivity, and sensitivity for the identification of a plethora of analytes can be developed. In this review, we compile a number of approaches to using 2D nanomaterials for biomolecule detection. Subsequently, we summarize the advantages and disadvantages of using 2D nanomaterials in biosensing. Finally, both the opportunities and the challenges that exist within this potentially fruitful subject are discussed. This review will assist readers in understanding the synthesis of 2D nanomaterials, their alteration by enzymes and composite materials, and the implementation of 2D material-based biosensors for efficient bioanalysis and disease diagnosis.
Collapse
Affiliation(s)
- Shamsa Kizhepat
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
11
|
Li J, Reimers A, Dang KM, Brunk MGK, Drewes J, Hirsch UM, Willems C, Schmelzer CEH, Groth T, Nia AS, Feng X, Adelung R, Sacher WD, Schütt F, Poon JKS. 3D printed neural tissues with in situ optical dopamine sensors. Biosens Bioelectron 2023; 222:114942. [PMID: 36493722 DOI: 10.1016/j.bios.2022.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Armin Reimers
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Jonas Drewes
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ulrike M Hirsch
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada.
| |
Collapse
|
12
|
Graphene Oxide Framework Structures and Coatings: Impact on Cell Adhesion and Pre-Vascularization Processes for Bone Grafts. Int J Mol Sci 2022; 23:ijms23063379. [PMID: 35328815 PMCID: PMC8955516 DOI: 10.3390/ijms23063379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.
Collapse
|
13
|
Chen H, Wang R, Meng W, Chen F, Li T, Wang D, Wei C, Lu H, Yang W. Three-Dimensional Superhydrophobic Hollow Hemispherical MXene for Efficient Water-in-Oil Emulsions Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2866. [PMID: 34835630 PMCID: PMC8619993 DOI: 10.3390/nano11112866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
A superhydrophobic macroporous material composed of hollow hemispherical MXene (HSMX) was synthesized by the thermal annealing of MXene-wrapped cationic polystyrene spheres (CPS@MXene). Notably, the spherical MXene shells exhibited highly efficient catalysis of the carbonization of CPS into carbon nanoparticles. Their insertion into the interlayer of MXene increased the d-spacing and created hollow hemispheres. The as-prepared HSMX with nanoscale walls had a lower packing density than MXene, but higher porosity, total pore volume, and total pore area. Moreover, the stacking of hollow hemispheres promoted the formation of a highly undulating macroporous surface and significantly improved the surface roughness of the HSMX-based 3D membrane, resulting in superhydrophobicity with a water contact angle of 156.4° and a rolling angle of 6°. As a result, the membrane exhibited good separation efficiency and Flux for emulsifier-stabilized water-in-paraffin liquid emulsions, which was dependent on its superhydrophobic performance and strong demulsification ability derived from the razor effect originating from the ultrathin walls of HSMX. This work provides a facile approach for the transformation of highly hydrophilic 2D MXene into superhydrophobic 3D HSMX, and opens a new pathway for the development of advanced MXene-based materials for environmental remediation applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongdian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (R.W.); (W.M.); (F.C.); (T.L.); (D.W.); (C.W.)
| | - Wei Yang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China; (H.C.); (R.W.); (W.M.); (F.C.); (T.L.); (D.W.); (C.W.)
| |
Collapse
|
14
|
Hindenlang B, Gapeeva A, Baum MJ, Kaps S, Saure LM, Rasch F, Hammel J, Moosmann J, Storm M, Adelung R, Schütt F, Zeller-Plumhoff B. Evaporation kinetics in highly porous tetrapodal zinc oxide networks studied using in situ SRµCT. Sci Rep 2021; 11:20272. [PMID: 34642393 PMCID: PMC8511110 DOI: 10.1038/s41598-021-99624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022] Open
Abstract
Tetrapodal zinc oxide (t-ZnO) is used to fabricate polymer composites for many different applications ranging from biomedicine to electronics. In recent times, macroscopic framework structures from t-ZnO have been used as a versatile sacrificial template for the synthesis of multi-scaled foam structures from different nanomaterials such as graphene, hexagonal boron nitride or gallium nitride. Many of these fabrication methods rely on wet-chemical coating processes using nanomaterial dispersions, leading to a strong interest in the actual coating mechanism and factors influencing it. Depending on the type of medium (e.g. solvent) used, different results regarding the homogeneity of the nanomaterial coating can be achieved. In order to understand how a medium influences the coating behavior, the evaporation process of water and ethanol is investigated in this work using in situ synchrotron radiation-based micro computed tomography (SRµCT). By employing propagation-based phase contrast imaging, both the t-ZnO network and the medium can be visualized. Thus, the evaporation process can be monitored non-destructively in three dimensions. This investigation showed that using a polar medium such as water leads to uniform evaporation and, by that, a homogeneous coating of the entire network.
Collapse
Affiliation(s)
- Birte Hindenlang
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
| | - Anna Gapeeva
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Martina J Baum
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Sören Kaps
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Florian Rasch
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Jörg Hammel
- Institute of Materials Physics, Helmholtz Zentrum Hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physics, Helmholtz Zentrum Hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany
| | - Malte Storm
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143, Kiel, Germany.
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon GmbH, Max-Planck-Straße 1, 21502, Geesthacht, Germany.
| |
Collapse
|
15
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
16
|
Arndt C, Hauck M, Wacker I, Zeller-Plumhoff B, Rasch F, Taale M, Nia AS, Feng X, Adelung R, Schröder RR, Schütt F, Selhuber-Unkel C. Microengineered Hollow Graphene Tube Systems Generate Conductive Hydrogels with Extremely Low Filler Concentration. NANO LETTERS 2021; 21:3690-3697. [PMID: 33724848 PMCID: PMC8155331 DOI: 10.1021/acs.nanolett.0c04375] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/11/2021] [Indexed: 05/05/2023]
Abstract
The fabrication of electrically conductive hydrogels is challenging as the introduction of an electrically conductive filler often changes mechanical hydrogel matrix properties. Here, we present an approach for the preparation of hydrogel composites with outstanding electrical conductivity at extremely low filler loadings (0.34 S m-1, 0.16 vol %). Exfoliated graphene and polyacrylamide are microengineered to 3D composites such that conductive graphene pathways pervade the hydrogel matrix similar to an artificial nervous system. This makes it possible to combine both the exceptional conductivity of exfoliated graphene and the adaptable mechanical properties of polyacrylamide. The demonstrated approach is highly versatile regarding porosity, filler material, as well as hydrogel system. The important difference to other approaches is that we keep the original properties of the matrix, while ensuring conductivity through graphene-coated microchannels. This novel approach of generating conductive hydrogels is very promising, with particular applications in the fields of bioelectronics and biohybrid robotics.
Collapse
Affiliation(s)
- Christine Arndt
- Biocompatible
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Margarethe Hauck
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Irene Wacker
- Cryo
Electron Microscopy, Centre for Advanced Materials (CAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Berit Zeller-Plumhoff
- Institute
of Metallic Biomaterials, Helmholtz-Zentrum
Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Florian Rasch
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Mohammadreza Taale
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Ali Shaygan Nia
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Department
of Chemistry and Food Chemistry, Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, 01062 Dresden, Germany
| | - Rainer Adelung
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Rasmus R. Schröder
- Cryo
Electron Microscopy, Centre for Advanced Materials (CAM), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Fabian Schütt
- Functional
Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F. Graphene-Based Scaffolds for Regenerative Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:404. [PMID: 33562559 PMCID: PMC7914745 DOI: 10.3390/nano11020404] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Leading-edge regenerative medicine can take advantage of improved knowledge of key roles played, both in stem cell fate determination and in cell growth/differentiation, by mechano-transduction and other physicochemical stimuli from the tissue environment. This prompted advanced nanomaterials research to provide tissue engineers with next-generation scaffolds consisting of smart nanocomposites and/or hydrogels with nanofillers, where balanced combinations of specific matrices and nanomaterials can mediate and finely tune such stimuli and cues. In this review, we focus on graphene-based nanomaterials as, in addition to modulating nanotopography, elastic modulus and viscoelastic features of the scaffold, they can also regulate its conductivity. This feature is crucial to the determination and differentiation of some cell lineages and is of special interest to neural regenerative medicine. Hereafter we depict relevant properties of such nanofillers, illustrate how problems related to their eventual cytotoxicity are solved via enhanced synthesis, purification and derivatization protocols, and finally provide examples of successful applications in regenerative medicine on a number of tissues.
Collapse
Affiliation(s)
- Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| | - Samuel Pressi
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Giorgia Scapin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miriam Mba
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua & INSTM, 35131 Padua, Italy; (S.P.); (A.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (P.B.); (M.G.)
| |
Collapse
|
18
|
Schmitt C, Rasch F, Cossais F, Held-Feindt J, Lucius R, Vázquez AR, Nia AS, Lohe MR, Feng X, Mishra YK, Adelung R, Schütt F, Hattermann K. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomed Mater 2020; 16:015008. [DOI: 10.1088/1748-605x/aba796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Kumar R, Mondal K, Panda PK, Kaushik A, Abolhassani R, Ahuja R, Rubahn HG, Mishra YK. Core-shell nanostructures: perspectives towards drug delivery applications. J Mater Chem B 2020; 8:8992-9027. [PMID: 32902559 DOI: 10.1039/d0tb01559h] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanosystems have shown encouraging outcomes and substantial progress in the areas of drug delivery and biomedical applications. However, the controlled and targeted delivery of drugs or genes can be limited due to their physicochemical and functional properties. In this regard, core-shell type nanoparticles are promising nanocarrier systems for controlled and targeted drug delivery applications. These functional nanoparticles are emerging as a particular class of nanosystems because of their unique advantages, including high surface area, and easy surface modification and functionalization. Such unique advantages can facilitate the use of core-shell nanoparticles for the selective mingling of two or more different functional properties in a single nanosystem to achieve the desired physicochemical properties that are essential for effective targeted drug delivery. Several types of core-shell nanoparticles, such as metallic, magnetic, silica-based, upconversion, and carbon-based core-shell nanoparticles, have been designed and developed for drug delivery applications. Keeping the scope, demand, and challenges in view, the present review explores state-of-the-art developments and advances in core-shell nanoparticle systems, the desired structure-property relationships, newly generated properties, the effects of parameter control, surface modification, and functionalization, and, last but not least, their promising applications in the fields of drug delivery, biomedical applications, and tissue engineering. This review also supports significant future research for developing multi-core and shell-based functional nanosystems to investigate nano-therapies that are needed for advanced, precise, and personalized healthcare systems.
Collapse
Affiliation(s)
- Raj Kumar
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan-52900, Israel.
| | - Kunal Mondal
- Materials Science and Engineering Department, Idaho National Laboratory, Idaho Falls, ID 83415, USA.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL-33805, USA
| | - Reza Abolhassani
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120, Uppsala, Sweden and Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), SE-10044 Stockholm, Sweden
| | - Horst-Günter Rubahn
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, DK-6400, Sønderborg, Denmark.
| |
Collapse
|
20
|
Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels. Polymers (Basel) 2019; 11:polym11111883. [PMID: 31739563 PMCID: PMC6918190 DOI: 10.3390/polym11111883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Flexible wearable pressure sensors have received extensive attention in recent years because of the promising application potentials in health management, humanoid robots, and human machine interfaces. Among the many sensory performances, the high sensitivity is an essential requirement for the practical use of flexible sensors. Therefore, numerous research studies are devoted to improving the sensitivity of the flexible pressure sensors. The fiber assemblies are recognized as an ideal substrate for a highly sensitive piezoresistive sensor because its three-dimensional porous structure can be easily compressed and can provide high interconnection possibilities of the conductive component. Moreover, it is expected to achieve high sensitivity by raising the porosity of the fiber assemblies. In this paper, the three-dimensional reduced graphene oxide/polyolefin elastomer (RGO/POE) nanofiber composite aerogels were prepared by chemical reducing the graphene oxide (GO)/POE nanofiber composite aerogels, which were obtained by freeze drying the mixture of the GO aqueous solution and the POE nanofiber suspension. It was found that the volumetric shrinkage of thermoplastic POE nanofibers during the reduction process enhanced the compression mechanical strength of the composite aerogel, while decreasing its sensitivity. Therefore, the composite aerogels with varying POE nanofiber usage were prepared to balance the sensitivity and working pressure range. The results indicated that the composite aerogel with POE nanofiber/RGO proportion of 3:3 was the optimal sample, which exhibits high sensitivity (ca. 223 kPa−1) and working pressure ranging from 0 to 17.7 kPa. In addition, the composite aerogel showed strong stability when it is either compressed with different frequencies or reversibly compressed and released 5000 times.
Collapse
|