1
|
Xue J, Liu D, Li D, Hong T, Li C, Zhu Z, Sun Y, Gao X, Guo L, Shen X, Ma P, Zheng Q. New Carbon Materials for Multifunctional Soft Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312596. [PMID: 38490737 DOI: 10.1002/adma.202312596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Indexed: 03/17/2024]
Abstract
Soft electronics are garnering significant attention due to their wide-ranging applications in artificial skin, health monitoring, human-machine interaction, artificial intelligence, and the Internet of Things. Various soft physical sensors such as mechanical sensors, temperature sensors, and humidity sensors are the fundamental building blocks for soft electronics. While the fast growth and widespread utilization of electronic devices have elevated life quality, the consequential electromagnetic interference (EMI) and radiation pose potential threats to device precision and human health. Another substantial concern pertains to overheating issues that occur during prolonged operation. Therefore, the design of multifunctional soft electronics exhibiting excellent capabilities in sensing, EMI shielding, and thermal management is of paramount importance. Because of the prominent advantages in chemical stability, electrical and thermal conductivity, and easy functionalization, new carbon materials including carbon nanotubes, graphene and its derivatives, graphdiyne, and sustainable natural-biomass-derived carbon are particularly promising candidates for multifunctional soft electronics. This review summarizes the latest advancements in multifunctional soft electronics based on new carbon materials across a range of performance aspects, mainly focusing on the structure or composite design, and fabrication method on the physical signals monitoring, EMI shielding, and thermal management. Furthermore, the device integration strategies and corresponding intriguing applications are highlighted. Finally, this review presents prospects aimed at overcoming current barriers and advancing the development of state-of-the-art multifunctional soft electronics.
Collapse
Affiliation(s)
- Jie Xue
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Dan Liu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Da Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Tianzeng Hong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Chuanbing Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zifu Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xiaobo Gao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Lei Guo
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Xi Shen
- Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
- The Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Pengcheng Ma
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
2
|
Xu C, Chen J, Zhu Z, Liu M, Lan R, Chen X, Tang W, Zhang Y, Li H. Flexible Pressure Sensors in Human-Machine Interface Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306655. [PMID: 38009791 DOI: 10.1002/smll.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.
Collapse
Affiliation(s)
- Chengsheng Xu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhengfang Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Moran Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ronghua Lan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaohong Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
3
|
Xu S, Xu Z, Li D, Cui T, Li X, Yang Y, Liu H, Ren T. Recent Advances in Flexible Piezoresistive Arrays: Materials, Design, and Applications. Polymers (Basel) 2023; 15:2699. [PMID: 37376345 DOI: 10.3390/polym15122699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Spatial distribution perception has become an important trend for flexible pressure sensors, which endows wearable health devices, bionic robots, and human-machine interactive interfaces (HMI) with more precise tactile perception capabilities. Flexible pressure sensor arrays can monitor and extract abundant health information to assist in medical detection and diagnosis. Bionic robots and HMI with higher tactile perception abilities will maximize the freedom of human hands. Flexible arrays based on piezoresistive mechanisms have been extensively researched due to the high performance of pressure-sensing properties and simple readout principles. This review summarizes multiple considerations in the design of flexible piezoresistive arrays and recent advances in their development. First, frequently used piezoresistive materials and microstructures are introduced in which various strategies to improve sensor performance are presented. Second, pressure sensor arrays with spatial distribution perception capability are discussed emphatically. Crosstalk is a particular concern for sensor arrays, where mechanical and electrical sources of crosstalk issues and the corresponding solutions are highlighted. Third, several processing methods are also introduced, classified as printing, field-assisted and laser-assisted fabrication. Next, the representative application works of flexible piezoresistive arrays are provided, including human-interactive systems, healthcare devices, and some other scenarios. Finally, outlooks on the development of piezoresistive arrays are given.
Collapse
Affiliation(s)
- Shuoyan Xu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Zigan Xu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Ding Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianrui Cui
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Xin Li
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Yi Yang
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Houfang Liu
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
| | - Tianling Ren
- School of Integrated Circuit, Tsinghua University, Beijing 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Malik MS, Zulfiqar MH, Khan MA, Mehmood MQ, Massoud Y. Facile Pressure-Sensitive Capacitive Touch Keypad for a Green Intelligent Human-Machine Interface. SENSORS (BASEL, SWITZERLAND) 2022; 22:8113. [PMID: 36365810 PMCID: PMC9655723 DOI: 10.3390/s22218113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
There is a great demand for human-machine interfaces (HMIs) in emerging electronics applications. However, commercially available plastic-based HMIs are primarily rigid, application-specific, and hard to recycle and dispose of due to their non-biodegradability. This results in electronic and plastic waste, potentially damaging the environment by ending up in landfills and water resources. This work presents a green, capacitive pressure-sensitive (CPS), touch sensor-based keypad as a disposable, wireless, and intelligent HMI to mitigate these problems. The CPS touch keypads were fabricated through a facile green fabrication process by direct writing of graphite-on-paper, using readily available materials such as paper and pencils, etc. The interdigitated capacitive (IDC) touch sensors were optimized by analyzing the number of electrode fingers, dimensions, and spacing between the electrode fingers. The CPS touch keypad was customized to wirelessly control a robotic arm's movements based on the touch input. A low-pressure touch allows slow-speed robotic arm movement for precision movements, and a high-pressure touch allows high-speed robotic arm movement to cover the large movements quickly. The green CPS touch keypad, as a disposable wireless HMI, has the potential to enforce a circular economy by mitigating electronic and plastic waste, which supports the vision of a sustainable and green world.
Collapse
Affiliation(s)
- Muhammad Shumail Malik
- Department of Biomedical Engineering, Narowal Campus, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Muhammad Hamza Zulfiqar
- Department of Biomedical Engineering, Narowal Campus, University of Engineering and Technology, Lahore 54890, Pakistan
| | - Muhammad Atif Khan
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Muhammad Qasim Mehmood
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
5
|
Yu H, Guo C, Ye X, Pan Y, Tu J, Wu Z, Chen Z, Liu X, Huang J, Ren Q, Li Y. Wide-Range Flexible Capacitive Pressure Sensors Based on Dielectrics with Various Porosity. MICROMACHINES 2022; 13:mi13101588. [PMID: 36295942 PMCID: PMC9611044 DOI: 10.3390/mi13101588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Wide-range flexible pressure sensors are in difficulty in research while in demand in application. In this paper, a wide-range capacitive flexible pressure sensor is developed with the foaming agent ammonium bicarbonate (NH4HCO3). By controlling the concentration of NH4HCO3 doped in the polydimethylsiloxane (PDMS) and repeating the curing process, pressure-sensitive dielectrics with various porosity are fabricated to expand the detection range of the capacitive pressure sensor. The shape and the size of each dielectric is defined by the 3D printed mold. To improve the dielectric property of the dielectric, a 1% weight ratio of multi-walled carbon nanotubes (MWCNTs) are doped into PDMS liquid. Besides that, a 5% weight ratio of MWCNTs is dispersed into deionized water and then coated on the electrodes to improve the contact state between copper electrodes and the dielectric. The laminated dielectric layer and two electrodes are assembled and tested. In order to verify the effectiveness of this design, some reference devices are prepared, such as sensors based on the dielectric with uniform porosity and a sensor with common copper electrodes. According to the testing results of these sensors, it can be seen that the sensor based on the dielectric with various porosity has higher sensitivity and a wider pressure detection range, which can detect the pressure range from 0 kPa to 1200 kPa and is extended to 300 kPa compared with the dielectric with uniform porosity. Finally, the sensor is applied to the fingerprint, finger joint, and knee bending test. The results show that the sensor has the potential to be applied to human motion detection.
Collapse
Affiliation(s)
- Huiyang Yu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Chengxi Guo
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xin Ye
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Yifei Pan
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Jiacheng Tu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Zhe Wu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Zefang Chen
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Xueyang Liu
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| | - Jianqiu Huang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Qingying Ren
- College of Electronic and Optical Engineering & College of Flexible Electronic (Future Technology), Nanjing University of Posts and Telecommunication; Nanjing 210023, China
| | - Yifeng Li
- College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Bae K, Kim M, Kang Y, Sim S, Kim W, Pyo S, Kim J. Dual-Scale Porous Composite for Tactile Sensor with High Sensitivity over an Ultrawide Sensing Range. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203193. [PMID: 35971192 DOI: 10.1002/smll.202203193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Porous structures have been utilized in tactile sensors to improve sensitivity owing to their excellent deformability. Recently, tactile sensors using porous structures have been used in practical applications, such as bio-signal monitoring. However, highly sensitive responses are limited to the low-pressure range, and their sensitivity significantly decreases in a higher-pressure range. Several approaches for developing tactile sensors with high sensitivity overing a wide pressure range have been proposed; however, achieving high sensitivity and wide sensing range remains a crucial challenge. This report presents a carbon nanotube (CNT)-coated CNT-polydimethylsiloxane (PDMS) composite having dual-scale pores for tactile sensors with high sensitivity over a wide pressure range. The porous polymer frame formed with dense pores of dual sizes facilitates the closure of large and small pores at low and high pressures, respectively. This results in an apparent increase in the number of contact points between the CNT-CNT at the pores even under a wide pressure range. Furthermore, the piezoresistivity of the CNT-PDMS composite contributes to achieving a high sensitivity of the tactile sensor over a wide pressure range. Based on these mechanisms, various human movements over a broad pressure spectrum are monitored to investigate the practical usefulness of the sensor.
Collapse
Affiliation(s)
- Kyubin Bae
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Minhyeong Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yunsung Kang
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangjun Sim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wondo Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soonjae Pyo
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Su E, Wu F, Zhao S, Li Y, Deng C. Layered MXene/Aramid Composite Film for a Soft and Sensitive Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15849-15858. [PMID: 35333530 DOI: 10.1021/acsami.2c01914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, the two-dimensional material MXene has shown great advantages in the field of wearable electronics and pressure sensors. Toward advanced applications, achieving a conformal pressure sensor with ultrathin thickness and great flexibility through a simple preparation principle, while maintaining its high sensitivity and wide detection range, is still a key challenge for the development of high-performance pressure sensors. Herein, we proposed an optimized mild LiF/HCl etching scheme and successfully achieved a high-concentration (>25 mg/mL) preparation of few-layer Ti3C2Tx MXene. Combining the prepared MXene with an aramid nanofiber (ANF), we designed an ultrathin layered pressure sensor based on an MXene/ANF composite through layer-by-layer suction filtration. The mechanical strength is greatly enhanced by composition with the ANF, while the pure MXene film is fragile. The sensor achieves a high sensitivity of 16.7 kPa-1, wide detection range (>100 kPa), only 10 μm thickness, great flexibility, and up to 10% stretchability, which are greatly beneficial to practical sensors. We demonstrated the wide application perspective of the sensor in human motion monitoring and human-machine interfaces from low pressure (human pulse) to high pressure (push-up).
Collapse
Affiliation(s)
- Erming Su
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Fengming Wu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Siqi Zhao
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Yeti Li
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Chenghao Deng
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
8
|
New Flexible Tactile Sensor Based on Electrical Impedance Tomography. MICROMACHINES 2022; 13:mi13020185. [PMID: 35208309 PMCID: PMC8877845 DOI: 10.3390/mi13020185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023]
Abstract
In order to obtain external information and ensure the security of human–computer interaction, a double sensitive layer structured tactile sensor was proposed in this paper. Based on the EIT (Electrical Impedance Tomography) method, the sensor converts the information from external collisions or contact into local conductivity changes, and realizes the detection of one or more contact points. These changes can be processed into an image containing positional and force information. The experiments were conducted on the actual sensor sample. The OpenCV toolkit was used to process the positional information of contact points. The distributional regularities of errors in positional detection were analyzed, and the accuracy of the positional detection was evaluated. The effectiveness, sensitivity, and contact area of the force detection were analyzed based on the result of the EIT calculations. Furthermore, multi-object tests of pressure were conducted. The results of the experiment indicated that the proposed sensor performed well in detecting the position and force of contact. It is suitable for human–robot interaction.
Collapse
|
9
|
Gallet A, Rigby S, Tallman TN, Kong X, Hajirasouliha I, Liew A, Liu D, Chen L, Hauptmann A, Smyl D. Structural engineering from an inverse problems perspective. Proc Math Phys Eng Sci 2022; 478:20210526. [PMID: 35153609 PMCID: PMC8791046 DOI: 10.1098/rspa.2021.0526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/07/2021] [Indexed: 01/16/2023] Open
Abstract
The field of structural engineering is vast, spanning areas from the design of new infrastructure to the assessment of existing infrastructure. From the onset, traditional entry-level university courses teach students to analyse structural responses given data including external forces, geometry, member sizes, restraint, etc.-characterizing a forward problem (structural causalities → structural response). Shortly thereafter, junior engineers are introduced to structural design where they aim to, for example, select an appropriate structural form for members based on design criteria, which is the inverse of what they previously learned. Similar inverse realizations also hold true in structural health monitoring and a number of structural engineering sub-fields (response → structural causalities). In this light, we aim to demonstrate that many structural engineering sub-fields may be fundamentally or partially viewed as inverse problems and thus benefit via the rich and established methodologies from the inverse problems community. To this end, we conclude that the future of inverse problems in structural engineering is inexorably linked to engineering education and machine learning developments.
Collapse
Affiliation(s)
- A. Gallet
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - S. Rigby
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - T. N. Tallman
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA
| | - X. Kong
- Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, USA
| | - I. Hajirasouliha
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - A. Liew
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - D. Liu
- School of Physical Sciences, University of Science and Technology of China, Hefei, People’s Republic of China
| | - L. Chen
- Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK
| | - A. Hauptmann
- Research Unit of Mathematical Sciences, University of Oulu, Oulu, Finland
- Department of Computer Science, University College London, London, UK
| | - D. Smyl
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
10
|
Pyo S, Lee J, Bae K, Sim S, Kim J. Recent Progress in Flexible Tactile Sensors for Human-Interactive Systems: From Sensors to Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005902. [PMID: 33887803 DOI: 10.1002/adma.202005902] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/07/2020] [Indexed: 05/27/2023]
Abstract
Flexible tactile sensors capable of measuring mechanical stimuli via physical contact have attracted significant attention in the field of human-interactive systems. The utilization of tactile information can complement vision and/or sound interaction and provide new functionalities. Recent advancements in micro/nanotechnology, material science, and information technology have resulted in the development of high-performance tactile sensors that reach and even surpass the tactile sensing ability of human skin. Here, important advances in flexible tactile sensors over recent years are summarized, from sensor designs to system-level applications. This review focuses on the representative strategies based on design and material configurations for improving key performance parameters including sensitivity, detection range/linearity, response time/hysteresis, spatial resolution/crosstalk, multidirectional force detection, and insensitivity to other stimuli. System-level integration for practical applications beyond conceptual prototypes and promising applications, such as artificial electronic skin for robotics and prosthetics, wearable controllers for electronics, and bidirectional communication tools, are also discussed. Finally, perspectives on issues regarding further advances are provided.
Collapse
Affiliation(s)
- Soonjae Pyo
- Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Jaeyong Lee
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyubin Bae
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sangjun Sim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
11
|
Tang X, Pionteck J, Krause B, Pötschke P, Voit B. Highly Tunable Piezoresistive Behavior of Carbon Nanotube-Containing Conductive Polymer Blend Composites Prepared from Two Polymers Exhibiting Crystallization-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43333-43347. [PMID: 34459584 DOI: 10.1021/acsami.1c10480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conductive polymer composites (CPCs) are suitable as piezoresistive-sensing materials. When using CPCs for strain sensing, it is still a big challenge to simultaneously improve the piezoresistive sensitivity and linearity along with the electrical conductivity and mechanical properties. Here, highly tunable piezoresistive behavior is reported for multiwalled carbon nanotube (CNT)-filled CPCs based on blends of two semicrystalline polymers poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS), which are miscible in the melt. When cooling the homogeneous mixture of the blend components, successive crystallization of PVDF and PBS occurs, creating complex crystalline structures in a mixed amorphous phase. The morphology of the blend matrix, the crystallinity of the blend components, and the dispersion and location of the CNTs in the blend depend on the CNT content and the blend composition. Compared with PVDF/CNT composites, the substitution of 10 to 50 wt % PVDF by PBS in the composites shifts the electrical percolation concentration Φc from 0.79 wt % to filler contents as low as 0.50 wt % while improving the stretchability. The piezoresistive behavior is highly tunable by changing the PVDF/PBS ratio. The ternary composites with matrix compositions of PVDF (90 wt %)/PBS (10 wt %) and PVDF (50 wt %)/PBS (50 wt %) show either higher piezoresistive sensitivity or linearity, respectively, caused by the differences in the microstructure of the CPCs. For example, the crystallinity of PBS in the ternary composites increased from 19.8% to 52.0% as the PBS content increased from 10 wt % to 50 wt %, which is connected with altered CNT distribution and conductive network structure and substantial improvement of the linearity of the electrical response to strains up to >20%. Our findings highly contribute to the understanding of the piezoresistive properties of CPCs based on two semicrystalline polymers and are important for future studies to tune the piezoresistive behavior to achieve simultaneously improved sensitivity and linearity.
Collapse
Affiliation(s)
- Xinlei Tang
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| | - Jürgen Pionteck
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, Dresden 01069, Germany
| | - Beate Krause
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, Dresden 01069, Germany
| | - Petra Pötschke
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz Institute of Polymer Research Dresden (IPF), Hohe Str. 6, Dresden 01069, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, Dresden 01062, Germany
| |
Collapse
|
12
|
Xue F, Zheng H, Peng Q, Hu Y, Zhao X, Xu L, Li P, Zhu Y, Liu Z, He X. An ultra-broad-range pressure sensor based on a gradient stiffness design. MATERIALS HORIZONS 2021; 8:2260-2272. [PMID: 34846430 DOI: 10.1039/d1mh00384d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The question of how to make artificial intelligence robots perceive the power of "light as a feather" and "heavy as a mountain" at the same time has always been a goal that people are striving to achieve. However, pressure sensors, the key components of electronic equipment, are often unable to incorporate high sensitivity and wide range performance. Here, we proposed a "gradient stiffness design" strategy to prepare a kind of carbon nanotube sponge with a stiffness difference of up to 254 times between different layers, but still maintaining an integral conductive network without delamination. This gradient stiffness structure sponge shows prominent sensing properties with ultra-broad range (from 0.0022 MPa to 5.47 MPa) and high sensitivity. The low stiffness layer can detect low stress (0.0022 MPa) with high sensitivity of 0.765 MPa-1, and the high stiffness layer can greatly extend the sensing range to an unprecedentedly high value (5.47 MPa). It can concisely detect various motions with different stress, from slight clamping of fragile fries by the robot fingers to heavily stomping motions by a 90 kg person. Moreover, a series of human movements from small-scale to large-scale can be also monitored, revealing the great potential of this gradient stiffness structure in future sensing research.
Collapse
Affiliation(s)
- Fuhua Xue
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- Jia-wen Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Yuan-yuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| |
Collapse
|