1
|
Xu K, Wu K, Xu J, Han M, Zheng Z, Planche MP, Deng S, Liao H, Zhang C. Co-MOF-derived Co 3O 4 sensors for efficient 3-octanone biomarker monitoring in wheat mildew. Talanta 2025; 291:127892. [PMID: 40054219 DOI: 10.1016/j.talanta.2025.127892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/24/2025]
Abstract
3-octanone has been widely identified as a primary biomarker for mold and insect infestation in wheat. Nevertheless, to date, no chemiresistive sensor based on a metal oxide semiconductor with excellent sensing properties for 3-octanone has been developed. In light of the extensively reported superior efficacy of Co3O4-based sensors for ketone detection, we designed Co3O4 samples with various hierarchical morphologies (hollow sphere, multi-wall sphere, flower-like, and urchin-like), which were determined by regulating solvent and organic ligand. The sensing properties of four as-fabricated Co3O4-based sensors were systematically evaluated, verifying their potential for efficient 3-octanone monitoring. The adsorption behavior of 3-octanone was studied by DFT simulation, and the preferential adsorption of the hydroxyl functional group in 3-octanone at Co sites was verified. Among the four samples, the hollow spherical Co3O4 demonstrated the highest sensitivity for 3-octanone (173.88 ± 5.59@50 ppm), which can be attributed to the larger specific surface area (SSA, 60.164 m2/g), lower energy gap (1.306 eV), and the superior concentration of chemisorbed oxygen (23.8 %). Furthermore, the practical value of this sensor in agricultural product inspection and environmental monitoring applications was validated by testing its response to the complex gases emitted from wheat stored for different periods.
Collapse
Affiliation(s)
- Kaichun Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China; ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010, Belfort, France
| | - Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China
| | - Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China
| | - Mengjie Han
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China
| | - Zichen Zheng
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China; Chimie des Interactions Plasma-Surface, Research Institute for Materials Science and Engineering, University of Mons, 20 Place du Parc, 7000, Mons, Belgium
| | | | - Sihao Deng
- ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010, Belfort, France
| | - Hanlin Liao
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China; ICB UMR 6303, CNRS, Univ. Bourgogne Franche-Comté, UTBM, 90010, Belfort, France
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, PR China; Jiangsu Key Laboratory of Surface Strengthening and Functional Manufacturing, Yangzhou University, Yangzhou, 225127, PR China.
| |
Collapse
|
2
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
3
|
Hossain MK, Hendi A, Asim N, Alghoul MA, Rafiqul Islam M, Hussain SMS. Chemiresistive Gas Sensing using Graphene-Metal Oxide Hybrids. Chem Asian J 2024; 19:e202300529. [PMID: 37695946 DOI: 10.1002/asia.202300529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Chemiresistive sensing lies in its ability to provide fast, accurate, and reliable detection of various gases in a cost-effective and non-invasive manner. In this context, graphene-functionalized metal oxides play crucial role in hydrogen gas sensing. However, a cost-effective, defect-free, and large production schemes of graphene-based sensors are required for industrial applications. This review focuses on graphene-functionalized metal oxide nanostructures designed for gaseous molecules detection, mainly hydrogen gas sensing applications. For the convenience of the reader and to understand the role of graphene-metal oxide hybrids (GMOH) in gas sensing activities, a brief overview of the properties and synthesis routes of graphene and GMOH have been reported in this paper. Metal oxides play an essential role in the GMOH construct for hydrogen gas sensing. Therefore, various metal oxides-decorated GMOH constructs are detailed in this review as gas sensing platforms, particularly for hydrogen detection. Finally, specific directions for future research works and challenges ahead in designing highly selective and sensitive hydrogen gas sensors have been highlighted. As illustrated in this review, understanding of the metal oxides-decorated GMOH constructs is expected to guide ones in developing emerging hybrid nanomaterials that are suitable for hydrogen gas sensing applications.
Collapse
Affiliation(s)
- Mohammad Kamal Hossain
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Abdulmajeed Hendi
- Physics Department & IRC-Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Nilofar Asim
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohammad Ahmed Alghoul
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Rafiqul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering and Technology, Khulna, 9203, Bangladesh
| | - Syed Muhammad Shakil Hussain
- Center for Integrative Petroleum Research, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
Dutta T, Chaturvedi P, Llamas-Garro I, Velázquez-González JS, Dubey R, Mishra SK. Smart materials for flexible electronics and devices: hydrogel. RSC Adv 2024; 14:12984-13004. [PMID: 38655485 PMCID: PMC11033831 DOI: 10.1039/d4ra01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, flexible conductive materials have attracted considerable attention for their potential use in flexible energy storage devices, touch panels, sensors, memristors, and other applications. The outstanding flexibility, electricity, and tunable mechanical properties of hydrogels make them ideal conductive materials for flexible electronic devices. Various synthetic strategies have been developed to produce conductive and environmentally friendly hydrogels for high-performance flexible electronics. In this review, we discuss the state-of-the-art applications of hydrogels in flexible electronics, such as energy storage, touch panels, memristor devices, and sensors like temperature, gas, humidity, chemical, strain, and textile sensors, and the latest synthesis methods of hydrogels. Describe the process of fabricating sensors as well. Finally, we discussed the challenges and future research avenues for flexible and portable electronic devices based on hydrogels.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur Howrah W.B. - 711103 India
| | - Pavan Chaturvedi
- Department of Physics, Vanderbilt University 3414 Murphy Rd, Apt#4 Nashville TN-37203 USA +575-650-4595
| | - Ignacio Llamas-Garro
- Navigation and Positioning Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| | | | - Rakesh Dubey
- Instiute of Physics, University of Szczecin Poland
| | - Satyendra Kumar Mishra
- Space and Reslinent Research Unit, Centre Tecnològic de Telecomunicacions de Catalunya Castelldefels Spain
| |
Collapse
|
5
|
Lu B, Cheng H, Qu L. Inorganic Hydrogel Based on Low-Dimensional Nanomaterials. ACS NANO 2024; 18:2730-2749. [PMID: 38221737 DOI: 10.1021/acsnano.3c11262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Composed of three-dimensional (3D) nanoscale inorganic bones and up to 99% water, inorganic hydrogels have attracted much attention and undergone significant growth in recent years. The basic units of inorganic hydrogels could be metal nanoparticles, metal nanowires, SiO2 nanowires, graphene nanosheets, and MXene nanosheets, which are then assembled into the special porous structures by the sol-gel process or gelation via either covalent or noncovalent interactions. The high electrical and thermal conductivity, resistance to corrosion, stability across various temperatures, and high surface area make them promising candidates for diverse applications, such as energy storage, catalysis, adsorption, sensing, and solar steam generation. Besides, some interesting derivatives, such as inorganic aerogels and xerogels, can be produced through further processing, diversifying their functionalities and application domains greatly. In this context, we primarily provide a comprehensive overview of the current status of inorganic hydrogels and their derivatives, including the structures of inorganic hydrogels with various compositions, their gelation mechanisms, and their exceptional practical performance in fields related to energy and environmental applications.
Collapse
Affiliation(s)
- Bing Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| | - Liangti Qu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, State Key Laboratory of Tribology in Advanced Equipment (SKLT), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Luo Y, Li J, Ding Q, Wang H, Liu C, Wu J. Functionalized Hydrogel-Based Wearable Gas and Humidity Sensors. NANO-MICRO LETTERS 2023; 15:136. [PMID: 37225851 PMCID: PMC10209388 DOI: 10.1007/s40820-023-01109-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023]
Abstract
Breathing is an inherent human activity; however, the composition of the air we inhale and gas exhale remains unknown to us. To address this, wearable vapor sensors can help people monitor air composition in real time to avoid underlying risks, and for the early detection and treatment of diseases for home healthcare. Hydrogels with three-dimensional polymer networks and large amounts of water molecules are naturally flexible and stretchable. Functionalized hydrogels are intrinsically conductive, self-healing, self-adhesive, biocompatible, and room-temperature sensitive. Compared with traditional rigid vapor sensors, hydrogel-based gas and humidity sensors can directly fit human skin or clothing, and are more suitable for real-time monitoring of personal health and safety. In this review, current studies on hydrogel-based vapor sensors are investigated. The required properties and optimization methods of wearable hydrogel-based sensors are introduced. Subsequently, existing reports on the response mechanisms of hydrogel-based gas and humidity sensors are summarized. Related works on hydrogel-based vapor sensors for their application in personal health and safety monitoring are presented. Moreover, the potential of hydrogels in the field of vapor sensing is elucidated. Finally, the current research status, challenges, and future trends of hydrogel gas/humidity sensing are discussed.
Collapse
Affiliation(s)
- Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
7
|
Kumar S, Chaurasiya R, Khan MA, Meng G, Chen JS, Kumar M. Enhancement of H 2S sensing performance of rGO decorated CuO thin films: experimental and DFT studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:064001. [PMID: 36384041 DOI: 10.1088/1361-648x/aca37e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a highly selective and sensitive Cupric oxide (CuO) thin film-based low concentration Hydrogen sulfide (H2S) sensor. The sensitivity was improved around three times by decorating with reduced graphene oxide (rGO) nanosheets. CuO thin films were deposited by Chemical Vapor Deposition followed by inter-digital electrode fabrication by a thermal evaporations system. The crystal structure of CuO was confirmed by x-ray diffraction. The sensing response of pristine CuO was found around 54% at 100 °C to 100 ppm of H2S. In contrast, the sensing response was enhanced to 167% by decorating with rGO of 1.5 mg ml-1concentration solution. The sensing was improved due to the formation of heterojunctions between the rGO and CuO. The developed sensor was examined under various gas environments and found to be highly selective towards H2S gas. The improvement in sensing response has been attributed to increased hole concentration in CuO in the presence of rGO due to the Fermi level alignment and increased absorption of H2S molecules at the rGO/CuO heterojunction. Further, electronic structure calculations show the physisorption behavior of H2S molecules on the different adsorption sites. Detailed insight into the gas sensing mechanism is discussed based on experimental results and electronic structure calculations.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 343020, India
| | - Rajneesh Chaurasiya
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Mustaque A Khan
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 343020, India
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Device and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jen-Sue Chen
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 343020, India
| |
Collapse
|
8
|
Wang Y, Zhou Y. Recent Progress on Anti-Humidity Strategies of Chemiresistive Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15248728. [PMID: 36556531 PMCID: PMC9784667 DOI: 10.3390/ma15248728] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 05/14/2023]
Abstract
In recent decades, chemiresistive gas sensors (CGS) have been widely studied due to their unique advantages of expedient miniaturization, simple fabrication, easy operation, and low cost. As one ubiquitous interference factor, humidity dramatically affects the performance of CGS, which has been neglected for a long time. With the rapid development of technologies based on gas sensors, including the internet of things (IoT), healthcare, environment monitoring, and food quality assessing, the humidity interference on gas sensors has been attracting increasing attention. Inspiringly, various anti-humidity strategies have been proposed to alleviate the humidity interference in this field; however, comprehensive summaries of these strategies are rarely reported. Therefore, this review aims to summarize the latest research advances on humidity-independent CGS. First, we discussed the humidity interference mechanism on gas sensors. Then, the anti-humidity strategies mainly including surface engineering, physical isolation, working parameters modulation, humidity compensation, and developing novel gas-sensing materials were successively introduced in detail. Finally, challenges and perspectives of improving the humidity tolerance of gas sensors were proposed for future research.
Collapse
|
9
|
Lu X, Liu J, Han G, Si C, Zhao Y, Hou Z, Zhang Y, Ning J, Yang F. Design and Fabrication of a Novel Poly-Si Microhotplate with Heat Compensation Structure. MICROMACHINES 2022; 13:2090. [PMID: 36557388 PMCID: PMC9782555 DOI: 10.3390/mi13122090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
I Microhotplates are critical devices in various MEMS sensors that could provide appropriate operating temperatures. In this paper, a novel design of poly-Si membrane microhotplates with a heat compensation structure was reported. The main objective of this work was to design and fabricate the poly-Si microhotplate, and the thermal and electrical performance of the microhotplates were also investigated. The poly-Si resistive heater was deposited by LPCVD, and phosphorous doping was applied by in situ doping process to reduce the resistance of poly-Si. In order to obtain a uniform temperature distribution, a series of S-shaped compensation structures were fabricated at the edge of the resistive heater. LPCVD SiNx layers deposited on both sides of poly-Si were used as both the mechanical supporting layer and the electrical isolation layer. The Pt electrode was fabricated on the top of the microhotplate for temperature detection. The area of the heating membrane was 1 mm × 1 mm. Various parameters of the different size devices were simulated and measured, including temperature distribution, power consumption, thermal expansion and response time. The simulation and electrical-thermal measurement results were reported. For microhotplates with a heat compensation structure, the membrane temperature reached 811.7 °C when the applied voltage was 5.5 V at a heating power of 148.3 mW. A 3.8 V DC voltage was applied to measure the temperature distribution; the maximum temperature was 397.6 °C, and the area where the temperature reached 90% covered about 73.8% when the applied voltage was 3.8 V at a heating power of 70.8 mW. The heating response time was 17 ms while the microhotplate was heated to 400 °C from room temperature, and the cooling response time was 32 ms while the device was recovered to room temperature. This microhotplate has many advantages, such as uniform temperature distribution, low power consumption and fast response, which are suitable for MEMS gas sensors, humidity sensors, gas flow sensors, etc.
Collapse
Affiliation(s)
- Xiaorui Lu
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jiahui Liu
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Guowei Han
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Chaowei Si
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yongmei Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhongxuan Hou
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yongkang Zhang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Jin Ning
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 100083, China
| | - Fuhua Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang B, Zhang S, Xia Y, Yu P, Xu Y, Dong Y, Wei Q, Wang J. High-Performance Room-Temperature NO 2 Gas Sensor Based on Au-Loaded SnO 2 Nanowires under UV Light Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4062. [PMID: 36432348 PMCID: PMC9698136 DOI: 10.3390/nano12224062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Optical excitation is widely acknowledged as one of the most effective means of balancing sensor responses and response/recovery properties at room temperature (RT, 25 °C). Moreover, noble metals have been proven to be suitable as photosensitizers for optical excitation. Localized surface plasmon resonance (LSPR) determines the liberalization of quasi-free electrons in noble metals under light irradiation, and numerous injected electrons in semiconductors will greatly promote the generation of chemisorbed oxygen, thus elevating the sensor response. In this study, pure SnO2 and Au/SnO2 nanowires (NWs) were successfully synthesized through the electrospinning method and validated using XRD, EDS, HRTEM, and XPS. Although a Schottky barrier led to a much higher initial resistance of the Au/SnO2 composite compared with pure SnO2 at RT in the dark, the photoinduced resistance of the Au/SnO2 composite became lower than that of pure SnO2 under UV irradiation with the same intensity, which confirmed the effect of LSPR. Furthermore, when used as sensing materials, a detailed comparison between the sensing properties of pure SnO2 and Au/SnO2 composite toward NO2 in the dark and under UV irradiation highlighted the crucial role of the LSPR effects. In particular, the response of Au/SnO2 NWs toward 5 ppm NO2 could reach 65 at RT under UV irradiation, and the response/recovery time was only 82/42 s, which far exceeded those under Au modification-only or optical excitation-only. Finally, the gas-sensing mechanism corresponding to the change in sensor performance in each case was systematically proposed.
Collapse
Affiliation(s)
- Bo Zhang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuai Zhang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi Xia
- Research Center for Analysis and Measurement, Analytic & Testing Research Center of Yunnan, Kunming University of Science and Technology, Kunming 650093, China
| | - Pingping Yu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yin Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yue Dong
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
11
|
Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. NANO-MICRO LETTERS 2022; 14:206. [PMID: 36271065 PMCID: PMC9587164 DOI: 10.1007/s40820-022-00956-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 05/05/2023]
Abstract
With the rapid development of the Internet of Things, there is a great demand for portable gas sensors. Metal oxide semiconductors (MOS) are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors. However, it is limited by high operating temperature. The current research works are directed towards fabricating high-performance flexible room-temperature (FRT) gas sensors, which are effective in simplifying the structure of MOS-based sensors, reducing power consumption, and expanding the application of portable devices. This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism, performance, flexibility characteristics, and applications. This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors, including pristine MOS, noble metal nanoparticles modified MOS, organic polymers modified MOS, carbon-based materials (carbon nanotubes and graphene derivatives) modified MOS, and two-dimensional transition metal dichalcogenides materials modified MOS. The effect of light-illuminated to improve gas sensing performance is further discussed. Furthermore, the applications and future perspectives of FRT gas sensors are also discussed.
Collapse
Affiliation(s)
- Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, People's Republic of China.
| |
Collapse
|
12
|
Hsueh TJ, Ding RY. A Room Temperature ZnO-NPs/MEMS Ammonia Gas Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3287. [PMID: 36234415 PMCID: PMC9565766 DOI: 10.3390/nano12193287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
This study uses ultrasonic grinding to grind ZnO powder to 10−20-nanometer nanoparticles (NPs), and these are integrated with a MEMS structure to form a ZnO-NPs/MEMS gas sensor. Measuring 1 ppm NH3 gas and operating at room temperature, the sensor response for the ZnO-NPs/MEMS gas sensor is around 39.7%, but the origin-ZnO powder/MEMS gas sensor is fairly unresponsive. For seven consecutive cycles, the ZnO-NPs/MEMS gas sensor has an average sensor response of about 40% and an inaccuracy of <±2%. In the selectivity of the gas, the ZnO-NPs/MEMS gas sensor has a higher response to NH3 than to CO, CO2, H2, or SO2 gases because ZnO nanoparticles have a greater surface area and more surface defects, so they adsorb more oxygen molecules and water molecules. These react with NH3 gas to increase the sensor response.
Collapse
|
13
|
Wei Y, Wang H, Ding Q, Wu Z, Zhang H, Tao K, Xie X, Wu J. Hydrogel- and organohydrogel-based stretchable, ultrasensitive, transparent, room-temperature and real-time NO 2 sensors and the mechanism. MATERIALS HORIZONS 2022; 9:1921-1934. [PMID: 35535754 DOI: 10.1039/d2mh00284a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Highly stretchable, sensitive and room-temperature nitrogen dioxide (NO2) sensors are fabricated by exploiting intrinsically stretchable, transparent and ion-conducting hydrogels and active metals as the novel transducing materials and electrodes, respectively. The NO2 sensor exhibits high sensitivity (60.02% ppm-1), ultralow theoretical limit of detection (6.8 ppb), excellent selectivity, linearity and reversibility at room temperature. Notably, the sensitivity can be maintained even under 50% tensile strain. For the first time, it's found that the metal electrodes significantly impact the sensing performance. Specifically, the sensitivity is boosted from 31.18 to 60.02% ppm-1 by replacing the anodic silver with copper-tin alloy. Importantly, by applying specially designed sensing tests, and microscopic and composition analyses, we have obtained the inherent NO2 sensing mechanism: the anodic metal tends to be oxidized and the NO2 molecules tend to react in the cathode-gel interface. The introduction of glycerol converts the hydrogel into the organohydrogel with remarkably enhanced anti-drying and anti-freezing capacities and toughness, which effectively improved the long-time stability of the sensors. Importantly, we execute sound/light alarms and a wireless smartphone alarm by utilizing a designed circuit board and applet. This work gives an incisive investigation for the preparation, performance improvement, mechanism and application of hydrogel-based NO2 sensors, promoting the evolution of hydrogel ionotronics.
Collapse
Affiliation(s)
- Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - He Zhang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering (SCUT), Ministry of Education, South China University of Technology, Guangzhou, 510641, China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
14
|
Zhang Y, Yang Z, Zhao L, Fei T, Liu S, Zhang T. Boosting room-temperature ppb-level NO 2 sensing over reduced graphene oxide by co-decoration of α-Fe 2O 3 and SnO 2 nanocrystals. J Colloid Interface Sci 2022; 612:689-700. [PMID: 35030345 DOI: 10.1016/j.jcis.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022]
Abstract
As promising sensing materials, reduced graphene oxide (RGO)-based nanomaterials have drawn considerable attention in the fields of gas monitoring owing to their low operating temperature. However, constructing RGO-based room-temperature gas sensors possessing ppb-level limit of detection with high sensitivity remains challenging. In this work, a series of highly sensitive NO2 sensors were fabricated using α-Fe2O3 and SnO2 co-decorated RGO hybrids (designated as α-Fe2O3/SnO2-RGO) as sensing materials. They were rationally synthesized by a one-pot hydrothermal method. Compared to SnO2 modified RGO hybrids (SnO2-RGO with bandgap of 3.88 eV), the bandgap energy of α-Fe2O3/SnO2-RGO hybrids (3.53 eV) was reduced by adding α-Fe2O3; the narrower bandgap facilitated the sensing materials to release more electrons and form more oxygen ions at room temperature. Besides, the high carrier migration of RGO, which served as continuous phase, identical structure with ultrasmall particle size of α-Fe2O3 and SnO2 (about 3-6 nm), and abundant chemisorbed oxygen species on the surface (20.8%) of the sensing materials, as well as their suitable bandgap (3.53 eV) in the sensing materials, significantly improved NO2 response at room temperature. Among the sensors fabricated, α-Fe2O3/SnO2-RGO-15-based NO2 sensor had the highest response of 7.4 with a short response time of 59 s towards 1 ppm NO2; it could even reach a response of 2.6 towards 100 ppb NO2. Notably, α-Fe2O3/SnO2-RGO-15 sample has excellent capability to recognize NO2, where the response value (7.4) towards 1 ppm NO2 is about 7 times higher than that of 100 ppm ammonia and common volatile organic compounds (formaldehyde, toluene, ethanol and acetone). Such NO2 sensor has superior repeatability with negligible response deviation towards 1 ppm NO2 for four reversible cycles. This makes it to have a great potential application in the field of NO2 detection.
Collapse
Affiliation(s)
- Yaqing Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Zhimin Yang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Liang Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
15
|
Kaan Kaya H, Haghmoradi N, Yarar Kaplan B, Kuralay F. Platinum nanoparticles loaded carbon black: reduced graphene oxide hybrid platforms for label-free electrochemical DNA and oxidative DNA damage sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chu Z, Xiao M, Dong Q, Li G, Hu T, Zhang Y, Jiang Z. Porous reduced graphene oxide for ultrasensitive detection of nitrogen dioxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Wang Z, Dai J, Wang J, Li X, Pei C, Liu Y, Yan J, Wang L, Li S, Li H, Wang X, Huang X, Huang W. Realization of Oriented and Nanoporous Bismuth Chalcogenide Layers via Topochemical Heteroepitaxy for Flexible Gas Sensors. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9767651. [PMID: 35935140 PMCID: PMC9275095 DOI: 10.34133/2022/9767651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Most van der Waals two-dimensional (2D) materials without surface dangling bonds show limited surface activities except for their edge sites. Ultrathin Bi2Se3, a topological insulator that behaves metal-like under ambient conditions, has been overlooked on its surface activities. Herein, through a topochemical conversion process, ultrathin nanoporous Bi2Se3 layers were epitaxially deposited on BiOCl nanosheets with strong electronic coupling, leading to hybrid electronic states with further bandgap narrowing. Such oriented nanoporous Bi2Se3 layers possessed largely exposed active edge sites, along with improved surface roughness and film forming ability even on inkjet-printed flexible electrodes. Superior room-temperature NO2 sensing performance was achieved compared to other 2D materials under bent conditions. Our work demonstrates that creating nanoscale features in 2D materials through topochemical heteroepitaxy is promising to achieve both favorable electronic properties and surface activity toward practical applications.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jie Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jian Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xinzhe Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengjie Pei
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanlei Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaxu Yan
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaozhou Li
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
18
|
Dariyal P, Sharma S, Chauhan GS, Singh BP, Dhakate SR. Recent trends in gas sensing via carbon nanomaterials: outlook and challenges. NANOSCALE ADVANCES 2021; 3:6514-6544. [PMID: 36132656 PMCID: PMC9417529 DOI: 10.1039/d1na00707f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The presence of harmful and poisonous gases in the environment can have dangerous effects on human health, and therefore portable, flexible, and highly sensitive gas sensors are in high demand for environmental monitoring, pollution control, and medical diagnosis. Currently, the commercialized sensors are based on metal oxides, which generally operate at high temperatures. Additionally, the desorption of chemisorbed gas molecules is also challenging. Hence, due to the large surface area, high flexibility, and good electrical properties of carbon nanomaterials (CNMs) such as carbon nanotubes, graphene and their derivatives (graphene oxide, reduced graphene oxide, and graphene quantum dots), they are considered to be the most promising chemiresistive sensing materials, where their electrical resistance is affected by their interaction with the analyte. Further, to increase their selectivity, nanocomposites of CNMs with metal oxides, metallic nanoparticles, chalcogenides, and polymers have been studied, which exhibit better sensing capabilities even at room temperature. This review summarizes the state-of-the-art progress in research related to CNMs-based sensors. Moreover, to better understand the analyte adsorption on the surface of CNMs, various sensing mechanisms and dependent sensing parameters are discussed. Further, several existing challenges related to CNMs-based gas sensors are elucidated herein, which can pave the way for future research in this area.
Collapse
Affiliation(s)
- Pallvi Dariyal
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sushant Sharma
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- University of Ulsan, Chemical Engineering Department Ulsan 44610 South Korea
| | - Gaurav Singh Chauhan
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Bhanu Pratap Singh
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sanjay R Dhakate
- Advanced Carbon Products and Metrology, CSIR-National Physical Laboratory Dr K. S. Krishnan Marg New Delhi 110012 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| |
Collapse
|
19
|
Xiong S, Zhou J, Wu J, Li H, Zhao W, He C, Liu Y, Chen Y, Fu Y, Duan H. High Performance Acoustic Wave Nitrogen Dioxide Sensor with Ultraviolet Activated 3D Porous Architecture of Ag-Decorated Reduced Graphene Oxide and Polypyrrole Aerogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42094-42103. [PMID: 34431295 DOI: 10.1021/acsami.1c13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface acoustic wave (SAW) devices have been widely explored for real-time monitoring of toxic and irritant chemical gases such as nitrogen oxide (NO2), but they often have issues such as a complicated process of the sensing layer, low sensitivity, long response time, irreversibility, and/or requirement of high temperatures to enhance sensitivity. Herein, we report a sensing material design for room-temperature NO2 detection based on a 3D porous architecture of Ag-decorated reduced graphene oxide-polypyrrole hybrid aerogels (rGO-PPy/Ag) and apply UV activation as an effective strategy to further enhance the NO2 sensing performance. The rGO-PPy/Ag-based SAW sensor with the UV activation exhibits high sensitivity (127.68 Hz/ppm), fast response/recovery time (36.7 s/58.5 s), excellent reproducibility and selectivity, and fast recoverability. Its enhancement mechanisms for highly sensitive and selective detection of NO2 are based on a 3D porous architecture, Ag-decorated rGO-PPy, p-p heterojunction in rGO-PPy/Ag, and UV photogenerated carriers generated in the sensing layer. The scientific findings of this work will provide the guidance for future exploration of next-generation acoustic-wave-based gas sensors.
Collapse
Affiliation(s)
- Shuo Xiong
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jian Zhou
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Wu
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Honglang Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhao
- Institute of Semiconductor, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Chenguang He
- Institute of Semiconductor, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Yi Liu
- National Innovation Center of Advanced Rail Transit Equipment, Zhuzhou 412005, China
| | - Yiqin Chen
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Huigao Duan
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
20
|
Abstract
High-performance tracking trace amounts of NO2 with gas sensors could be helpful in protecting human health since high levels of NO2 may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO2, NH3, H2O, CO2, CH4, and C2H6) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO2 shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO2 for the Ag–Gr-based gas sensor.
Collapse
|
21
|
Wang Y, Liu L, Sun F, Li T, Zhang T, Qin S. Humidity-Insensitive NO 2 Sensors Based on SnO 2/rGO Composites. Front Chem 2021; 9:681313. [PMID: 34124007 PMCID: PMC8193670 DOI: 10.3389/fchem.2021.681313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
This study reported a novel humidity-insensitive nitrogen dioxide (NO2) gas sensor based on tin dioxide (SnO2)/reduced graphene oxide (rGO) composites through the sol-gel method. The sensor demonstrated ppb-level NO2 detection in p-type sensing behaviors (13.6% response to 750 ppb). Because of the synergistic effect on SnO2/rGO p-n heterojunction, the sensing performance was greatly enhanced compared to that of bare rGO. The limit of detection of sensors was as low as 6.7 ppb under dry air. Moreover, benefited from the formed superhydrophobic structure of the SnO2/rGO composites (contact angle: 149.0°), the humidity showed a negligible influence on the dynamic response (Sg) of the sensor to different concentration of NO2 when increasing the relative humidity (RH) from 0 to 70% at 116°C. The relative conductivity of the sensor to 83% relative humidity was 0.11%. In addition, the response ratio (Sg/SRH) between 750 ppb NO2 and 83% RH was 649.0, indicating the negligible impaction of high-level ambient humidity on the sensor. The as-fabricated humidity-insensitive gas sensor can promise NO2 detection in real-world applications such as safety alarm, chemical engineering, and so on.
Collapse
Affiliation(s)
- Yingyi Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.,I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, China
| | - Lin Liu
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, China
| | - Fuqin Sun
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Tie Li
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- I-Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
| | - Sujie Qin
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
22
|
Recent Progress of Toxic Gas Sensors Based on 3D Graphene Frameworks. SENSORS 2021; 21:s21103386. [PMID: 34067948 PMCID: PMC8152072 DOI: 10.3390/s21103386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Air pollution is becoming an increasingly important global issue. Toxic gases such as ammonia, nitrogen dioxide, and volatile organic compounds (VOCs) like phenol are very common air pollutants. To date, various sensing methods have been proposed to detect these toxic gases. Researchers are trying their best to build sensors with the lowest detection limit, the highest sensitivity, and the best selectivity. As a 2D material, graphene is very sensitive to many gases and so can be used for gas sensors. Recent studies have shown that graphene with a 3D structure can increase the gas sensitivity of the sensors. The limit of detection (LOD) of the sensors can be upgraded from ppm level to several ppb level. In this review, the recent progress of the gas sensors based on 3D graphene frameworks in the detection of harmful gases is summarized and discussed.
Collapse
|
23
|
Zheng S, Sun J, Hao J, Sun Q, Wan P, Li Y, Zhou X, Yuan Y, Zhang X, Wang Y. Engineering SnO 2 nanorods/ethylenediamine-modified graphene heterojunctions with selective adsorption and electronic structure modulation for ultrasensitive room-temperature NO 2 detection. NANOTECHNOLOGY 2021; 32:155505. [PMID: 33361555 DOI: 10.1088/1361-6528/abd657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ever-increasing concerns over air quality and the newly emerged internet of things (IoT) for future environmental monitoring are stimulating the development of ultrasensitive room-temperature gas sensors, especially for nitrogen dioxide (NO2), one of the most harmful air pollution species released round-the-clock from power plants and vehicle exhausts. Herein, tin dioxide nanorods/ethylenediamine-modified reduced graphene oxide (SnO2/EDA-rGO) heterojunctions with selective adsorption and electronic structure modulation were engineered for highly sensitive and selective detection of NO2 at room temperature. The modified EDA groups not only enable selective adsorption to significantly enrich NO2 molecules around the interface but also realize a favorable modulation of SnO2/EDA-rGO electronic structure by increasing the Fermi level of rGO, through which the sensing performance of NO2 is synergistically enhanced. The response of the SnO2/EDA-rGO sensor toward 1 ppm NO2 reaches 282%, which exceeds the corresponding SnO2/rGO sensor by a factor of 2.8. It also exhibits a low detection limit down to 100 ppb, enhanced selectivity, and rapid response/recovery kinetics. This approach to designing a novel heterojunction with significantly enhanced chemical and electric effects may shed light on the future engineering of gas-sensing materials.
Collapse
Affiliation(s)
- Shengliang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jianyong Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, People's Republic of China
| | - Quan Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Peng Wan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yue Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Ministry of Industry and Information, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ye Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Xu Zhang
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, United States of America
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, People's Republic of China
| |
Collapse
|
24
|
Wu Z, Yang X, Wu J. Conductive Hydrogel- and Organohydrogel-Based Stretchable Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2128-2144. [PMID: 33405508 DOI: 10.1021/acsami.0c21841] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conductive hydrogels have drawn significant attention in the field of stretchable/wearable sensors due to their intrinsic stretchability, tunable conductivity, biocompatibility, multistimuli sensitivity, and self-healing ability. Recent advancements in hydrogel- and organohydrogel-based sensors, including a novel sensing mechanism, outstanding performance, and broad application scenarios, suggest the great potential of hydrogels for stretchable electronics. However, a systematic summary of hydrogel- and organohydrogel-based sensors in terms of their working principles, unique properties, and promising applications is still lacking. In this spotlight, we present recent advances in hydrogel- and organohydrogel-based stretchable sensors with four main sections: improved stability of hydrogels, fabrication and characterization of organohydrogel, working principles, and performance of different types of sensors. We particularly highlight our recent work on ultrastretchable and high-performance strain, temperature, humidity, and gas sensors based on polyacrylamide/carrageenan double network hydrogel and ethylene glycol/glycerol modified organohydrogels obtained via a facile solvent displacement strategy. The organohydrogels display higher stability (drying and freezing tolerances) and sensing performances than corresponding hydrogels. The sensing mechanisms, key factors influencing the performance, and application prospects of these sensors are revealed. Especially, we find that the hindering effect of polymer networks on the ionic transport is one of the key mechanisms applicable for all four of these kinds of sensors.
Collapse
Affiliation(s)
- Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
25
|
Wu J, Wu Z, Huang W, Yang X, Liang Y, Tao K, Yang BR, Shi W, Xie X. Stretchable, Stable, and Room-Temperature Gas Sensors Based on Self-Healing and Transparent Organohydrogels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52070-52081. [PMID: 33147020 DOI: 10.1021/acsami.0c17669] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Conductive hydrogels have emerged as promising candidate materials for fabricating wearable electronics because of their fascinating stimuli-responsive and mechanical properties. However, the inherent instability of hydrogels seriously limits their application scope. Herein, the stable, ultrastretchable (upon to 1330% strain), self-healing, and transparent organohydrogel was exploited as a novel gas-responsive material to fabricate NH3 and NO2 gas sensors for the first time with extraordinary performance. A facile solvent substitution method was employed to convert the unstable hydrogel into the organohydrogel with a remarkable moisture retention (avoid drying within a year), frost resistance (freezing point below -130 °C), and unimpaired mechanical and gas sensing properties. First-principles simulations were performed to uncover the mechanisms of antidrying and antifreezing effects of organohydrogels and the interactions between NH3/NO2 and organohydrogels, revealing the vital role of hydrogen bonds in enhancing the stability and the adsorption of NH3/NO2 on the organohydrogel. The organohydrogel gas sensor displayed high sensitivity, ultralow theoretical limit of detection (91.6 and 3.5 ppb for NH3 and NO2, respectively), reversibility, and fast recovery at room temperature. It exhibited the capabilities to work at a highly deformed state with nondegraded sensing performance and restore all the electrical, mechanical, and sensing properties after mechanical damage. The gas sensing mechanism was understood by considering the gas adsorption on functional groups, dissolution in the solvent, and the hindering effect on the transport of ions.
Collapse
Affiliation(s)
- Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuning Liang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
26
|
Paolucci V, D'Olimpio G, Kuo CN, Lue CS, Boukhvalov DW, Cantalini C, Politano A. Self-Assembled SnO 2/SnSe 2 Heterostructures: A Suitable Platform for Ultrasensitive NO 2 and H 2 Sensing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34362-34369. [PMID: 32662970 DOI: 10.1021/acsami.0c07901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
By means of experiments and theory, the gas-sensing properties of tin diselenide (SnSe2) were elucidated. We discover that, while the stoichiometric single crystal is chemically inert even in air, the nonstoichiometric sample assumes a subnanometric SnO2 surface oxide layer once exposed to ambient atmosphere. The presence of Se vacancies induces the formation of a metastable SeO2-like layer, which is finally transformed into a SnO2 skin. Remarkably, the self-assembled SnO2/SnSe2-x heterostructure is particularly efficient in gas sensing, whereas the stoichiometric SnSe2 sample does not show sensing properties. Congruently with the theoretical model, direct sensing tests carried out on SnO2/SnSe2-x at an operational temperature of 150 °C provided sensitivities of (1.06 ± 0.03) and (0.43 ± 0.02) [ppm]-1 for NO2 and H2, respectively, in dry air. The corresponding calculated limits of detection are (0.36 ± 0.01) and (3.6 ± 0.1) ppm for NO2 and H2, respectively. No detectable changes in gas-sensing performances are observed in a time period extended above six months. Our results pave the way for a novel generation of ambient-stable gas sensor based on self-assembled heterostructures formed taking advantage on the natural interaction of substoichiometric van der Waals semiconductors with air.
Collapse
Affiliation(s)
- Valentina Paolucci
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Gianluca D'Olimpio
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
| | - Chia-Nung Kuo
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Chin Shan Lue
- Department of Physics, National Cheng Kung University, 1 Ta-Hsueh Road, 70101 Tainan, Taiwan
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, P. R. China
- Theoretical Physics and Applied Mathematics Department, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Carlo Cantalini
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, Via G. Gronchi 18, I-67100 L'Aquila, Italy
| | - Antonio Politano
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, 67100 L'Aquila (AQ), Italy
- CNR-IMM Istituto per la Microelettronica e Microsistemi, VIII strada 5, I-95121 Catania, Italy
| |
Collapse
|
27
|
Behi S, Bohli N, Casanova-Cháfer J, Llobet E, Abdelghani A. Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. SENSORS 2020; 20:s20123413. [PMID: 32560414 PMCID: PMC7349069 DOI: 10.3390/s20123413] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Benzene, toluene, and xylene, commonly known as BTX, are hazardous aromatic organic vapors with high toxicity towards living organisms. Many techniques are being developed to provide the community with portable, cost effective, and high performance BTX sensing devices in order to effectively monitor the quality of air. In this paper, we study the effect of decorating graphene with tin oxide (SnO2) or tungsten oxide (WO3) nanoparticles on its performance as a chemoresistive material for detecting BTX vapors. Transmission electron microscopy and environmental scanning electron microscopy are used as morphological characterization techniques. SnO2-decorated graphene displayed high sensitivity towards benzene, toluene, and xylene with the lowest tested concentrations of 2 ppm, 1.5 ppm, and 0.2 ppm, respectively. In addition, we found that, by employing these nanomaterials, the observed response could provide a unique double signal confirmation to identify the presence of benzene vapors for monitoring occupational exposure in the textiles, painting, and adhesives industries or in fuel stations.
Collapse
Affiliation(s)
- Syrine Behi
- Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, National Institute of Applied Science and Technology, Carthage University, Centre Urbain Nord, 1080 Charguia CEDEX Bp 676, Tunisia; (S.B.); (N.B.); (A.A.)
| | - Nadra Bohli
- Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, National Institute of Applied Science and Technology, Carthage University, Centre Urbain Nord, 1080 Charguia CEDEX Bp 676, Tunisia; (S.B.); (N.B.); (A.A.)
| | - Juan Casanova-Cháfer
- Department of Electronics Engineering, Universitat Rovira i Virgili, MINOS-EMaS, 43007 Tarragona, Spain;
| | - Eduard Llobet
- Department of Electronics Engineering, Universitat Rovira i Virgili, MINOS-EMaS, 43007 Tarragona, Spain;
- Correspondence:
| | - Adnane Abdelghani
- Research Unit of Nanobiotechnology and Valorisation of Medicinal Phytoressources UR17ES22, National Institute of Applied Science and Technology, Carthage University, Centre Urbain Nord, 1080 Charguia CEDEX Bp 676, Tunisia; (S.B.); (N.B.); (A.A.)
| |
Collapse
|
28
|
Wu J, Wei Y, Ding H, Wu Z, Yang X, Li Z, Huang W, Xie X, Tao K, Wang X. Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH 3 and NO 2 Detection at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20623-20632. [PMID: 32297738 DOI: 10.1021/acsami.0c00578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To address the low gas sensitivity of pristine graphene (Gr), chemical modification of Gr has been proved as a promising route. However, the existing chemical functionalization method imposes the utilization of toxic chemicals, increasing the safety risk. Herein, vitamin C (VC)-modified reduced graphene hydrogel (V-RGOH) is synthesized via a green and facile self-assembly process with the assistance of biocompatible VC molecules for high-performance NH3 and NO2 detection. The three-dimensional (3D) structured V-RGOH is highly sensitive to low-concentration NH3 and NO2 at room temperature. In comparison with those of the unmodified RGOH, the V-RGOH gas sensors display an order of magnitude higher sensitivity and much lower limit of detection, resulting from the enhanced interaction between VC and analytes. NH3 and NO2 with extremely low concentrations of 500 and 100 ppb are detected experimentally. Notably, imbedded microheaters are exploited to explore the temperature-dependent gas sensing properties, revealing the negative and positive impacts of temperature on the sensitivity and recovery speed, respectively. Notably, the V-RGOH sensor exhibits remarkable selectivity and linearity and a wide detection range. This work reveals the remarkable effects of chemical modification with biodegradable molecules and 3D structure design on improving the gas sensing performance of the Gr material.
Collapse
Affiliation(s)
- Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Haojun Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
29
|
Li W, He L, Bai X, Liu L, Ikram M, Lv H, Ullah M, Khan M, Kan K, Shi K. Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-Doped biomorphic SnO2 with active S-terminations and S–Sn–O chemical bonds has significantly improved gas sensing performance to NO2 at room temperature.
Collapse
|