1
|
Zhao Y, Zhang Y, Chen Y, Fu H, Liu H, Song J, Liu X. Fabrication of Superhydrophobic Surfaces from Laser-Induced Graphene and Their Photothermally Driven Properties. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1880. [PMID: 40333539 PMCID: PMC12028950 DOI: 10.3390/ma18081880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025]
Abstract
Conventional LIG preparation mostly relies on the ablation process of a CO2 laser on a polyimide (PI) substrate but is limited by the sensitivity of the laser parameters, which is prone to PI film deformation, non-uniformity of the process, or LIG surface breakage problems. In this study, we present a new method to fabricate superhydrophobic laser-induced graphene (SH-LIG) surfaces by immobilizing the polyimide (PI) film on the copper sheet, which enables uniform laser processing (single pass laser etching) over a wider range of microsecond laser parameters (10.5-19.5 W). Subsequently, the SH-LIG was obtained by vacuum-assisted immersion in stearic acid, resulting in a water contact angle greater than 150°, roll angle stabilized at 6°, and hydrophobic stability at a high temperature of 90 °C. Analysis by Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) showed that the LIG fabricated at optimal power (19.5 W) had a more developed C sp2 network (I2D/IG ≈ 0.5) and pore structure, which significantly improved the photothermal conversion efficiency (up to 252 °C in air and 180 °C on water). On this basis, a simple micro-driver based on SH-LIG was designed. Experiments showed that the maximum velocity of the SH-LIG boat can reach an adjustable propulsion velocity of 45.6 mm/s (related to the laser processing power and the intensity of the driving light), which is 132% higher than that of the LIG boat. This work provides insights into the preparation of high-quality LIG and their application in photothermally driven micro actuators, highlighting the synergies between structural optimization, surface engineering, and photothermal performance.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinlong Song
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Tang Y, Ban S, Xu Z, Sun J, Ning Z. Advancements in Superhydrophobic Paper-Based Materials: A Comprehensive Review of Modification Methods and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:107. [PMID: 39852722 PMCID: PMC11767354 DOI: 10.3390/nano15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications. The paper-based materials, leveraging their porous structure and flexibility, are modified to achieve superhydrophobicity, which broadens their application in oil-water separation, anti-corrosion, and self-cleaning. The review describes the use of these superhydrophobic paper-based materials in diagnostics, environmental management, energy generation, food testing, and smart packaging. It also discusses various superhydrophobic modification techniques, including surface chemical modification, coating technology, physical composite technology, laser etching, and other innovative methods. The applications and development prospects of these materials are explored, emphasizing their potential in self-cleaning materials, oil-water separation, droplet manipulation, and paper-based sensors for wearable electronics and environmental monitoring.
Collapse
Affiliation(s)
- Yin Tang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; (Y.T.); (Z.X.)
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China;
- Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar 161006, China
| | - Shouwei Ban
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China;
| | - Zhihan Xu
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; (Y.T.); (Z.X.)
| | - Jing Sun
- Department of Academic Theory Research, Qiqihar University, Qiqihar 161006, China;
| | - Zhenxin Ning
- Qiqihar Inspection and Testing Center, Qiqihar 161006, China
| |
Collapse
|
3
|
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife JC. Recent Advancements in Nanophotonics for Optofluidics. ADVANCES IN PHYSICS: X 2024; 9:2416178. [PMID: 39554474 PMCID: PMC11563312 DOI: 10.1080/23746149.2024.2416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing. Regarding nanoparticle manipulation, we delve into mechanisms based on optical nanotweezers using nanolocalized light fields and light-based hybrid effects with dramatically improved performance and capabilities. In the context of sensing, we emphasize those works that used optofluidics to aggregate molecules or particles to promote sensing and detection. Additionally, we highlight emerging research directions, encompassing both fundamental principles and practical applications in the field.
Collapse
Affiliation(s)
- Sen Yang
- Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Chuchuan Hong
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
4
|
Li S, Xiao P, Chen T. Superhydrophobic Solar-to-Thermal Materials Toward Cutting-Edge Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311453. [PMID: 38719350 DOI: 10.1002/adma.202311453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Solar-to-thermal conversion is a direct and effective way to absorb sunlight for heat via the rational design and control of photothermal materials. However, when exposed to water-existed conditions, the conventional solar-to-thermal performance may experience severe degradation owing to the high specific heat capacity of water. To tackle with the challenge, the water-repellent function is introduced to construct superhydrophobic solar-to-thermal materials (SSTMs) for achieving stable heating, and even, for creating new application possibilities under water droplets, sweat, seawater, and ice environments. An in-depth review of cutting-edge research of SSTMs is given, focusing on synergetic functions, typical construction methods, and cutting-edge potentials based on water medium. Moreover, the current challenges and future prospects based on SSTMs are also carefully discussed.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
5
|
Zhang H, Meng L, Zhang Y, Xin Q, Zhou Y, Ma Z, Zuo L, Zheng C, Luo J, Zhou Y, Ding C, Li J. Light and Magnetism Orchestrating Aquatic Pollutant-Degradation Robots in Programmable Trajectories. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311446. [PMID: 38160323 DOI: 10.1002/adma.202311446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Interfacial floating robots have promising applications in carriers, environmental monitoring, water treatment, and so on. Even though, engineering smart robots with both precisely efficient navigation and elimination of water pollutants in long term remains a challenge, as the superhydrophobicity greatly lowers resistance for aquatic motion while sacrificing chemical reactivity of the surface. Here, a pollutant-removing superhydrophobic robot integrated with well-assembled iron oxide-bismuth sulfide heterojunction composite minerals, which provide both light and magnetic propulsion, and the ability of catalytic degradation, is reported. The motion velocity of the robot reaches up to 51.9 mm s-1 within only 300 ms of acceleration under the orchestration of light, and brakes rapidly (≈200-300 ms) once turn off the light. And magnetism extends the robot to work in broad range of surface tensions in any programmable trajectory. Besides, purification of polluted water is efficiently achieved in situ and the degradation efficiency exhibits eightfold enhancements under the effect of light-triggered photothermal behavior coupled with magnetic induction, overcoming the dilemma of efficient motion with catalytic superhydrophobicity. This strategy developed here provides guidelines for the explorations of high-performance smart devices.
Collapse
Affiliation(s)
- Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuhang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuyi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Beijing, 100190, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Wen M, Wang H, Ma B, Xiong F. Photothermal Performance of Lignin-Based Nanospheres and Their Applications in Water Surface Actuators. Polymers (Basel) 2024; 16:927. [PMID: 38611185 PMCID: PMC11013333 DOI: 10.3390/polym16070927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the photothermal performance of lignin-based nanospheres was investigated. Subsequently, a photothermal actuator was prepared using lignin-based carbon nanospheres (LCNSs). The results demonstrated that LCNSs exhibited an impressive photothermal conversion efficiency of up to 83.8%. This extreme efficiency significantly surpasses that of lignin nanospheres (LNSs) and covalently stabilized LNSs (HT-LNSs). As a structural material, a hydrophobic coating was effectively engineered by LCNSs on the filter paper, achieving a water contact angle of 151.9° ± 4.6°, while maintaining excellent photothermal effects (with a temperature increment from room temperature to 138 °C in 2 s). When employing hydrophobic filter paper as the substrate for the photothermaldriven actuator, under the influence of a 1.0 W/cm2 power-density NIR laser, the material exhibited outstanding photothermal actuation, achieving speeds up to 16.4 mm/s. In addition, the direction of motion of the actuator can be adjusted in accordance with the location of the NIR light irradiation. This study offers valuable perspectives on the application of LNSs for highvalue applications and the development of innovative photothermal-driven actuators.
Collapse
Affiliation(s)
| | | | | | - Fuquan Xiong
- College of Materials Science and Engineering, Central South University of Forestry and Technology, No.498 at Shaoshan South Road, Changsha 410004, China; (M.W.); (H.W.); (B.M.)
| |
Collapse
|
7
|
Huang J, Yu X, Li L, Wang W, Zhang H, Zhang Y, Zhu J, Ma J. Design of Light-Driven Biocompatible and Biodegradable Microrobots Containing Mg-Based Metallic Glass Nanowires. ACS NANO 2024; 18:2006-2016. [PMID: 38205954 DOI: 10.1021/acsnano.3c08277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Light-driven microrobots capable of moving rapidly on water surfaces in response to external stimuli are widely used in a variety of fields, such as drug delivery, remote sampling, and biosensors. However, most light-driven microrobots use graphene and carbon nanotubes as photothermal materials, resulting in poor biocompatibility and degradability, which greatly limits their practical bioapplications. To address this challenge, a composition and microstructure design strategy with excellent photothermal properties suitable for the fabrication of light-driven microrobots was proposed in this work. The Mg-based metallic glass nanowires (Mg-MGNWs) were embedded with polyhydroxyalkanoates (PHA) to fabricate biocompatible and degradable microrobots with excellent photothermal effect and complex shapes. Consequently, the microrobot can be precisely driven by a near-infrared laser to achieve high efficiency and remote manipulation on the water surface for a long period of time, with a velocity of 9.91 mm/s at a power density of 2.0 W/cm2. Due to the Marangoni effect, programmable and complex motions of the microrobot such as linear, clockwise, counterclockwise, and obstacle avoidance motions can be achieved. The biocompatible and degradable microrobot fabrication strategy could have great potential in the fields of environmental detection, targeted drug delivery, disease diagnosis, and detection.
Collapse
Affiliation(s)
- Jinbiao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiangyang Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Luyao Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wenxue Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Heting Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiang Ma
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
8
|
Xia L, Tan C, Ren W, Liu X, Zhang X, Wu J, Zhang X, Guo F, Yu Y, Yang R. Robust, biodegradable and flame-retardant nanocomposite films based on TEMPO-oxidized cellulose nanofibers and hydroxyapatite nanowires. Carbohydr Polym 2024; 324:121495. [PMID: 37985047 DOI: 10.1016/j.carbpol.2023.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Flammability is a fatal drawback for sustainable packaging materials made from cellulose and its derivatives. Incorporating inorganic nanomaterials is a viable approach to improve the fire-resistant property. However, due to the aggregation of inorganic fillers and weak interactions between components, incorporating inorganic nanomaterials always had an adverse impact on the mechanical properties and optical transparency of cellulose-based nanocomposites. Herein, we presented a robust, biodegradable, and flame-retardant nanocomposite film composed of TEMPO-oxidized cellulose nanofibers (TOCNFs) and inorganic hydroxyapatite nanowires (HNWs). Both TOCNFs and HNWs possessed one-dimensional microstructure and could form unique organic-inorganic networks microstructure. The organic-inorganic networks interact through physical intertwinement and multiple chemical bonds, endowing nanocomposite film with outstanding mechanical properties. This nanocomposite film showed a tensile strength of 223.68 MPa and Young's modulus of 9.18 GPa, which were superior to most reported cellulose-based nanocomposite. Furthermore, this nanocomposite film demonstrated exceptional thermal stability and flame-retardant feature attributed to the inorganic framework formed by HNWs. This nanocomposite film also possessed a high optical transmittance even when HNWs content reached 30 % and could be decomposed quickly in soil. By employing organic-inorganic interpenetrating network structure design and multiple bonding interaction, cellulose-based nanocomposites can overcome inherent limitations and attain desirable comprehensive properties.
Collapse
Affiliation(s)
- Linmin Xia
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Chenshu Tan
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Wenting Ren
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xiaohong Liu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Xiangyu Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Jianyu Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Xuexia Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Fei Guo
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China
| | - Yan Yu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| | - Rilong Yang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350002, China.
| |
Collapse
|
9
|
Feng J, Li X, Xu T, Zhang X, Du X. Photothermal-driven micro/nanomotors: From structural design to potential applications. Acta Biomater 2024; 173:1-35. [PMID: 37967696 DOI: 10.1016/j.actbio.2023.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Micro/nanomotors (MNMs) that accomplish autonomous movement by transforming external energy into mechanical work are attractive cargo delivery vehicles. Among various propulsion mechanisms of MNMs, photothermal propulsion has gained considerable attention because of their unique advantages, such as remote, flexible, accurate, biocompatible, short response time, etc. Moreover, besides as a propulsion source, the light has been extensively investigated as an excitation source in bioimaging, photothermal therapy (PTT), photodynamic therapy (PDT) and so on. Furthermore, the geometric topology and morphology of MNMs have a tremendous impact on improving their performance in motion behavior under NIR light propulsion, environmental suitability and functional versatility. Hence, this review article provides a comprehensive overview of structural design principles and construction strategies of photothermal-driven MNMs, and their emerging nanobiomedical applications. Finally, we further provide an outlook towards prospects and challenges during the development of photothermal-driven MNMs in the future. STATEMENT OF SIGNIFICANCE: Photothermal-driven micro/nanomotors (MNMs) that are regarded as functional cargo delivery tools have gained considerable attention because of unique advantages in propulsion mechanisms, such as remote, flexible, accurate and fully biocompatible light manipulation and extremely short light response time. The geometric topology and morphology of MNMs have a tremendous impact on improving their performance in motion behavior under NIR light propulsion, environmental suitability and functional versatility of MNMs. There are no reports about the review focusing on photothermal-driven MNMs up to now. Herein, we systematically review the latest progress of photothermal-driven MNMs including design principle, fabrication strategy of various MNMs with different structures and nanobiomedical applications. Moreover, the summary and outlook on the development prospects and challenges of photothermal-driven MNMs are proposed, hoping to provide new ideas for the future design of photothermal-driven MNMs with efficient propulsion, multiple functions and high biocompatibility.
Collapse
Affiliation(s)
- Jiameng Feng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xiaoyu Li
- National Engineering Research Center of green recycling for strategic metal resources, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
10
|
Yang S, Li M, Li C, Yan L, Li Q, Gong Q, Li Y. Droplet-Driven Self-Propelled Devices Fabricated by a Femtosecond Laser. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37469253 PMCID: PMC10401497 DOI: 10.1021/acsami.3c04339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Self-propelled autonomous devices have broad application prospects in energy conservation, environmental protection, and biomedical engineering. Nevertheless, the driving force always consumes external energy or special chemicals. Here, a novel and green droplet-driven device (DDD) consisting of superhydrophilic triangles on a superhydrophobic plate is processed only by a femtosecond laser. The water droplet flows into water along the superhydrophilic channel and forms a jet to provide driving force for the DDD, whose strength can be manipulated by changing the point angle of the triangle and the volume of the droplet. By fabricating multiple or special channels, the DDD can translate and rotate along the designed track and even carry objects. This provides a new route for the fabrication of green self-propelled autonomous devices and their applications in the fields of intelligent systems and environmental protection.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Meng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Chu Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Linyu Yan
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qiang Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| | - Yan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Hefei National Laboratory, Hefei 230088, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
| |
Collapse
|
11
|
Lu G, Zhu G, Peng B, Zhao R, Shi F, Cheng M. A Multi-engine Marangoni Rotor with Controlled Motion for Mini-Generator Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23980-23988. [PMID: 37140932 DOI: 10.1021/acsami.3c03640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Marangoni rotors are smart devices that are capable of self-propulsive motions based on the Marangoni effect, namely interfacial flows caused by a gradient of surface tension. Owing to the features of untethered motions and coupled complexity with fluid, these Marangoni devices are attractive for both theoretical study and applications in biomimicking, cargo delivery, energy conversion, etc. However, the controllability of Marangoni motions dependent on concentration gradients remains to be improved, including the motion lifetime, direction, and trajectories. The challenge lies in the flexible loading and adjustments of surfactant fuels. Herein, we design a multi-engine device in a six-arm shape with multiple fuel positions allowing for motion control and propose a strategy of diluting the surfactant fuel to prolong the motion lifetime. The resulting motion lifetime has been extended from 140 to 360 s by 143% compared with conventional surfactant fuels. The motion trajectories could be facilely adjusted by changing both the fuel number and positions, leading to diverse rotation patterns. By integrating with a coil and a magnet, we obtained a system of mini-generators based on the Marangoni rotor. Compared with the single-engine case, the output of the multi-engine rotor was increased by 2 magnitudes owing to increased kinetic energy. The design of the above Marangoni rotor has addressed the problems of concentration-gradient-driven Marangoni devices and enriched their applications in harvesting energy from the environment.
Collapse
Affiliation(s)
- Guoxin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guiqiang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Benwei Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rongzhuang Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications. Carbohydr Polym 2023; 305:120570. [PMID: 36737208 DOI: 10.1016/j.carbpol.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Cellulose is the cheapest and mostly widespread green raw material on earth. Due to the easy and versatile developed modification of cellulose, many cellulosic paper-based sustainable materials and their multifunctional applications have attained increasing interest under the background of the implementation of the "plastic ban" policy. However, intrinsic cellulose paper is hydrophilic and non-water-proof, which highly limited its application, thus becoming a bottleneck for the development of "cellulosic paper-based plastic replacement". Unquestioningly, the superhydrophobic modification of cellulosic paper-based materials and the extension of their high value-added applications are highly desired, which is the main content of this review. More importantly, we presented the comprehensive discussion of the functionalized applications of superhydrophobic cellulosic paper-based materials ranging from conventional products to high value-added functional materials such as paper straw and paper mulch film for the first time, which have great industrialization potential and value. This review would offer the valuable guidance and insightful information for the rational construction of sustainable superhydrophobic cellulosic paper for advanced functional devices.
Collapse
|
13
|
Zhu YJ. Fire-Resistant Paper Based on Ultralong Hydroxyapatite Nanowires. RECENT PATENTS ON NANOTECHNOLOGY 2023; 17:86-90. [PMID: 35339193 DOI: 10.2174/1872210516666220325153220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
14
|
Wang X, Lin D, Zhou Y, Jiao N, Tung S, Liu L. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS NANO 2022; 16:14895-14906. [PMID: 36067035 DOI: 10.1021/acsnano.2c05783] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Superhydrophobic microrobots that can swim efficiently and rapidly on water under the action of external stimuli have attracted significant research attention for various applications. However, most studies on superhydrophobic microrobots have focused on single-stimulus driving modes, which limit the motion and functional applications of microrobots in complex aquatic environments. Therefore, multistimuli-responsive superhydrophobic microrobots that are capable of drifting rapidly on water through light, magnetic, and chemical control were developed in this study. The stability and environmental adaptability of the microrobots were systematically investigated. The microrobots achieved programmable trajectory motion on water, particularly complex motions such as circular, spiral, and helical movements under the coupled influence of chemical and magnetic fields. Importantly, the motion and control of multimicrorobots can be realized by combining control methods. Under the action of light and magnetic field, multimicrorobots could realize cooperative movement and completed the transportation of cargo. Additionally, broad multifunctional applications of the microrobots were explored in terms of oil spill recovery and solution mix. This study provides a method for the preparation and development of superhydrophobic microrobots with multistimuli-responsive characteristics.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
15
|
Biocompatible micromotors for biosensing. Anal Bioanal Chem 2022; 414:7035-7049. [PMID: 36044082 PMCID: PMC9428376 DOI: 10.1007/s00216-022-04287-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022]
Abstract
Micro/nanomotors are nanoscale devices that have been explored in various fields, such as drug delivery, environmental remediation, or biosensing and diagnosis. The use of micro/nanomotors has grown considerably over the past few years, partially because of the advantages that they offer in the development of new conceptual avenues in biosensing. This is due to their propulsion and intermixing in solution compared with their respective static forms, which enables motion-based detection methods and/or decreases bioassay time. This review focuses on the impacts of micro/nanomotors on biosensing research in the last 2 years. An overview of designs for bioreceptor attachment to micro/nanomotors is given. Recent developments have focused on chemically propelled micromotors using external fuels, commonly hydrogen peroxide. However, the associated fuel toxicity and inconvenience of use in relevant biological samples such as blood have prompted researchers to explore new micro/nanomotor biosensing approaches based on biocompatible propulsion sources such as magnetic or ultrasound fields. The main advances in biocompatible propulsion sources for micro/nanomotors as novel biosensing platforms are discussed and grouped by their propulsion-driven forces. The relevant analytical applications are discussed and representatively illustrated. Moreover, envisioning future biosensing applications, the principal advantages of micro/nanomotor synthesis using biocompatible and biodegradable materials are given. The review concludes with a realistic drawing on the present and future perspectives.
Collapse
|
16
|
Liu C, Jiang D, Zhu G, Li Z, Zhang X, Tian P, Wang D, Wang E, Ouyang H, Xiao M, Li Z. A Light-Powered Triboelectric Nanogenerator Based on the Photothermal Marangoni Effect. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22206-22215. [PMID: 35522970 DOI: 10.1021/acsami.2c04651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The photothermal Marangoni effect enables direct light-to-work conversion, which is significant for realizing the self-propulsion of objects in a noncontact, controllable, and continuous manner. Many promising applications have been demonstrated in micro- and nanomachines, light-driven actuators, cargo transport, and gear transmission. Currently, the related studies about photothermal Marangoni effect-induced self-propulsion, especially rotational motions, remain focused on developing the novel photothermal materials, the structural designs, and the controllable self-propulsion modes. However, extending the related research from the laboratory practice to practical application remains a challenge. Herein, we combined the photothermal Marangoni effect-induced self-propulsion with the triboelectric nanogenerator technology for sunlight intensity determination. Photothermal black silicon, superhydrophobic copper foam with drag-reducing property, and triboelectric polytetrafluoroethylene film were integrated to fabricate a triboelectric nanogenerator. The photothermal-Marangoni-driven triboelectric nanogenerator (PMD-TENG) utilizes the photothermal Marangoni effect-induced self-propulsion to realize the relative motion between the triboelectric layer and the electrode, converting light into electrical signals, with a peak value of 2.35 V. The period of the output electrical signal has an excellent linear relationship with the light intensity. The accessible electrical signal generation strategy proposed here provides a new application for the photothermal Marangoni effect, which could further inspire the practical applications of the self-powered system based on the photothermal Marangoni effect, such as intelligent farming.
Collapse
Affiliation(s)
- Chongxian Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Dongjie Jiang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, No. 8 Yangyandongyi Road, Beijing 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Guiqiang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Zengzhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Xiaojie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Pan Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Dan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 North Third Ring Road, Beijing 100029, People's Republic of China
| | - Engui Wang
- Center on Nanoenergy Research School of Physical Science and Technology, Guangxi University, No. 100 East University Road, Nanning 530004, People's Republic of China
| | - Han Ouyang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
| | - Meng Xiao
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, People's Republic of China
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, No. 8 Yangyandongyi Road, Beijing 101400, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, People's Republic of China
- Center on Nanoenergy Research School of Physical Science and Technology, Guangxi University, No. 100 East University Road, Nanning 530004, People's Republic of China
| |
Collapse
|
17
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Li B, Wang Z, Li Y, Zhang Y, He Y, Song P, Wang R. Rapidly Degrading Tetracycline by Highly Selective Catalysis with Hydroxyapatite Nanowire. CHEM LETT 2022. [DOI: 10.1246/cl.210572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bozhen Li
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zejun Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yiming Li
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yaping Zhang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
19
|
|
20
|
Zhu Y. Multifunctional
Fire‐Resistant
Paper Based on Ultralong Hydroxyapatite Nanowires†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ying‐Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding‐Xi Road Shanghai 200050 China
| |
Collapse
|
21
|
Song X, Huang X, Luo J, Long B, Zhang W, Wang L, Gao J, Xue H. Flexible, superhydrophobic and multifunctional carbon nanofiber hybrid membranes for high performance light driven actuators. NANOSCALE 2021; 13:12017-12027. [PMID: 34231636 DOI: 10.1039/d1nr02254g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recently, a series of super-hydrophobic materials have been prepared and efforts have been made to further expand their applications, especially in electronics and smart actuators. However, it remains challenging to develop light weight, flexible and super-hydrophobic materials integrating multifunctionalities such as superior photothermal conversion, corrosion resistance, and controllable actuation. Herein, a superhydrophobic and multi-responsive carbon nanofiber (CNF) hybrid membrane with an outstanding photo-thermal effect is fabricated by electrospinning the mixture of polyacrylonitrile and nickel acetylacetonate, followed by two step heat treatment and subsequent fluorination. The superhydrophobic CNF hybrid membrane with outstanding anti-corrosion and self-cleaning performance can float on the water surface spontaneously, thus effectively reducing the motion resistance. The light driven actuation with controllable movement can be achieved by adjusting the laser irradiated location, in which the localized absorption of light is transformed into thermal energy, and hence an imbalanced surface tension is created. The multifunctional hybrid membrane also opens up an arena of applications such as freestanding flexible electronics, drug delivery, and environmental protection.
Collapse
Affiliation(s)
- Xin Song
- Guangling College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen FF, Dai ZH, Feng YN, Xiong ZC, Zhu YJ, Yu Y. Customized Cellulose Fiber Paper Enabled by an In Situ Growth of Ultralong Hydroxyapatite Nanowires. ACS NANO 2021; 15:5355-5365. [PMID: 33631928 DOI: 10.1021/acsnano.0c10903] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose fiber (CF) paper is a low-cost, sustainable, and flexible substrate, which has gained increasing interest recently. Before practical usage, the functionalization of the pristine CF paper is indispensable to meet requirements of specific applications. Different from conventional surface modification or physical mixing methods, we report in situ growth of ultralong hydroxyapatite nanowires (HAPNWs) with lengths larger than 10 μm on the CF paper. HAPNWs are radially aligned on the surface of CFs, creating a micro/nanoscale hierarchical structure. By means of the excellent ion exchange ability of HAP and the hierarchical structure, the functions of the CF paper can be easily customized. As a proof-of-concept, we demonstrate two kinds of functional CF paper: (1) the photoluminescent CF paper by doping Eu3+ and Tb3+ ions into the crystal lattice of HAPNWs and (2) the superhydrophobic CF paper by coating poly(dimethylsiloxane) on the HAPNW hierarchical structure, which can be applied for self-cleaning and oil/water separation. It is expected that an in situ growth of ultralong HAPNWs will provide an instructive guideline for designing a CF paper with specific functions.
Collapse
Affiliation(s)
- Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zi-Hao Dai
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ya-Nan Feng
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
23
|
Feng P, Du X, Guo J, Wang K, Song B. Light-Responsive Nanofibrous Motor with Simultaneously Precise Locomotion and Reversible Deformation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8985-8996. [PMID: 33583177 DOI: 10.1021/acsami.0c22340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Light-powered micromotors have drawn enormous attention because of their potential applications in cargo delivery, environmental monitoring, and noninvasive surgery. However, the existing micromotors still suffer from some challenges, including slow speed, poor controllability, single locomotion mode, and no deformation during movement. Herein, we employ a combined electrospinning with brushing of Chinese ink to simply fabricate a light-responsive gradient-structured poly(vinyl alcohol)/carbon (PVA/carbon) composite motor. Because of the surface deposition and ultrahigh loading amount of carbon nanoparticles (ca. 43%), the motor exhibits rapid (39 mm/s), direction-controlled, and multimodal locomotion (vertical movement, horizontal motion, rotation) under light irradiation. Simultaneously, gradient alignment structure of the PVA nanofibrous matrix endows the motor with controllable and reversible deformation during locomotion. We finally demonstrate the potential applications of the motors in leakage monitoring, object salvage, smart access, and intelligent assembly. The present work will inspire the design of novel photosensitive motors for applications in various fields, such as microrobots, environmental monitoring, and biomedicine.
Collapse
Affiliation(s)
- Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Xiaolong Du
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Juan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
| |
Collapse
|
24
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|