1
|
Yu C, Cao J, Zhu S, Dai Z. Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2889. [PMID: 38930258 PMCID: PMC11204662 DOI: 10.3390/ma17122889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain engineering of PMFs. However, the bubbling technique currently faces limitations such as long manufacturing time, low durability, and challenges in precise control over the size and shape of the pressurized bubble. Here, we propose a rapid bubbling method based on an oxygen plasma chemical reaction to achieve rapid induction of out-of-plane deflections and in-plane strains in graphene sheets. We introduce a numerical scheme capable of accurately resolving the strain field and resulting PMFs within the pressurized graphene bubbles, even in cases where the bubble shape deviates from perfect spherical symmetry. The results provide not only insights into the strain engineering of PMFs in graphene but also a platform that may facilitate the exploration of the strain-mediated electronic behaviors of a variety of other 2D materials.
Collapse
Affiliation(s)
- Chuanli Yu
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Jiacong Cao
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| | - Shuze Zhu
- Center for X-Mechanics, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou 310000, China;
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China; (C.Y.); (J.C.)
| |
Collapse
|
2
|
Liu H, Zhao J, Ly TH. Clean Transfer of Two-Dimensional Materials: A Comprehensive Review. ACS NANO 2024; 18:11573-11597. [PMID: 38655635 DOI: 10.1021/acsnano.4c01000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The growth of two-dimensional (2D) materials through chemical vapor deposition (CVD) has sparked a growing interest among both the industrial and academic communities. The interest stems from several key advantages associated with CVD, including high yield, high quality, and high tunability. In order to harness the application potentials of 2D materials, it is often necessary to transfer them from their growth substrates to their desired target substrates. However, conventional transfer methods introduce contamination that can adversely affect the quality and properties of the transferred 2D materials, thus limiting their overall application performance. This review presents a comprehensive summary of the current clean transfer methods for 2D materials with a specific focus on the understanding of interaction between supporting layers and 2D materials. The review encompasses various aspects, including clean transfer methods, post-transfer cleaning techniques, and cleanliness assessment. Furthermore, it analyzes and compares the advances and limitations of these clean transfer techniques. Finally, the review highlights the primary challenges associated with current clean transfer methods and provides an outlook on future prospects.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
3
|
Dong W, Dai Z, Liu L, Zhang Z. Toward Clean 2D Materials and Devices: Recent Progress in Transfer and Cleaning Methods. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303014. [PMID: 38049925 DOI: 10.1002/adma.202303014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/30/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional (2D) materials have tremendous potential to revolutionize the field of electronics and photonics. Unlocking such potential, however, is hampered by the presence of contaminants that usually impede the performance of 2D materials in devices. This perspective provides an overview of recent efforts to develop clean 2D materials and devices. It begins by discussing conventional and recently developed wet and dry transfer techniques and their effectiveness in maintaining material "cleanliness". Multi-scale methodologies for assessing the cleanliness of 2D material surfaces and interfaces are then reviewed. Finally, recent advances in passive and active cleaning strategies are presented, including the unique self-cleaning mechanism, thermal annealing, and mechanical treatment that rely on self-cleaning in essence. The crucial role of interface wetting in these methods is emphasized, and it is hoped that this understanding can inspire further extension and innovation of efficient transfer and cleaning of 2D materials for practical applications.
Collapse
Affiliation(s)
- Wenlong Dong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaohe Dai
- Department of Mechanics and Engineering Science, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, 100871, China
| | - Luqi Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhong Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027, China
| |
Collapse
|
4
|
Chen J, Liu L, Chen H, Xu N, Deng S. Controlled Preparation of High Quality Bubble-Free and Uniform Conducting Interfaces of Vertical van der Waals Heterostructures of Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10877-10885. [PMID: 38360529 DOI: 10.1021/acsami.3c16128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Sharp and clean interfaces of van der Waals (vdW) heterostructures are highly demanded in two-dimensional (2D) materials-based devices. However, current assembly methods usually cause interfacial bubbles and wrinkles, hindering carrier interlayer transport. The preparation of a large-scale vdW heterostructure with a bubble-free interface is still a challenge. Although many efforts have been made to eliminate bubbles, the evolution processes of the interfacial bubbles are rarely studied. Here, the interface bubble formation and evolution of the transferred 2D materials and their vdW heterostructure are systemically studied by the atomic force microscopy (AFM) technique and high-resolution surface current mapping. A thermal annealing procedure is developed to reduce the number of bubbles and to improve the quality of interfaces. In addition, influences of the interface residues and nanosteps on bubble evolution are also discussed. Further, we develop the polystyrene (PS)-mediated polydimethylsiloxane (PDMS) transfer technique to realize the high-quality transfer of heterostructure arrays. Finally, high-resolution surface current mapping results confirm that we can now produce highly uniform electrical conduction interfaces of heterojunctions. This study provides guidance for assembling high quality interfaces and paves the way for production of bubble-free heterostructure-based electronic devices with high performance and good uniformity.
Collapse
Affiliation(s)
- Jianwei Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Liwei Liu
- Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Ningsheng Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Zhang T, Voshell A, Zhou D, Ward ZD, Yu Z, Liu M, Díaz Aponte KO, Granzier-Nakajima T, Lei Y, Liu H, Terrones H, Elías AL, Rana M, Terrones M. Effects of post-transfer annealing and substrate interactions on the photoluminescence of 2D/3D monolayer WS 2/Ge heterostructures. NANOSCALE 2023; 15:12348-12357. [PMID: 37449871 DOI: 10.1039/d3nr00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The ultraflat and dangling bond-free features of two-dimensional (2D) transition metal dichalcogenides (TMDs) endow them with great potential to be integrated with arbitrary three-dimensional (3D) substrates, forming mixed-dimensional 2D/3D heterostructures. As examples, 2D/3D heterostructures based on monolayer TMDs (e.g., WS2) and bulk germanium (Ge) have become emerging candidates for optoelectronic applications, such as ultrasensitive photodetectors that are capable of detecting broadband light from the mid-infrared (IR) to visible range. Currently, the study of WS2/Ge(100) heterostructures is in its infancy and it remains largely unexplored how sample preparation conditions and different substrates affect their photoluminescence (PL) and other optoelectronic properties. In this report, we investigated the PL quenching effect in monolayer WS2/Ge heterostructures prepared via a wet transfer process, and employed PL spectroscopy and atomic force microscopy (AFM) to demonstrate that post-transfer low-pressure annealing improves the interface quality and homogenizes the PL signal. We further studied and compared the temperature-dependent PL emissions of WS2/Ge with those of as-grown WS2 and WS2/graphene/Ge heterostructures. The results demonstrate that the integration of WS2 on Ge significantly quenches the PL intensity (from room temperature down to 80 K), and the PL quenching effect becomes even more prominent in WS2/graphene/Ge heterostructures, which is likely due to synergistic PL quenching effects induced by graphene and Ge. Density functional theory (DFT) and Heyd-Scuseria-Ernzerhof (HSE) hybrid functional calculations show that the interaction of WS2 and Ge is stronger than in adjacent layers of bulk WS2, thus changing the electronic band structure and making the direct band gap of monolayer WS2 less accessible. By understanding the impact of post-transfer annealing and substrate interactions on the optical properties of monolayer TMD/Ge heterostructures, this study contributes to the exploration of the processing-properties relationship and may guide the future design and fabrication of optoelectronic devices based on 2D/3D heterostructures of TMDs/Ge.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew Voshell
- Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
| | - Da Zhou
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zachary D Ward
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Zhuohang Yu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mingzu Liu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin O Díaz Aponte
- Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
| | - Tomotaroh Granzier-Nakajima
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Lei
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - He Liu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Humberto Terrones
- Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ana Laura Elías
- Department of Physics, Binghamton University, Binghamton, NY 13902, USA
| | - Mukti Rana
- Division of Physics, Engineering, Mathematics and Computer Sciences and Optical Science Center for Applied Research, Delaware State University, Dover, DE 19901, USA.
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Palai SK, Dyksik M, Sokolowski N, Ciorga M, Sánchez Viso E, Xie Y, Schubert A, Taniguchi T, Watanabe K, Maude DK, Surrente A, Baranowski M, Castellanos-Gomez A, Munuera C, Plochocka P. Approaching the Intrinsic Properties of Moiré Structures Using Atomic Force Microscopy Ironing. NANO LETTERS 2023. [PMID: 37276177 DOI: 10.1021/acs.nanolett.2c04765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stacking monolayers of transition metal dichalcogenides (TMDs) has led to the discovery of a plethora of new exotic phenomena, resulting from moiré pattern formation. Due to the atomic thickness and high surface-to-volume ratio of heterostructures, the interfaces play a crucial role. Fluctuations in the interlayer distance affect interlayer coupling and moiré effects. Therefore, to access the intrinsic properties of the TMD stack, it is essential to obtain a clean and uniform interface between the layers. Here, we show that this is achieved by ironing with the tip of an atomic force microscope. This post-stacking procedure dramatically improves the homogeneity of the interfaces, which is reflected in the optical response of the interlayer exciton. We demonstrate that ironing improves the layer coupling, enhancing moiré effects and reducing disorder. This is crucial for the investigation of TMD heterostructure physics, which currently suffers from low reproducibility.
Collapse
Affiliation(s)
- Swaroop Kumar Palai
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Mateusz Dyksik
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Nikodem Sokolowski
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Mariusz Ciorga
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Estrella Sánchez Viso
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Yong Xie
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Alina Schubert
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Duncan K Maude
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| | - Alessandro Surrente
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Michał Baranowski
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Andres Castellanos-Gomez
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Carmen Munuera
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
| | - Paulina Plochocka
- Laboratoire National des Champs Magnétiques Intenses, EMFL, CNRS UPR 3228, Université Toulouse, Université Toulouse 3, INSA-T, 31400 Toulouse, France
| |
Collapse
|
7
|
Neumann M, Wei X, Morales-Inostroza L, Song S, Lee SG, Watanabe K, Taniguchi T, Götzinger S, Lee YH. Organic Molecules as Origin of Visible-Range Single Photon Emission from Hexagonal Boron Nitride and Mica. ACS NANO 2023. [PMID: 37276077 DOI: 10.1021/acsnano.3c02348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The discovery of room-temperature single-photon emitters (SPEs) hosted by two-dimensional hexagonal boron nitride (2D hBN) has sparked intense research interest. Although emitters in the vicinity of 2 eV have been studied extensively, their microscopic identity has remained elusive. The discussion of this class of SPEs has centered on point defects in the hBN crystal lattice, but none of the candidate defect structures have been able to capture the great heterogeneity in emitter properties that is observed experimentally. Employing a widely used sample preparation protocol but disentangling several confounding factors, we demonstrate conclusively that heterogeneous single-photon emission at ∼2 eV associated with hBN originates from organic molecules, presumably aromatic fluorophores. The appearance of those SPEs depends critically on the presence of organic processing residues during sample preparation, and emitters formed during heat treatment are not located within the hBN crystal as previously thought, but at the hBN/substrate interface. We further demonstrate that the same class of SPEs can be observed in a different 2D insulator, fluorophlogopite mica.
Collapse
Affiliation(s)
- Michael Neumann
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Xu Wei
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Seunghyun Song
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Electronics Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sung-Gyu Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Stephan Götzinger
- Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany
- Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91052 Erlangen, Germany
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Tilmann R, Bartlam C, Hartwig O, Tywoniuk B, Dominik N, Cullen CP, Peters L, Stimpel-Lindner T, McEvoy N, Duesberg GS. Identification of Ubiquitously Present Polymeric Adlayers on 2D Transition Metal Dichalcogenides. ACS NANO 2023. [PMID: 37220885 DOI: 10.1021/acsnano.3c01649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interest in 2D materials continues to grow across numerous scientific disciplines as compounds with unique electrical, optical, chemical, and thermal characteristics are being discovered. All these properties are governed by an all-surface nature and nanoscale confinement, which can easily be altered by extrinsic influences, such as defects, dopants or strain, adsorbed molecules, and contaminants. Here, we report on the ubiquitous presence of polymeric adlayers on top of layered transition metal dichalcogenides (TMDs). The atomically thin layers, not evident from common analytic methods, such as Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), or scanning electron microscopy (SEM), could be identified with highly resolved time-of-flight secondary ion mass spectrometry (TOF-SIMS). The layers consist of hydrocarbons, which preferentially adsorb to the hydrophobic van der Waals surfaces of TMDs, derived from the most common methods. Fingerprint fragmentation patterns enable us to identify certain polymers and link them to those used during preparation and storage of the TMDs. The ubiquitous presence of polymeric films on 2D materials has wide reaching implications for their investigation, processing, and applications. In this regard, we reveal the nature of polymeric residues after commonly used transfer procedures on MoS2 films and investigate several annealing procedures for their removal.
Collapse
Affiliation(s)
- Rita Tilmann
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Cian Bartlam
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Oliver Hartwig
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Bartlomiej Tywoniuk
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Nikolas Dominik
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Conor P Cullen
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Lisanne Peters
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Tanja Stimpel-Lindner
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| | - Niall McEvoy
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Georg S Duesberg
- Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, University of the Bundeswehr Munich & Center for Integrated Sensor Systems (SENS), Neubiberg 85577, Germany
| |
Collapse
|
9
|
Pandey M, Kumar R. Polymer curing assisted formation of optically visible sub-micron blisters of multilayer graphene for local strain engineering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:245401. [PMID: 35344935 DOI: 10.1088/1361-648x/ac61b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The local or global straining techniques are used to modulate the electronic, vibrational and optical properties of the two-dimensional (2D) materials. However, manipulating the physical properties of a 2D material under a local strain is comparatively more challenging. In this work, we demonstrate an easy and efficient polymer curing assisted technique for the formation of optically visible multilayer graphene (MLG) blisters of different shapes and sizes. The detailed spectroscopic and morphological analyses have been employed for exploring the dynamics of the confined matter inside the sub-micron blisters, which confirms that the confined matter inside the blister is liquid (water). From further analyses, we find the nonlinear elastic plate model as an acceptable model under certain limits for the mechanical analyses of the MLG blisters over the (poly)vinyl alcohol (PVA) polymer film to estimate the MLG-substrate interfacial adhesion energy and confinement pressure inside the blisters. The findings open new pathways for exploiting the technique for the formation of sub-micron blisters of the 2D materials for local strain-engineering applications, as well as the temperature-controlled release of the confined matter.
Collapse
Affiliation(s)
- Mukesh Pandey
- T-GraMS Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India
| | - Rakesh Kumar
- T-GraMS Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India
| |
Collapse
|
10
|
Vasić B, Ralević U, Aškrabić S, Čapeta D, Kralj M. Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures. NANOTECHNOLOGY 2022; 33:155707. [PMID: 34972096 DOI: 10.1088/1361-6528/ac475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2and WS2layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while localI/Vcurves exhibit increased conductivity without undesired potential barriers.
Collapse
Affiliation(s)
- Borislav Vasić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Uroš Ralević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sonja Aškrabić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Davor Čapeta
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| |
Collapse
|
11
|
Mercado E, Anaya J, Kuball M. Impact of Polymer Residue Level on the In-Plane Thermal Conductivity of Suspended Large-Area Graphene Sheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17910-17919. [PMID: 33844921 DOI: 10.1021/acsami.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The presence of polymer transfer residues on graphene surfaces is a major bottleneck to overcome for the commercial and industrial viability of devices incorporating graphene layers. In particular, how clean the surface must be to recover high (>2500 W/mK) thermal conductivity and maximize the heat spreading capability of graphene for thermal management applications remains unclear. Here, we present the first systematic study of the impact of different levels of polymer residues on the in-plane thermal conductivity (κr) of single-layer graphene (SLG) fabricated by chemical vapor deposition (CVD). Control over the quantity of surface residue was achieved by varying the length of time each sample was rinsed in toluene to remove the poly(methyl methacrylate) (PMMA) support layer. The level of residue contamination was assessed using atomic force microscopy (AFM) and optical characterization. The thermal conductivity of the suspended SLG was measured using an optothermal Raman technique. We observed that the presence of polymer surface residue has a significant impact on the thermal properties of SLG, with the most heavily contaminated sample exhibiting a κr as low as (905 +155/-100) W/mK. Even without complete eradication of surface residues, a thermal conductivity as high as (3100 +1400/-900) W/mK was recovered, where the separation between adjacent clusters was sufficiently large (>700 nm). The proportion of the SLG surface covered by residues and the mean separation distance between clusters were found to be key factors in determining the level of κr suppression. This work has important implications for future large-scale graphene fabrication and transfer, particularly where graphene is to be used as a heat spreading layer in devices. The possibility of new opportunities for manipulation of the thermal properties of SLG via PMMA nanopatterning is also raised.
Collapse
Affiliation(s)
- Elisha Mercado
- Centre for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Julian Anaya
- Centre for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Martin Kuball
- Centre for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
12
|
Sanchez DA, Dai Z, Lu N. 2D Material Bubbles: Fabrication, Characterization, and Applications. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Chen S, Son J, Huang S, Watanabe K, Taniguchi T, Bashir R, van der Zande AM, King WP. Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS 2 Devices. ACS OMEGA 2021; 6:4013-4021. [PMID: 33585777 PMCID: PMC7876835 DOI: 10.1021/acsomega.0c05934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) materials and heterostructures are promising candidates for nanoelectronics. However, the quality of material interfaces often limits the performance of electronic devices made from atomically thick 2D materials and heterostructures. Atomic force microscopy (AFM) tip-based cleaning is a reliable technique to remove interface contaminants and flatten heterostructures. Here, we demonstrate AFM tip-based cleaning applied to hBN-encapsulated monolayer MoS2 transistors, which results in electrical performance improvements of the devices. To investigate the impact of cleaning on device performance, we compared the characteristics of as-transferred heterostructures and transistors before and after tip-based cleaning using photoluminescence (PL) and electronic measurements. The PL linewidth of monolayer MoS2 decreased from 84 meV before cleaning to 71 meV after cleaning. The extrinsic mobility of monolayer MoS2 field-effect transistors increased from 21 cm2/Vs before cleaning to 38 cm2/Vs after cleaning. Using the results from AFM topography, photoluminescence, and back-gated field-effect measurements, we infer that tip-based cleaning enhances the mobility of hBN-encapsulated monolayer MoS2 by reducing interface disorder. Finally, we fabricate a MoS2 field-effect transistor (FET) from a tip-cleaned heterostructure and achieved a device mobility of 73 cm2/Vs. The results of this work could be used to improve the electrical performance of heterostructure devices and other types of mechanically assembled van der Waals heterostructures.
Collapse
Affiliation(s)
- Sihan Chen
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangyup Son
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siyuan Huang
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Rashid Bashir
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M. van der Zande
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William P. King
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Vincent T, Hamer M, Grigorieva I, Antonov V, Tzalenchuk A, Kazakova O. Strongly Absorbing Nanoscale Infrared Domains within Strained Bubbles at hBN-Graphene Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57638-57648. [PMID: 33314909 DOI: 10.1021/acsami.0c19334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Graphene has great potential for use in infrared (IR) nanodevices. At these length scales, nanoscale features, and their interaction with light, can be expected to play a significant role in device performance. Bubbles in van der Waals heterostructures are one such feature, which have recently attracted considerable attention, thanks to their ability to modify the optoelectronic properties of two-dimensional (2D) materials through strain. Here, we use scattering-type scanning near-field optical microscopy (sSNOM) to measure the nanoscale IR response from a network of variously shaped bubbles in hexagonal boron nitride (hBN)-encapsulated graphene. We show that within individual bubbles there are distinct domains with strongly enhanced IR absorption. The IR domain boundaries coincide with ridges in the bubbles, which leads us to attribute them to nanoscale strain domains. We further validate the strain distribution in the graphene by means of confocal Raman microscopy and vector decomposition analysis. This shows intricate and varied strain configurations, in which bubbles of different shape induce more bi- or uniaxial strain configurations. This reveals pathways toward future strain-based graphene IR devices.
Collapse
Affiliation(s)
- Tom Vincent
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
| | - Matthew Hamer
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Irina Grigorieva
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, U.K
- National Graphene Institute, University of Manchester, Manchester M13 9PL, U.K
| | - Vladimir Antonov
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
- Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Alexander Tzalenchuk
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, Royal Holloway University of London, Egham TW20 0EX, U.K
| | - Olga Kazakova
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| |
Collapse
|