1
|
Wu H, Zhang Y, Liu B, Liu J, Zhao L, Zhang P, Gao L. Mesoporous Co-MoS 2 with sulfur vacancies: A bifunctional electrocatalyst for enhanced water-splitting reactions in alkaline media. J Colloid Interface Sci 2025; 684:158-169. [PMID: 39793424 DOI: 10.1016/j.jcis.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
As a graphene-like layered material, molybdenum disulfide (MoS2), has attracted increasing attentions for its promising application in electrocatalysis. Whereas MoS2 still suffers from the sluggish reaction kinetics in oxygen evolution reaction (OER) due to the low density of active sites in most exposed planes. In this work, high density of active sites on MoS2 basal planes has been obtained by synthesizing mesoporous MoS2 with Co doping and sulfur vacancies (VS). The synergy of the mesoporous structure, Co doping, and sulfur vacancies resulted in optimized bifunctional electrocatalytic activity for both hydrogen evolution reaction (HER) and OER in alkaline media. The overpotential required to achieve a current density of 10 mA cm-2 (denoted as η10) is 34 mV for HER and 268 mV for OER, respectively. The two-electrode electrolyzer constructed with the as-prepared cobalt-doped mesoporous MoS2 electrodes exhibited a low bias (η10 = 1.58 V) for overall water splitting. Density functional theory (DFT) calculations confirm the significance of Co doping and the S vacancy defects, which lowers the Gibbs free energy (ΔG) for the formation of the corresponding intermediates.
Collapse
Affiliation(s)
- Hongmei Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Yao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Baoshan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Jing Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China.
| | - Liping Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Peng Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China.
| | - Lian Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| |
Collapse
|
2
|
Chen G, Zhang X, Gu Y, Jian J, Zhang Q, Wang Q, Zheng D, Xia L, Wang J, Miao H, Yuan J. Efficiently Re-Utilizing the High-Value Metals in the Spent LiNi 1-x-yMn xCo yO 2 for the Trifunctional Electrocatalysts by a Novel One-Pot Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411337. [PMID: 39821456 DOI: 10.1002/smll.202411337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.5%) and Co (99.9%) into a high-performance multifunctional electrocatalyst (LNMCO-HS-180). LNMCO-HS-180 with single-phase structure shows a hollow microsphere morphology. LNMCO-HS-180 can efficiently catalyze the oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR), with the ORR half-wave potential of 0.732 V and, OER potential of 1.469 V at 10 mA cm-2. This is mainly attributed to the unique hollow microsphere morphology, suitable Ni/Co/Mn oxidation states, and reduction in the free energy barriers for OER and ORR. Additionally, LNMCO-HS-180 exhibits an MOR potential of only 1.43 V at 100 mA cm-2 and excellent formate selectivity (>99%).
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Xin Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Yaozong Gu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Jiafang Jian
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Da Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jianxin Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
3
|
Wang W, Chen Y, Qiao S, Zhao J, Zhao W, Wei Y, Tang Y, Liu C. Constructing Dual-Phase Co 9S 8-CoMo 2S 4 Heterostructure as an Efficient Trifunctional Electrocatalyst for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution Reactions. CHEMSUSCHEM 2025; 18:e202400678. [PMID: 39177178 DOI: 10.1002/cssc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
Designing robust, efficient and inexpensive trifunctional electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is significant for rechargeable zinc-air batteries and water-splitting devices. To this end, constructing heterogenous structures based on transition metals stands out as an effective strategy. Herein, a dual-phase Co9S8-CoMo2S4 heterostructure grown on porous N, S-codoped carbon substrate (Co9S8-CoMo2S4/NSC) via a one-pot synthesis is investigated as the trifunctional ORR/OER/HER electrocatalyst. The optimized Co9S8-CoMo2S4/NSC2 exhibits that ORR has a half-wave potential of 0.86 V (vs. RHE) and the overpotentials at 10 mA cm-2 for OER and HER are 280 and 89 mV, respectively, superior to most transition-metal based trifunctional electrocatalysts reported to date. The Co9S8-CoMo2S4/NSC2-based zinc-air battery (ZAB) has a high open-circuit voltage (1.41 V), large capacity (804 mAh g-1) and highly stable cyclability (97 h at 10 mA cm-2). In addition, the prepared Co9S8-CoMo2S4/NSC2-based ZAB in series can self-drive the corresponding water-splitting device. The dual-phase Co9S8-CoMo2S4 heterostructure provides not only multi-type active sites to drive the ORR, OER and HER, but also high-speed charge transfer channels between two phases to improve the synergistic effect and reaction kinetics.
Collapse
Affiliation(s)
- Wenjie Wang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuqing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Shanshan Qiao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Wenlong Zhao
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yike Wei
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanhong Tang
- Research Institute of HNU in Chongqing, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
4
|
Saji VS. Nanocarbons-Based Trifunctional Electrocatalysts for Overall Water Splitting and Metal-Air Batteries: Metal-Free and Hybrid Electrocatalysts. Chem Asian J 2024; 19:e202400712. [PMID: 39037924 DOI: 10.1002/asia.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Trifunctional electrocatalysts, an exciting class of materials that can simultaneously catalyze hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), can significantly enhance the performance and economic viability of electrochemical energy storage and conversion technologies such as water-splitting electrolyzers, metal-air batteries, fuel cells and their integrated devices. Such multifunctional electrocatalysts encompass multiple active sites that can simultaneously catalyze two or more different electrochemical reactions and are feasible routes for addressing global energy and environmental challenges. This review accounts for nanocarbons-based trifunctional electrocatalysts reported for electrolyzers, metal-air batteries and integrated electrolyzer-battery systems, providing a practical perspective. Metal-free and hybrid (hybrids of nanocarbons and transition metals/compounds) trifunctional electrocatalysts are covered. Given the growing importance of green technologies, we discuss biomass-derived carbon-based trifunctional electrocatalysts separately. The collective information provided in the review could help researchers derive more effective and durable trifunctional electrocatalysts suitable for commercial use.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Wang J, Zhang Y, Liao S, Chen D, Mensah A, Wei Q. MoNP-doped Defective Carbon Fibers with Bark-like Nanosurface as Effective Bifunctional Electrocatalysts for Zn-air Batteries. CHEMSUSCHEM 2024; 17:e202301510. [PMID: 38286748 DOI: 10.1002/cssc.202301510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
The flexible air electrode with high oxygen electrocatalytic performance and outstanding stability under various deformations plays a vital role in high-performance flexible Zn-air batteries (ZABs). Herein, a self-supported Mo, N, and P co-doped carbon cloth (CC) denoted as MoNP@CC with bark-like surface structure is fabricated by a facile two-step approach via a one-pot method and pyrolysis. The surface of the electrode shows a nanoscale "rift valley" and uniformly distributed active sites. Taking advantage of the nano-surface as well as transition metal and heteroatom doping, the self-supported electrocatalysis air electrode exhibits considerable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) performance in terms of low overpotential (388 mV at 10 mA cm-2) for OER and a much positive potential (0.74 V) at 1.0 mA cm-2 for ORR. Furthermore, MoNP@CC is further used for the flexible ZAB to demonstrate its practical application. The MoNP@CC-based ZAB displays a good cycling performance for 2800 min and an open-circuit voltage of 1.44 V. This work provides a new approach to the construction of a high-performance, self-supported electrocatalysis electrode used for a flexible energy storage device.
Collapse
Affiliation(s)
- Jiangbo Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
| | - Yanan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, PR China
| | - Shiqin Liao
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| | - Dongsheng Chen
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| | - Alfred Mensah
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Jiangsu Province, Wuxi, 214122, PR China
- Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, 330201, PR China
| |
Collapse
|
6
|
Chen G, Yuan B, Dang J, Xia L, Zhang C, Wang Q, Miao H, Yuan J. Recycling the Spent LiNi 1- x - yMn xCo yO 2 Cathodes for High-Performance Electrocatalysts toward Both the Oxygen Catalytic and Methanol Oxidation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306967. [PMID: 37992250 DOI: 10.1002/smll.202306967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Indexed: 11/24/2023]
Abstract
The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Bingen Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiaxin Dang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Chunfei Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
7
|
Cai D, Yang Z, Tong R, Huang H, Zhang C, Xia Y. Binder-Free MOF-Based and MOF-Derived Nanoarrays for Flexible Electrochemical Energy Storage: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305778. [PMID: 37948356 DOI: 10.1002/smll.202305778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Indexed: 11/12/2023]
Abstract
The fast development of Internet of Things and the rapid advent of next-generation versatile wearable electronics require cost-effective and highly-efficient electroactive materials for flexible electrochemical energy storage devices. Among various electroactive materials, binder-free nanostructured arrays have attracted widespread attention. Featured with growing on a conductive and flexible substrate without using inactive and insulating binders, binder-free 3D nanoarray electrodes facilitate fast electron/ion transportation and rapid reaction kinetics with more exposed active sites, maintain structure integrity of electrodes even under bending or twisted conditions, readily release generated joule heat during charge/discharge cycles and achieve enhanced gravimetric capacity of the whole device. Binder-free metal-organic framework (MOF) nanoarrays and/or MOF-derived nanoarrays with high surface area and unique porous structure have emerged with great potential in energy storage field and been extensively exploited in recent years. In this review, common substrates used for binder-free nanoarrays are compared and discussed. Various MOF-based and MOF-derived nanoarrays, including metal oxides, sulfides, selenides, nitrides, phosphides and nitrogen-doped carbons, are surveyed and their electrochemical performance along with their applications in flexible energy storage are analyzed and overviewed. In addition, key technical issues and outlooks on future development of MOF-based and MOF-derived nanoarrays toward flexible energy storage are also offered.
Collapse
Affiliation(s)
- Dongming Cai
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Zhuxian Yang
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| | - Rui Tong
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Haiming Huang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Chuankun Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Yongde Xia
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
8
|
Zhai YT, Zhang CH, Wang WM, Hu TD, Wu ZL. Silver Metal-Organic Framework Derived N-Doped Carbon Nanofibers for CO 2 Conversion into β-Oxopropylcarbamates. Inorg Chem 2024; 63:2776-2786. [PMID: 38266170 DOI: 10.1021/acs.inorgchem.3c04306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Developing efficient heterogeneous catalysts for chemical fixation of CO2 to produce high-value-added chemicals under mild conditions is highly desired but still challenging. Herein, we first reported an approach to prepare a novel catalyst (Ag@NCNFs), featuring Ag nanoparticles (NPs) embedded within porous nitrogen-doped carbon nanofibers (NCNFs), via growing a Ag metal-organic framework on one-dimensional electrospun nanofibers followed by pyrolysis. Benefiting from the abundant nitrogen species and porous structure, Ag NPs is well dispersed in the obtained Ag@NCNFs. Catalytic studies indicated that Ag@NCNFs exhibited excellent catalytic activity for the three-component coupling reaction of CO2, secondary amines, and propargylic alcohols to generate β-oxopropylcarbamates under mild conditions with a turnover number (TON) of 16.2, and it can be recycled and reused at least 5 times without an obvious decline in catalytic activity. The reaction mechanism was clearly clarified by FTIR, NMR, 13C isotope labeling, control experiments, and density functional theory calculations. The results suggest that Ag@NCNFs and 1,8-diazabicyclo[5.4.0]undec-7-ene can synergistically activate propargylic alcohol to react with CO2, and then the generated α-alkylidene cyclic carbonate was invaded by secondary amine to produce β-oxopropylcarbamate. Importantly, to the best of our knowledge, this is the first experimental and theoretical investigation on this reaction.
Collapse
Affiliation(s)
- Yu-Ting Zhai
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Cang-Hua Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
| | - Wen-Min Wang
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| | - Tian-Ding Hu
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhi-Lei Wu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, College of Chemistry and Materials Science, Hebei University, Baoding 071002, PR China
- Department of Chemistry, Tianjin University, Tianjin 300354, PR China
| |
Collapse
|
9
|
Dias GDS, Costa JM, Almeida Neto AFD. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Adv Colloid Interface Sci 2023; 315:102891. [PMID: 37058836 DOI: 10.1016/j.cis.2023.102891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
The rechargeable alkaline aqueous zinc-air batteries (ZABs) are prospective candidates to supply the energy demand for their high theoretical energy density, inherent safety, and environmental friendliness. However, their practical application is mainly restricted by the unsatisfactory efficiency of the air electrode, leading to an intense search for high-efficient oxygen electrocatalysts. In recent years, the composites of carbon materials and transition metal chalcogenides (TMC/C) have emerged as promising alternatives because of the unique properties of these single compounds and the synergistic effect between them. In this sense, this review presented the electrochemical properties of these composites and their effects on the ZAB performance. The operational fundamentals of the ZABs were described. After elucidating the role of the carbon matrix in the hybrid material, the latest developments in the ZAB performance of the monometallic structure and spinel of TMC/C were detailed. In addition, we report topics on doping and heterostructure due to the large number of studies involving these specific defects. Finally, a critical conclusion and a brief overview sought to contribute to the advancement of TMC/C in the ZABs.
Collapse
Affiliation(s)
- Giancarlo de Souza Dias
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| | - Josiel Martins Costa
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato St., 80, 13083-862 Campinas, São Paulo, Brazil.
| | - Ambrósio Florêncio de Almeida Neto
- Laboratory of Electrochemical Processes and Anticorrosion, Department of Product and Process Design, School of Chemical Engineering, University of Campinas (UNICAMP), Albert Einstein Av., 500, 13083-852 Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
11
|
Yan L, Song D, Liang J, Li X, Li H, Liu Q. Fabrication of highly efficient Rh-doped cobalt-nickel-layered double hydroxide/MXene-based electrocatalyst with rich oxygen vacancies for hydrogen evolution. J Colloid Interface Sci 2023; 640:338-347. [PMID: 36867930 DOI: 10.1016/j.jcis.2023.02.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
The development of nonprecious metal catalysts for producing hydrogen from economical alkaline water electrolysis that is both stable and efficient is crucial but remains challenging. In this study, Rh-doped cobalt-nickel-layered double hydroxide (CoNi LDH) nanosheet arrays with abundant oxygen vacancies (Ov) in-situ grown on Ti3C2Tx MXene nanosheets (Rh-CoNi LDH/MXene) were successfully fabricated. The synthesized Rh-CoNi LDH/MXene exhibited excellent long-term stability and a low overpotential of 74.6 ± 0.4 mV at -10 mA cm-2 for hydrogen evolution reaction (HER) owing to its optimized electronic structure. Experimental results and density functional theory calculations revealed that the incorporation of Rh dopant and Ov into CoNi LDH and the coupling interface between Rh-CoNi LDH and MXene optimized the hydrogen adsorption energy, which accelerated the hydrogen evolution kinetics, thereby accelerating the overall alkaline HER process. This work presents a promising strategy for designing and synthesizing highly efficient electrocatalysts for electrochemical energy conversion devices.
Collapse
Affiliation(s)
- Liang Yan
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China.
| | - Dan Song
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Jiayu Liang
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Xinyi Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Hao Li
- School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, China
| | - Quanbing Liu
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Duraisamy V, Arumugam N, Almansour AI, Wang Y, Liu TX, Kumar SMS. In situ decoration of Co3O4 on N-doped hollow carbon sphere as an effective bifunctional oxygen electrocatalyst for oxygen evolution and oxygen reduction reactions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
14
|
Using coupled Ni and Zn oxides based on ZIF8 as efficient electrocatalyst for OER. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Sun L, Huang S, Zhao X, Li L, Zhao X, Zhang W. Synergistic Effect of Co 9S 8 and FeS 2 Inlaid on N-Doped Carbon Nanofibers toward a Bifunctional Catalyst for Zn-Air Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11753-11763. [PMID: 36113086 DOI: 10.1021/acs.langmuir.2c01882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of economical and energy-efficient electrocatalysts is essential for the wide-scale application of secondary zinc-air batteries (ZABs). Herein, we prepared Co9S8 and FeS2 nanoparticles inlaid on N-doped carbon nanofibers (Co9S8-FeS2@N-CNFs), which were derived from the in situ growth of Fe-doped ZIF-67 nanosheet arrays on electrospun nanofibers and a subsequent sulfidation process. The Co9S8-FeS2@N-CNFs display excellent electrocatalytic performances for OER (Ej=10, 330 mV) and ORR (E1/2, 0.80 V) as well as a smaller charge and discharge gap (ΔE, 0.76 V) in KOH electrolyte, allowing it to be employed as an attractive air cathode bifunctional catalyst for secondary ZABs. The electrocatalytic performance of the composite materials (Co9S8-FeS2@N-CNFs) is obviously better than that of the single-component materials (FeS2@N-CNFs and Co9S8@N-CNFs). The improved catalytic performance is mainly attributed to the synergistic effect of the two transition-metal sulfides and the optimization of the structure. Furthermore, the peak power density of the assembled aqueous/solid-state ZABs based on Co9S8-FeS2@N-CNFs can reach 214 and 91 mW cm-2 with excellent stability, respectively, which outperforms the ones based on commercial precious-metal-based catalysts. We anticipate that our work will provide new inspiration for the design of MOF-derived sulfides as multifunctional catalysts.
Collapse
Affiliation(s)
- Lixin Sun
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Shuhong Huang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Xinyan Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Ling Li
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Xiaohui Zhao
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| | - Wenming Zhang
- Province-Ministry Co-construction Collaborative Innovation Center of Hebei Photovoltaic Technology, College of Physics Science and Technology, Hebei University, Baoding, Hebei 071002, China
| |
Collapse
|
16
|
Deng X, Gu X, Deng Y, Jiang Z, Chen W, Dang D, Lin W, Chi B. Boosting the activity and stability via synergistic catalysis of Co nanoparticles and MoC to construct a bifunctional electrocatalyst for high-performance and long-life rechargeable zinc-air batteries. NANOSCALE 2022; 14:13192-13203. [PMID: 36047468 DOI: 10.1039/d2nr03918d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The high overpotential of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) leading to slow air cathode kinetics is still a major challenge for zinc-air batteries (ZABs), hindering the commercialization of ZABs. With the advantages of cost-effectiveness and feasibility of synthesis at room temperature, zeolite imidazole frameworks (ZIFs) are regarded as advanced precursors. But a majority of ZIF-derived catalysts show only one catalytic activity, which limits their performance in ZABs as well as the cycling stability. In addition, molybdenum carbide (MoC) is recognized as an excellent candidate for renewable energy conversion due to its good chemical resistance and thermal stability. Herein, we report a ZIF-67-derived Co/MoC-NC multiphase doped carbon bifunctional ORR/OER catalyst with multiple active sites for the cathode of ZABs. The synergistic catalysis of Co nanoparticles and MoC nanoparticles in Co/MoC-NC which are embedded in a thin layer of N-doped graphitic carbon and immobilized on N-doped graphitic carbon, respectively, demonstrates superior ORR catalytic performance and durability both under alkaline and acidic conditions (E1/2 = 0.87 V in 1.0 M KOH and E1/2 = 0.76 V in 0.5 M H2SO4). Simultaneously, Co/MoC-NC also exhibits favorable OER performance (10 mA cm-2, η = 320 mV) in 1 M KOH. Furthermore, a remarkable peak-power density of 215.36 mW cm-2 and great cycling stability could be achieved while applying Co/MoC-NC in the cathode of ZABs (over 300 h). This work will provide a viable design concept for designing and synthesizing multifunctional catalysts to construct rechargeable ZABs.
Collapse
Affiliation(s)
- Xiaohua Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Xianrui Gu
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Yingjie Deng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Zhu Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Wenxuan Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Dai Dang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| | - Wei Lin
- Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bin Chi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
| |
Collapse
|
17
|
Han L, Wu Y, Zhao B, Meng W, Zhang D, Li M, Pang R, Zhang Y, Cao A, Shang Y. Carbon Nanotube-Coupled Seaweed-like Cobalt Sulfide as a Dual-Functional Catalyst for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30847-30856. [PMID: 35759788 DOI: 10.1021/acsami.2c06122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Preparation of high-efficiency dual-functional catalysts remains the bottleneck for electrochemical water splitting. To prepare a non-precious metal catalyst with high activity and stability, here, we present a seaweed-like structure consisting of transition-metal sulfide nanoplates self-assembled on carbon nanotube sponge networks (SW-CoS@CNT). By adjusting the key parameters during synthesis (e.g., the loading amount and ratio of Co and S precursors), the microstructure can be tailored in a wide range, and sulfur defects can be introduced into the nanoplates by thermal annealing. The resulting SW-CoS@CNT serves as a freestanding dual-functional catalytic electrode, showing low overpotentials of 105 and 218 mV for the hydrogen evolution reaction and the oxygen evolution reaction, respectively, which are superior to most reported transition-metal-sulfide-based catalysts in alkaline solution. Rational design of this hierarchical biomimetic structure may be useful in developing high-performance electrochemical catalysts in renewable energy and environmental fields.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yizeng Wu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Bo Zhao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Weixue Meng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| | - Anyuan Cao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, PR China
| |
Collapse
|
18
|
Yu H, Xie S, Yang J, Lv J, Tan W, Yin J, Wang J, Zhao M, Wang C, Zhang M, He G, Yang L. Co3Fe7/Mo2C co-embedded in N-codoped porous carbon with accelerated kinetics for OER and HER. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbon nanofibers (CNFs) are the most basic structure of one-dimensional nanometer-scale sp2 carbon. The CNF’s structure provides fast current transfer and a large surface area and it is widely used as an energy storage material and as a sensor electrode material. Electrospinning is a well-known technology that enables the production of a large number of uniform nanofibers and it is the easiest way to mass-produce CNFs of a specific diameter. In this review article, we introduce an electrospinning method capable of manufacturing CNFs using a polymer precursor, thereafter, we present the technologies for manufacturing CNFs that have a porous and hollow structure by modifying existing electrospinning technology. This paper also discusses research on the applications of CNFs with various structures that have recently been developed for sensor electrode materials and energy storage materials.
Collapse
|
20
|
Sandwich-like superstructure of in-situ self-assembled hetero-structured carbon nanocomposite for improving electrocatalytic oxygen reduction. J Colloid Interface Sci 2022; 616:34-43. [DOI: 10.1016/j.jcis.2022.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022]
|
21
|
Feng X, Jiao Q, Zhang J, Cui H, Li H, Zhao Y, Feng C. Integrating Amorphous Molybdenum Sulfide Nanosheets with a Co 9S 8@Ni 3S 2 Array as an Efficient Electrocatalyst for Overall Water Splitting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3469-3479. [PMID: 35275491 DOI: 10.1021/acs.langmuir.1c03264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is highly challenging to design low-cost, efficient electrocatalysts for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a hierarchical heterostructure was constructed on three-dimensional (3D) Ni foam, which contains Ni3S2 nanorods decorated with both Co9S8 and amorphous MoSx nanosheets and Ni3S2 nanowires decorated with amorphous MoSx nanosheets, namely, MoSx@Co9S8@Ni3S2/NF. The synergistic effects from the strong interactions of the heterointerface and unique hierarchical heterostructure endow the MoSx@Co9S8@Ni3S2/NF with abundant active sites and effective mass and electron transport pathways, resulting in excellent activity toward both HER and OER in 1 M KOH. It only gives a low overpotential of 76.5 mV to achieve 10 mA cm-2 for HER and a low overpotential of 310 mV to achieve 100 mA cm-2 for OER. Based on the superior catalytic activity of MoSx@Co9S8@Ni3S2/NF for OER and HER, we demonstrated the activity of overall water splitting using MoSx@Co9S8@Ni3S2/NF as both the anode and cathode. It shows a higher catalytic activity for overall water splitting with a low cell voltage of 1.52 V at 10 mA cm-2 than commercial Pt/C/NF||IrO2/NF (1.61 V) and superior stability. This work provides a platform for the design and preparation of efficient electrocatalysts with various hierarchical heterostructures.
Collapse
Affiliation(s)
- Xueting Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Qingze Jiao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- School of Materials and Environment, Beijing Institute of Technology, Jinfeng Road No.6, Xiangzhou District, Zhuhai 519085, People's Republic of China
| | - Jiatao Zhang
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Huiru Cui
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hansheng Li
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yun Zhao
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Caihong Feng
- Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
22
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
23
|
Xu Y, Li N, Wang R, Xu L, Liu Z, Jiao T, Liu Z. Self-assembled FeP/MoP co-doped nanoporous carbon matrix for hydrogen evolution application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Liu J, Zhou J, Leung MKH. Valence Engineering of Polyvalent Cobalt Encapsulated in a Carbon Nanofiber as an Efficient Trifunctional Electrocatalyst for the Zn-Air Battery and Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4399-4408. [PMID: 35014796 DOI: 10.1021/acsami.1c18384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid development of electrochemical power systems has prompted high demand for nonprecious trifunctional electrocatalysts with superior performance, prolonged stability, and low cost for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Here, a valence engineering strategy is devised to construct a morphology with polyvalent cobalt encapsulated in nitrogen-doped carbon nanofibers (Co/N-CNFs). The diverse cobalt valence states of the Co/N-CNF catalysts contribute to their excellent catalytic effect and high durability in multiple electrochemical processes. The optimal Co/N-CNF catalyst fabricated exhibits a high half-wave potential of ORR (0.86 V) and low overpotentials of OER (380 mV) and HER (241 mV) at 10 mA cm-2. The Co/N-CNF-based Zn-air battery possesses a high charge-discharge efficiency as well as a good cycle stability (50 h at 10 mA cm-2 and 120 h at 20 mA cm-2), much superior to the Pt/C-based batteries. Furthermore, the Co/N-CNF catalyst could perform efficient overall water splitting.
Collapse
Affiliation(s)
- Jin Liu
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Jinsong Zhou
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Michael K H Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Ye L, Zhang Y, Guo B, Cao D, Gong Y. Ru doping induces the construction of a unique core-shell microflower self-supporting electrocatalyst for highly efficient overall water splitting. Dalton Trans 2021; 50:13951-13960. [PMID: 34528985 DOI: 10.1039/d1dt02341a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the large reaction energy barrier caused by multi-step electron transfer processes of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) gravely restricts the practical application of electrocatalytic water splitting, it is urgent to develop a dual-functional electrocatalyst which can effectively reduce the reaction energy barrier and actually speed up the reaction. Herein, the Ru species are doped into the complex of magnetite and FeNi-layered double hydroxide by a one-step oil bath method, and a self-supporting binder-free bifunctional electrocatalyst was synthesized on the surface of iron foam (named Ru-Fe3O4@FeNi-LDH/IF). The unique 3D core-shell microflower structure of Ru-Fe3O4@FeNi-LDH/IF, the combination of active ingredient and conductive substrate, together with the doping of Ru may immensely provide a large number of active sites, adjust the electronic structure, accelerate electron transfer, and thus greatly improve the electrocatalytic activity and durability. It is worth mentioning that when Ru-Fe3O4@FeNi-LDH/IF is used as the anode and cathode for overall water splitting, only 1.52 V battery voltage can generate a current density of 10 mA cm-2, and also maintain a prominent stability for at least 36 hours. This work provides a feasible strategy for heteroatom-doping LDH as a bifunctional electrocatalyst.
Collapse
Affiliation(s)
- Lei Ye
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yeqing Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Buwen Guo
- School of Management, Xizang Minzu University, Xianyang 712082, PR China
| | - Duanlin Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China.
| | - Yaqiong Gong
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
26
|
Chen TW, Kalimuthu P, Anushya G, Chen SM, Mariyappan V, Ramachandran R. Recent Progress in the Development of Advanced Functionalized Electrodes for Oxygen Evolution Reaction: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4420. [PMID: 34442943 PMCID: PMC8400293 DOI: 10.3390/ma14164420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Presently, the global energy demand for increasing clean and green energy consumption lies in the development of low-cost, sustainable, economically viable and eco-friendly natured electrochemical conversion process, which is a significant advancement in different morphological types of advanced electrocatalysts to promote their electrocatalytic properties. Herein, we overviewed the recent advancements in oxygen evolution reactions (OERs), including easy electrode fabrication and significant action in water-splitting devices. To date, various synthetic approaches and modern characterization techniques have effectively been anticipated for upgraded OER activity. Moreover, the discussed electrode catalysts have emerged as the most hopeful constituents and received massive appreciation in OER with low overpotential and long-term cyclic stability. This review article broadly confers the recent progress research in OER, the general mechanistic approaches, challenges to enhance the catalytic performances and future directions for the scientific community.
Collapse
Affiliation(s)
- Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK;
| | - Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia;
| | - Ganesan Anushya
- Department of Physics, S.A.V. Sahaya Thai Arts and Science (Women) College, Sahayam Nagar, Kumarapuram Road, Vadakkankulam, Tirunelveli 627116, India;
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Vinitha Mariyappan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan;
| | - Rasu Ramachandran
- Department of Chemistry, The Madura College, Vidya Nagar, Madurai 625011, India
| |
Collapse
|
27
|
Lu Y, Liu C, Xing Y, Xu Q, Hossain AMS, Jiang D, Li D, Zhu J. Synergistically integrated Co 9S 8@NiFe-layered double hydroxide core-branch hierarchical architectures as efficient bifunctional electrocatalyst for water splitting. J Colloid Interface Sci 2021; 604:680-690. [PMID: 34280766 DOI: 10.1016/j.jcis.2021.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/29/2022]
Abstract
Efficient, low-cost, and robust electrocatalysts development for overall water splitting is highly desirable for renewable energy production yet still remains challenging. In this work, Co9S8 nanoneedles arrays are synergistically integrated with NiFe-layered double hydroxide (NiFe-LDH) nanosheets to form Co9S8@NiFe-LDH core-branch hierarchical architectures supported on nickel foam (Co9S8@NiFe-LDH HAs/NF). The Co9S8@NiFe-LDH HAs/NF exhibits high catalytic performances for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) with overpotential of 190 and 145 mV at 10 mA cm-2, respectively. The density functional theory calculations predict that the synergy between Co9S8 and NiFe-LDH contributes to the high catalytic performance by lowering the energy barrier of HER. When used as both anode and cathode electrocatalyst, it can deliver 10 mA cm-2 at a low cell voltage of 1.585 V with excellent long-term durability. This work opens a new avenue toward the exploration of highly efficient and stable electrocatalyst for overall water splitting.
Collapse
Affiliation(s)
- Yikai Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenchen Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yingying Xing
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
28
|
Xia C, Zhou Y, He C, Douka AI, Guo W, Qi K, Xia BY. Recent Advances on Electrospun Nanomaterials for Zinc–Air Batteries. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chenfeng Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Yansong Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Chaohui He
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Abdoulkader Ibro Douka
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Wei Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Kai Qi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Wuhan National Laboratory for Optoelectronics School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 China
| |
Collapse
|
29
|
Goswami C, Yamada Y, Matus EV, Ismagilov IZ, Kerzhentsev M, Bharali P. Elucidating the Role of Oxide-Oxide/Carbon Interfaces of CuO x-CeO 2/C in Boosting Electrocatalytic Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15141-15152. [PMID: 33256414 DOI: 10.1021/acs.langmuir.0c02754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, we report the synthesis and bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities of a CuOx-CeO2/C electrocatalyst (EC) with rich oxide-oxide and oxide-carbon interfaces. It not only demonstrates a smaller Tafel slope (65 mV dec-1) and higher limiting current density (-5.03 mA cm-2) but also exhibits an onset potential (-0.10 V vs Ag/AgCl) comparable to that of benchmark Pt/C. Besides undergoing the favorable direct four-electron ORR pathway, it unveils a loss of 23% of its initial current after 6 h of a stability test and a negative shift of 4 mV in the half-wave potential after the accelerated durability test compared to the corresponding current loss of 28% and negative shift of 20 mV for Pt/C. It also reveals remarkable OER activity in an alkaline medium with a low onset potential (0.20 V) and a smaller Tafel slope (177 mV dec-1). The bifunctional ORR/OER activity of CuOx-CeO2/C EC can be ascribed to the synergistic effects, its unique structure with enriched oxygen vacancies owing to the presence of Ce4+/Ce3+, robust oxide-oxide and oxide-carbon heterointerfaces, and homogeneous dispersion of oxides over the carbon bed, which facilitates faster electronic conduction.
Collapse
Affiliation(s)
- Chiranjita Goswami
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784 028, Assam, India
| | - Yusuke Yamada
- Department of Applied Chemistry & Bioengineering, Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ekaterina V Matus
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Ilyas Z Ismagilov
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mikhail Kerzhentsev
- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pankaj Bharali
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784 028, Assam, India
| |
Collapse
|
30
|
Wu H, Wang J, Jin W, Wu Z. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. NANOSCALE 2020; 12:18497-18522. [PMID: 32839807 DOI: 10.1039/d0nr04458j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing efficient and low-cost electrocatalysts with unique nanostructures is of great significance for improved electrocatalytic reactions, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Two-dimensional (2D) metal-organic frameworks (MOFs) have attracted recent attention because of their unique dimension-related properties, such as ultrathin thickness, large specific surface area, and abundant accessible active sites that can act as good precursors for the derivation of a variety of nanocomposites as active materials in electrocatalysis and energy-related devices. In this review, we present recent developments in 2D MOF-derived nanomaterials for hydrogen and oxygen reactions in overall water-splitting and rechargeable Zn-air batteries. The advantages of various synthetic strategies are summarized and discussed in detail. Finally, we discuss the main challenges and future perspectives of the development of 2D MOF-derived electrocatalysts.
Collapse
Affiliation(s)
- Hengbo Wu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
31
|
Wang Y, Cao Q, Guan C, Cheng C. Recent Advances on Self-Supported Arrayed Bifunctional Oxygen Electrocatalysts for Flexible Solid-State Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002902. [PMID: 32639086 DOI: 10.1002/smll.202002902] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Flexible solid-state Zn-air batteries have been rapidly developed benefiting from the uprising demand for wearable electronic devices, wherein the air electrode integrated with efficient bifunctional oxygen electrocatalysts plays an important role to achieve high performance. Binder-free self-supported bifunctional catalysts can provide large active surface area, fast electron transport path, easy ion diffusion, and excellent structural stability and flexibility, thus acting as promising flexible air cathodes. In this review, recent advances on the application of nanoarrayed electrocatalysts as air cathodes in flexible Zn-air batteries are reviewed. Especially, various types of bifunctional oxygen electrocatalysts, including carbonaceous material arrays, transition metal compound arrays, transition metal/carbon arrays, transition metal compound/carbon arrays, and other hybrid arrays, are discussed. The applications of flexible Zn-air batteries with two configurations (i.e., planar stacks and cable fibers) are also introduced. Finally, perspectives on the optimization of arrayed air cathodes for future development to achieve high-performance flexible Zn-air batteries are shared.
Collapse
Affiliation(s)
- Yijie Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qinghe Cao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Cao Guan
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chuanwei Cheng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
32
|
Bai F, Qu X, Wang J, Chen X, Yang W. Confinement Catalyst of Co 9S 8@N-Doped Carbon Derived from Intercalated Co(OH) 2 Precursor and Enhanced Electrocatalytic Oxygen Reduction Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33740-33750. [PMID: 32633487 DOI: 10.1021/acsami.0c08267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen reduction reaction (ORR) is an important cathode reaction in fuel cells and metal-air batteries. Composites of transition-metal sulfides (TMSs) and nitrogen-doped carbon (NC) are promising alternative ORR catalysts because of their high catalytic activity. However, the agglomeration of TMS particles limits practical applications. Here, a confinement catalyst composed of Co9S8@NC with a flower-like morphology was derived from metanilic intercalated Co(OH)2 through interlayer-confined carbonation accompanied with host-layer sulfidation. The surface of the Co9S8 particles is covered with a few layers of nitrogen-doped graphene, which can prevent the Co9S8 particles from agglomeration and also produce catalytic activity affected by internal Co9S8. Thus, the Co9S8@NC material achieves excellent ORR performance with a half-wave potential of 0.861 VRHE. In addition, an oxide layer on the surface of Co9S8@NC is fabricated shortly after the ORR starts. Further tests and density functional theory calculations indicated that this cobalt oxide layer can increase the electrochemically active area of Co9S8@NC as well as reduce the ORR energy barrier, thereby providing more catalytic active sites and enhancing the intrinsic catalytic activity, thus achieving a self-activation effect during the electrochemical reaction process.
Collapse
Affiliation(s)
- Fan Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Qu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|