1
|
Zhao Y, Wen Y, Xu X, Fan M, Guo S, Chen Z, Zhao X, Wang B, Huang W. Removal of Cu(II) and Cr(VI) from electroplating wastewater by magnetic Fe 3O 4@SiO 2-UiO-66-EDTA: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2025; 278:121647. [PMID: 40252797 DOI: 10.1016/j.envres.2025.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The heavy metals discharged from electroplating wastewater, represented as copper and chromium ions, is harmful to aquatic lives and human beings, and will break the ecological balance. In this work, magnetic hybrid porous structure adsorbent of Fe3O4@SiO2-UiO-66-EDTA is prepared for recycling copper and chromium ions. The adsorbent exhibits a maximum adsorption capacity of 212.10 mg/g for Cu(II) and 118.10 mg/g for Cr(VI). Notably, it shows excellent regenerability of 80.89% after 10 cycles. The adsorption of Cu(II) and Cr(VI) on Fe3O4@SiO2-UiO-66-EDTA follows the pseudo-second-order model, where chemical adsorption is dominant and it occurs spontaneously and exothermally. Based on XRD, FTIR, XPS, and DFT calculations, the adsorption mechanisms are driven by electrostatic attraction, chelation, and redox reactions. This work provides a novel and promising strategy for designing highly efficient adsorbents, paving the way for more effective treatments of electroplating wastewater contaminated with Cu(II) and Cr(VI).
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Yueli Wen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA.
| | - Xiaonuo Xu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Maohong Fan
- Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China
| | - Shiyun Guo
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Zhiju Chen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Xiaoxiao Zhao
- Bureau of Industry and Information Technology of Linshu, Linyi, 276700, Shandong, China
| | - Bin Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA; Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China.
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
2
|
Jiang Z, Song T, Huang B, Qi C, Peng Z, Wang T, Li Y, Ye L. Hollow Biomass Adsorbent Derived from Platanus Officinalis Grafted with Polydopamine-Mediated Polyethyleneimine for the Removal of Eriochrome Black T from Water. Molecules 2024; 29:5730. [PMID: 39683889 DOI: 10.3390/molecules29235730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Platanus officinalis fibers (PFs) taking advantage of high-availability, eco-friendly and low-cost characteristics have attracted significant focus in the field of biomaterial application. Polyethyleneimine grafted with polydopamine on magnetic Platanus officinalis fibers (PEI-PDA@M-PFs) were prepared through a two-step process of mussel inspiration and the Michael addition reaction, which can work as an effective multifunctional biomass adsorbent for anionic dye with outstanding separation capacity and efficiency. The as-prepared PEI-PDA@M-PFs possess desirable hydrophilicity, magnetism and positive charge, along with abundant amino functional groups on the surface, facilitating efficient adsorption and the removal of Eriochrome Black T (EBT) dyes from water. In addition to the formation mechanism, the adsorption properties, including adsorption isotherms, kinetics, and the reusability of the absorbent, were studied intensively. The as-prepared PEI-PDA@M-PFs achieved a theoretical maximum adsorption capacity of 166.11 mg/g under optimal conditions (pH 7.0), with 10 mg of the adsorbent introduced into the EBT solution. The pseudo-second-order kinetic and Langmuir models were well matched with experimental data. Moreover, thermodynamic data ΔH > 0 revealed homogeneous chemical adsorption with a heat-absorption reaction. The adsorbent remained at high stability and recyclability even after five cycles of EBT adsorption processes. These above findings provide new insights into the adsorption processes and the development of biologic material for sustainable applications.
Collapse
Affiliation(s)
- Zefeng Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tongyang Song
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Bowen Huang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Chengqiang Qi
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Zifu Peng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tong Wang
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Yuliang Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Linjing Ye
- School of Water and Environment, Chang'an University, Xi'an 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China
- Key Laboratory of Eco-Hydrology and Water Security in Arid and Semi-Arid and Regions, Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
3
|
Mashkoor F, Shoeb M, Khan MN, Jeong C. Facile Synthesis of Polypyrrole-Decorated RGO-CuS Nanocomposite for Efficient Nickel Removal from Wastewater. Polymers (Basel) 2024; 16:3138. [PMID: 39599229 PMCID: PMC11598025 DOI: 10.3390/polym16223138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Efficient wastewater treatment, particularly the removal of heavy metal ions, remains a challenging priority in environmental remediation. This study introduces a novel sandwich-structured nanocomposite, RGO-CuS-PPy, composed of reduced graphene oxide (RGO), copper sulfide (CuS), and polypyrrole (PPy), synthesized via a straightforward hydrothermal method. The unique combination of RGO, CuS, and PPy offers enhanced adsorption capacity for Ni(II) ions due to RGO's high surface area and CuS's active binding sites, supported by PPy's structural stability contributions. This study is among the first to explore this specific nanocomposite architecture for Ni(II) removal, achieving an adsorption capacity of 166.67 mg/g and a high removal efficiency of 94.9% within 210 min for 55 mg/L of Ni(II) concentration at pH 6 and adsorbent dose of 3 mg/15 mL. The kinetic analysis shows the best fitted time-dependent experimental data with the pseudo-second-order model, indicating chemisorption. Isotherm studies confirmed the Langmuir model as the best fit, yielding a high monolayer adsorption capacity of 166.67 mg/g. Thermodynamic analysis shows the adsorption process was endothermic (ΔH° = 80.23 kJ/mol) and spontaneous (ΔG° ranging from -6.985 to -14.399 kJ/mol). Additionally, reusability tests using 0.1 M HCl for desorption demonstrated good reusability, emphasizing the RGO-CuS-PPy nanocomposite's potential as a sustainable adsorbent for Ni(II) removal in wastewater treatment applications.
Collapse
Affiliation(s)
| | | | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (F.M.); (M.S.); (M.N.K.)
| |
Collapse
|
4
|
Shoeb M, Mashkoor F, Khan MN, Jeong C. Polyindole-Functionalized RGO-NiFe 2O 4-SiO 2 Nanocomposite: A Dual-Functional Nanomaterial for Efficient Antimony Adsorption and Subsequent Application in Supercapacitor. Polymers (Basel) 2024; 16:3084. [PMID: 39518290 PMCID: PMC11548570 DOI: 10.3390/polym16213084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Effective wastewater treatment remains a critical challenge, especially when dealing with hazardous pollutants like antimony (Sb(III)). This study addresses this issue by using innovative nanocomposites to remove Sb(III) ions from water, while simultaneously repurposing the spent adsorbents for energy storage applications. We developed reduced graphene oxide-NiFe2O3-SiO2-polyindole nanocomposites (RGO-NiFe2O3-SiO2-PIn NCs) via a hydrothermal synthesis method, achieving a high removal efficiency of 91.84% for Sb(III) ions at an initial concentration of 50 mg/L at pH 8. After adsorption, the exhausted adsorbent was repurposed for energy storage, effectively minimizing secondary pollution. The Sb(III)-loaded adsorbent (RGO-NiFe2O3-SiO2-PIn@SbOx) exhibited excellent performance as an energy storage material, with a specific capacitance (Cs) of 701.36 F/g at a current density of 2 A/g and a retention rate of 80.15% after 10,000 cycles. This dual-purpose approach not only advances wastewater treatment technologies but also contributes to sustainable and economical recycling practices, particularly in the field of energy storage.
Collapse
Affiliation(s)
| | | | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.S.); (F.M.); (M.N.K.)
| |
Collapse
|
5
|
Shoeb M, Mashkoor F, Khan MN, Jeong C. A Facile Synthesis of RGO-Ag 2MoO 4 Nanocomposites for Efficient Lead Removal from Aqueous Solution. Molecules 2024; 29:5152. [PMID: 39519793 PMCID: PMC11547552 DOI: 10.3390/molecules29215152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Efficiently treating wastewater, particularly the elimination of heavy metal ions from water systems, continues to be one of the most pressing and complex challenges in modern environmental management. In this work, reduced graphene oxide coupled silver molybdate binary nanocomposites (RGO-Ag2MoO4 NCs) have been prepared via hydrothermal method. The crystalline nature and surface properties of the developed RGO-Ag2MoO4 NCs were proved by XRD, FTIR, SEM, and EDS techniques. Adsorption experiments demonstrated that the nanocomposites (NCs) effectively removed Pb(II) ions within 120 min, achieving a maximum removal efficiency ranging from 94.96% to 86.37% for Pb(II) concentrations between 20 and 100 mg/L at pH 6. Kinetic studies showed that the adsorption process followed a pseudo-second order model. Isotherm analysis presented that the Langmuir model provided the greatest fit for the equilibrium data, with a monolayer adsorption capacity of 128.94 mg/g. Thermodynamic analysis revealed that the adsorption process was spontaneous and endothermic. The results of this study highlight RGO-Ag2MoO4 NCs as a highly promising and eco-friendly material for the effective elimination of Pb(II) ions from wastewater. Their strong adsorption capacity, coupled with sustainable properties, makes them an efficient solution for addressing lead contamination, offering significant potential for practical applications in water treatment systems.
Collapse
Affiliation(s)
| | | | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (M.S.); (F.M.); (M.N.K.)
| |
Collapse
|
6
|
Li M, Prévot V, You Z, Forano C. Highly selective and efficient Pb 2+ capture using PO 4-loaded 3D-NiFe layer double hydroxides derived from MIL-88A. CHEMOSPHERE 2024; 364:143070. [PMID: 39142393 DOI: 10.1016/j.chemosphere.2024.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Lead (Pb) contamination in water requires improved decontamination technologies. The addition of phosphate to precipitate Pb2+ is a widely used method for remediating Pb in soil and water, though it has certain limitations. This study focuses on novel 3D mesoporous layered double hydroxide (LDH) sorbents functionalized with phosphate anions for Pb2+ removal from contaminated waters. Our innovative strategy involves converting a sacrificial template metal-organic frameworks (MOFs) structure (MIL-88A(Fe)) into NixFe LDH, followed by an anion exchange reaction with phosphate anions. This process preserves the 3D microrod architecture of MIL-88A and prevents deleterious LDH particle aggregation. The synthesis results in stable microrod crystals, 1-2 μm long, composed of 3D assemblies of NixFe-PO4 LDH nanoplatelets with a specific surface area exceeding 110 m2/g. The novel LDH materials display fast adsorption kinetics (pseudo-second order model) and remarkably high Pb2+ removal performances (Langmuir isotherm model) with a capacity of 538 mg/g, surpassing other reported adsorbents. LDH-PO4 exhibits high selectivity for Pb2+ over competing ions like Ni2+ and Cd2+ (selectivity order is: Pb2+ > Ni2+ > Cd2+). Removal of Pb2+ from NixFeLDH/88A-PO4 involves various mechanisms, including surface complexation and surface precipitation of lead phosphate or lead hydroxide phases as revealed by structural characterization techniques.
Collapse
Affiliation(s)
- Mengwei Li
- School of Resource and Environmental Sciences, Wuhan University, China; Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France
| | - Zhixiong You
- School of Resource and Environmental Sciences, Wuhan University, China.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont- Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Kandel DR, Poudel MB, Radoor S, Chang S, Lee J. Decoration of dandelion-like manganese-doped iron oxide microflowers on plasma-treated biochar for alleviation of heavy metal pollution in water. CHEMOSPHERE 2024; 357:141757. [PMID: 38583537 DOI: 10.1016/j.chemosphere.2024.141757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
Carbon-based biowaste incorporated with inorganic oxides as a composite is an enticing option to mitigate heavy metal pollution in water resources due to its more economical and efficient performance. With this in mind, we constructed manganese-doped iron oxide microflowers resembling the dandelion-like structure on the surface of cold plasma-treated carbonized rice husk (MnFe2O3/PCRH). The prepared composite exhibited 45% and 19% higher removal rates for Cu2+ and Cd2+, respectively than the pristine CRH. The MnFe2O3/PCRH composite was characterized using XRD, FTIR, FESEM, EDX, HR-TEM, XPS, BET, TGA, and zeta potential, while the adsorption capacities were investigated as a function of pH, time, and initial concentration in batch trials. As for the kinetics, the pseudo-second-order was the rate-limiting over the pseudo-first-order and Elovich model, demonstrating that the chemisorption process governed the adsorption of Cu2+ and Cd2+. Additionally, the maximum adsorption capacities of the MnFe2O3/PCRH were found to be 122.8 and 102.5 mg/g for Cu2+ and Cd2+, respectively. Based on thorough examinations by FESEM-EDS, FTIR, and XPS, the possible mechanisms for the adsorption can be ascribed to surface complexation by oxygen-containing groups, a dissolution-precipitation of the ions with -OH groups, electrostatic attraction between metal ions and the adsorbent's partially charged surface, coordination of Cu2+ and Cd2+ with π electrons by aromatic/graphitic carbon in the MnFe2O3/PCRH, and pore filling and diffusion. Lastly, the adsorption efficiencies were maintained at about 70% of its initial adsorption even after five adsorption-desorption cycles, displaying its remarkable stability and reusability.
Collapse
Affiliation(s)
- Dharma Raj Kandel
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Milan Babu Poudel
- Department of Convergence Technology Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Sabarish Radoor
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Seungwon Chang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea
| | - Jaewoo Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of Polymer-Nano Science and Technology, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea; Department of JBNU-KIST Industry-Academia Convergence Research, Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
8
|
Lin X, Song MH, Li W, Wei W, Wu X, Mao J, Yun YS. Optimized design of quaternary amino-functionalized chitosan fibers for ultra-high diclofenac adsorption from wastewater. CHEMOSPHERE 2024; 357:141970. [PMID: 38608776 DOI: 10.1016/j.chemosphere.2024.141970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from water bodies is imperative due to the potential harm to humans and the ecosystem caused by NSAID-contaminated water. Quaternary amino-functionalized epichlorohydrin cross-linked chitosan fibers (QECFs), an economical and eco-friendly adsorbent, were successfully prepared using a simple and gentle method for efficient diclofenac (DCF) adsorption. Additionally, the optimized factors for the preparation of QECFs included epichlorohydrin concentration, pH, temperature, and (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHTAC) concentration. QECFs demonstrated excellent adsorption performance for DCF across a broad pH range of 7-12. The calculated maximum adsorption capacity and the amount of adsorbed DCF per adsorption site were determined to be 987.5 ± 20.1 mg/g and 1.2 ± 0.2, respectively, according to the D-R and Hill isotherm models, at pH 7 within 180 min. This performance surpassed that of previously reported adsorbents. The regeneration of QECFs could be achieved using a 0.5 mol/L NaOH solution within 90 min, with QECFs retaining their original fiber form and experiencing only a 9.18% reduction in adsorption capacity after 5 cycles. The Fourier transform infrared spectrometer and X-ray photoelectron spectroscopy were used to study the characterization of QECFs, the preparation mechanism of QECFs, and the adsorption mechanism of DCF by QECFs. Quaternary ammonium groups (R4N+) were well developed in QECFs through the reaction between amino/hydroxyl groups on chitosan and CHTAC, and approximately 0.98 CHTAC molecule with 0.98 R4N+ group were immobilized on each chitosan monomer. Additionally, these R4N+ on QECFs played a crucial role in the removal of DCF.
Collapse
Affiliation(s)
- Xiaoyu Lin
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Myung-Hee Song
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Wenhao Li
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Wei
- School of Geographic Sciences, Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Nanhu Road 237, Xinyang, 464000, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Juan Mao
- School of Environmental Science and Engineering, Key Laboratory of Water and Wastewater Treatment (HUST), MOHURD, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yeoung-Sang Yun
- School of Chemical Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea.
| |
Collapse
|
9
|
Shen Z, Zhang WM, Shan Z, Li SF, Zhang G, Su J. Bimetal-Organic Frameworks Incorporating Both Hard and Soft Base Active Sites for Heavy Metal Ion Capture. Inorg Chem 2024; 63:8615-8624. [PMID: 38668738 DOI: 10.1021/acs.inorgchem.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of stable porous materials capable of removing both hard and soft metal ions pose a significant challenge. In this study, a novel metal-organic framework (MOF) adsorbent named CdK-m-COTTTB was developed. This MOF material was constructed using sulfur-rich m-cyclooctatetrathiophene-tetrabenzoate (m-H4COTTTB) as the organic ligand and oxygen-rich bimetallic clusters as the inorganic nodes. The incorporation of both soft and hard base units within the MOF structure enables effective removal of various heavy metal ions, including both soft and hard acid species. In single-component experiments, the adsorption capacity of CdK-m-COTTTB for Pb2+, Tb3+, and Zr4+ ions reached levels of 636.94, 432.90, and 357.14 mg·g-1, respectively, which is comparable to specific MOF absorbents. The rapid adsorption process was found to be chemisorption. Furthermore, CdK-m-COTTTB exhibited the capability to remove at least 12 different metal ions in both separate and multicomponent solutions. The material demonstrated excellent acid-base stability and renewability, which are advantageous for practical applications. CdK-m-COTTTB represents the first reported pristine MOF material for the removal of both hard and soft acid metal ions. This work serves as inspiration for the design and synthesis of porous crystalline materials that can efficiently remove diverse heavy metal pollutants.
Collapse
Affiliation(s)
- Zhan Shen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Wei-Miao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Zhen Shan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Shu-Fan Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Gen Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jian Su
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
10
|
Ali I, Wan P, Peng C, Tan X, Sun H, Li J. Integration of metal organic framework nanoparticles into sodium alginate biopolymer-based three-dimensional membrane capsules for the efficient removal of toxic metal cations from water and real sewage. Int J Biol Macromol 2024; 266:131312. [PMID: 38582471 DOI: 10.1016/j.ijbiomac.2024.131312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Sodium alginate (SA) biopolymer has been recognized as an efficient adsorbent material owing to their unique characteristics, including biodegradability, non-toxic nature, and presence of abundant hydrophilic functional groups. Accordingly, in the current research work, UiO-66-OH and UiO-66-(OH)2 metal organic framework (MOF) nanoparticles (NPs) have been integrated into SA biopolymer-based three-dimensional (3-D) membrane capsules (MCs) via a simple and facile approach to remove toxic metal cations (Cu2+ and Cd2+) from water and real sewage. The newly configured capsules were characterized by FTIR, SEM, XRD, EDX and XPS analyses techniques. Exceptional sorption properties of the as-developed capsules were ensured by evaluation of the pertinent operational parameters, i.e., contents of MOF-NPs (1-100 wt%), adsorbent dosage (0.001-0.05 g), content time (0-360 h), pH (1-8), initial concentration of metal cations (5-1000 mg/L) and reaction temperature (298.15-333.15 K) on the eradication of Cu2+ and Cd2+ metal cations. It was found that hydrophilic functional groups (-OH and -COOH) have performed an imperative role in the smooth loading of MOF-NPs into 3-D membrane capsules via intra/inter-molecular hydrogen bonding and van der waals potencies. The maximum monolayer uptake capacities (as calculated by the Langmuir isotherm model) of Cd2+ and Cu2+ by 3-D SGMMCs-OH were 940 and 1150 mg/g, respectively, and by 3-D SGMMCs-(OH)2 were 1375 and 1575 mg/g, respectively, under optimum conditions. The as-developed capsules have demonstrated superior selectivity against targeted metal cations under designated pH and maintained >80 % removal efficiency up to six consecutive treatment cycles. Removal mechanisms of metal cations by the 3-D SGMMCs-OH/(OH)2 was proposed, and electrostatic interaction, ion-exchange, inner-sphere coordination bonds/interactions, and aromatic ligands exchange were observed to be the key removal mechanisms. Notably, FTIR and XPS analysis indicated that hydroxyl groups of Zr-OH and BDC-OH/(OH)2 aromatic linkers played vital roles in Cu2+ and Cd2+ adsorption by participating in inner-sphere coordination interactions and aromatic ligands exchange mechanisms. The as-prepared capsules indicated >70 % removal efficiency of Cu2+ from real electroplating wastewater in the manifestation of other competitive metal ions and pollutants under selected experimental conditions. Thus, it was observed that newly configured 3-D SGMMCs-OH/(OH)2 have offered a valuable discernment into the development of MOFs-based water decontamination 3-D capsules for industrial applications.
Collapse
Affiliation(s)
- Imran Ali
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China; College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China.
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen, 518001, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Xiao Tan
- College of Environment, Hohai University, Nanjing, Jiangsu, 210024, China
| | - Huibin Sun
- Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| | - Juying Li
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
11
|
Kamari S, Shahbazi A, Ghorbani F. Adsorption optimization and modeling of Hg 2+ ions from aqueous solutions using response surface methodology by SNPs-CS bionanocomposite produced from rice husk agro-industrial waste as a novel environmentally-friendly bionanoadsorbent. CHEMOSPHERE 2024; 351:141279. [PMID: 38266879 DOI: 10.1016/j.chemosphere.2024.141279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
In the present research, extraction of silica (SiO2) from rice husk (RH) was optimized and silica nanoparticles (SNPs) was produced using it and functionalized by chitosan (CS) functional groups to obtain CS functionalized SNPs (SNPs-CS) bionanocomposite for the first time. The physical and chemical characteristics of the produced materials were examined using structural analyses. The results of structural analyses confirmed the fine structure of the produced materials. The SNPs-CS bionanocomposite was applied to effectively remove Hg2+ ions from aqueous solutions as an environmentally-friendly bionanoadsorbent and optimization and modeling of the adsorption conditions was explored using designed experiments by Design-Expert software with central composite design (CCD) and response surface methodology (RSM). Optimum adsorption conditions were obtained as solution pH of 6, SNPs-CS dosage of 0.1 g L-1 and Hg2+ ions concentration of 100 mg L-1 by removal efficiency of 85% and desirability function of 0.876. The results of adsorption kinetic showed a better fit of the pseudo-second-order model with experimental data, indicating the chemisorption of the adsorption process. The better fit of the Langmuir model with experimental data was confirmed by the results of adsorption isotherms, demonstrating monolayer adsorption on the homogeneous surface. The adsorption thermodynamic results illustrated the exothermicity and spontaneity of the adsorption reaction. The results of SNPs-CS recovery depicted its excellent recovery ability of removal efficiency with more than 90% after five consecutive adsorption and desorption cycles, which proved high potential of the produced bionanocomposite for industrial applications.
Collapse
Affiliation(s)
- Soran Kamari
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Afsaneh Shahbazi
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Farshid Ghorbani
- Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, 6617715175, Sanandaj, Iran
| |
Collapse
|
12
|
Li M, Chen L, Du J, Gong C, Li T, Wang J, Li F, She Y, Jia J. Thiol-Ene Click Reaction Modified Triazinyl-Based Covalent Organic Framework for Pb(II) Ion Effective Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8688-8696. [PMID: 38323925 DOI: 10.1021/acsami.3c16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
As a common water pollutant, Pb2+ has harmful effects on the nervous, hematopoietic, digestive, renal, cardiovascular, and endocrine systems. Due to the drawbacks of traditional adsorbents such as structural disorder, poor stability, and difficulty in introducing adsorption active sites, the adsorption capacity is low, and it is difficult to accurately study the adsorption mechanism. Herein, vinyl-functionalized covalent organic frameworks (COFs) were synthesized at room temperature, and sulfur-containing active groups were introduced by the click reaction. By precisely tuning the chemical structure of the sulfur-containing reactive groups through the click reaction, we found that the adsorption activity of the sulfhydryl group was higher than that of the sulfur atom in the thioether. Moreover, the incorporation of flexible linking groups was observed to enhance the adsorption activity at the active site. The maximum adsorption capacity of the postmodified COF TAVA-S-Et-SH for Pb(II) reached 303.0 mg/g, which is 2.9 times higher than that of the unmodified COF. This work not only demonstrates the remarkable potential of the "thiol-ene" click reaction for the customization of active adsorption sites but also demonstrates the remarkable potential of the "thiol-alkene" click reaction to explore the structure-effect relationship between the active adsorption sites and the metal ion adsorption capacity.
Collapse
Affiliation(s)
- Mingyan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangjun Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawei Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| | - Chengtao Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingting Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feili Li
- College of Environmental, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhong Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| |
Collapse
|
13
|
Agamendran N, Uddin M, Yesupatham MS, Shanmugam M, Augustin A, Kundu T, Kandasamy R, Sasaki K, Sekar K. Nanoarchitectonics Design Strategy of Metal-Organic Framework and Bio-Metal-Organic Framework Composites for Advanced Wastewater Treatment through Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38323568 DOI: 10.1021/acs.langmuir.3c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Freshwater depletion is an alarm for finding an eco-friendly solution to treat wastewater for drinking and domestic applications. Though several methods like chlorination, filtration, and coagulation-sedimentation are conventionally employed for water treatment, these methods need to be improved as they are not environmentally friendly, rely on chemicals, and are ineffective for all kinds of pollutants. These problems can be addressed by employing an alternative solution that is effective for efficient water treatment and favors commercial aspects. Metal organic frameworks (MOFs), an emerging porous material, possess high stability, pore size tunability, greater surface area, and active sites. These MOFs can be tailored; thus, they can be customized according to the target pollutant. Hence, MOFs can be employed as adsorbents that effectively target different pollutants. Bio-MOFs are a kind of MOFs that are incorporated with biomolecules, which also possess properties of MOFs and are used as a nontoxic adsorbent. In this review, we elaborate on the interaction between MOFs and target pollutants, the role of linkers in the adsorption of contaminants, tailoring strategy that can be employed on MOFs and Bio-MOFs to target specific pollutants, and we also highlight the effect of environmental matrices on adsorption of pollutants by MOFs.
Collapse
Affiliation(s)
- Nithish Agamendran
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Maseed Uddin
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Manova Santhosh Yesupatham
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Mariyappan Shanmugam
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ashil Augustin
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Tanay Kundu
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramani Kandasamy
- Industrial and Environmental Sustainability Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Karthikeyan Sekar
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
14
|
Li S, Wen Y, Wang Y, Liu M, Su L, Peng Z, Zhou Z, Zhou N. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132740. [PMID: 37856962 DOI: 10.1016/j.jhazmat.2023.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO2 on the biochar can be in situ transformed into -NH2. Combined with the carboxyl group that attached on the same carbon atom, a special α-amino acid-like structure modified biochar (α-AC@BC) can be successfully constructed. Due to the strong affinity between the α-amino acid-like ligand and heavy metals, this α-AC@BC exhibits high removal efficiencies of 83.41%, 80.94%, 92.54% and 77.05% for available copper, cadmium, lead and zinc respectively, even in a strong acid soil with low pH of 4. After four adsorption-desorption cycles, the α-AC@BC could still eliminate 83.88% of copper. The high adsorption energy among -NH2, -COOH and heavy metals (-2.99 eV for copper, -1.90 eV for lead, -1.30 eV for zinc and -0.91 eV for cadmium) could form steady coordination structure to guarantee a highly practical application potential of α-AC@BC in strong acid soil. This study provides a novel concept for the decontamination of multiple heavy metal polluted acid soil.
Collapse
Affiliation(s)
- Shikai Li
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Wang
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Meng Liu
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhengjie Peng
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
15
|
Zhang L, Fan X, Wang J, Zhang C, Laipan M, Guo J. Tailoring hierarchical nanostructures of tannin acid/alginate beads for straightforward selective recovery of high-purity Au(0) from aqueous solution. Carbohydr Polym 2024; 324:121534. [PMID: 37985108 DOI: 10.1016/j.carbpol.2023.121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
The utilization of biomass materials with functional properties and rational porous structures holds significant potential for the recovery of precious metals from secondary resources, while facing challenges in achieving rapid reduction and high recovery rates of metallic Au(0). Herein, a novel concept of achieving high-purity Au(0) efficiently by tailoring tannin acid (TA) architecture and porous structure of TA-functionalized alginate beads (P-TOSA). Optimized by structural engineering, the hierarchically nanostructured P-TOSA beads demonstrate exceptional selectivity and recovery capacity (756.1 ± 2.7 mg/g at pH 5), while maintaining a recovery efficiency of over 99 % across a broad range of pH values (1.0-8.0) through the synergistic combination of chelation-based chemisorption and phenolic groups-based redox reaction. Notably, the TA-based nanostructure-boosted reduced Au(0) served as nucleation sites, facilitating elongation and migration of gold crystals across the vein network, thus forming a shell composed with 90.4 ± 0.4 % of element gold. UV radiation exposure could further generate a dynamic redox system and expedite Au (III) reduction to ultra-high purity Au(0) (93.3 ± 1.1 %) via abnormal grain growth mode. Therefore, this study presents a practical and straightforward approach utilizing biomass microbeads for recycling precious metals in metallic form without the use of toxic eluents or additional reductants.
Collapse
Affiliation(s)
- Lei Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Xiaohu Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Jiayuan Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Chao Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi' an 710021, PR China.
| |
Collapse
|
16
|
Kaur M, Malik AK. Schiff base MOFs and their derivatives for sequestration and degradation of pollutants: present and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118801-118829. [PMID: 37922083 DOI: 10.1007/s11356-023-30711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Removal of contaminants via adsorption and catalysis have received a significant interest as energy and money-saving solutions for treating the world's wastewater. Metal-organic frameworks (MOFs), a newly discovered class of porous crystalline materials, have demonstrated tremendous promise in the removal and destruction of contaminants for water purification. In order to improve the interactions of MOFs with the target pollutants for their selective removal and degradation, the Schiff base functionalities emerged as promising active sites. Through pre- and post-synthetic alterations, Schiff base functionalities are integrated into the pore cages of MOF adsorbent materials. To understand the adsorptive/catalytic mechanism, potential interactions between the Schiff base sites and the target pollutants are discussed. Based on cutting-edge techniques for their synthesis, this paper examines current developments in the creation of Schiff base-functionalized MOFs as innovative materials for adsorptive removal and catalytic degradation of contaminants for water remediation.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
17
|
Kaur M, Kumar S, Yusuf M, Lee J, Malik AK, Ahmadi Y, Kim KH. Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 236:116811. [PMID: 37541413 DOI: 10.1016/j.envres.2023.116811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Adsorptive removal of heavy metal ions from water is an energy- and cost-effective water decontamination technology. Schiff base functionalities can be incorporated into the pore cages of metal-organic frameworks (MOFs) via direct synthesis, post-synthetic modification, and composite formation. Such incorporation can efficiently enhance the interactions between the MOF adsorbent and target heavy metal ions to promote the selective adsorption of the latter. Accordingly, Schiff base-functionalized MOFs have great potential to selectively remove a particular metal ion from the aqueous solutions in the presence of coexisting (interfering) metal ions through the binding sites within their pore cages. Schiff base-functionalized MOFs can bind divalent metal ions (e.g., Pb(II), Co(II), Cu(II), Cd (II), and Hg (II)) more strongly than trivalent metal ions (e.g., Cr(III)). The adsorption capacity range of Schiff base-functionalized MOFs for divalent ions is thus much more broad (22.4-713 mg g-1) than that of trivalent metal ions (118-127 mg g-1). To evaluate the adsorption performance between different adsorbents, the two parameters (i.e., adsorption capacity and partition coefficient (PC)) are derived and used for comparison. Further, the possible interactions between the Schiff base sites and the target heavy metal ions are discussed to help understand the associated removal mechanisms. This review delivers actionable knowledge for developing Schiff-base functionalized MOFs toward the adsorptive removal of heavy metal ions in water in line with their performance evaluation and associated removal mechanisms. Finally, this review highlights the challenges and forthcoming research and development needs of Schiff base-functionalized MOFs for diverse fields of operations.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala, 147 001, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Mashkoor F, Shoeb M, Jeong C. Alginate Modified Magnetic Polypyrrole Nanocomposite for the Adsorptive Removal of Heavy Metal. Polymers (Basel) 2023; 15:4285. [PMID: 37959965 PMCID: PMC10650565 DOI: 10.3390/polym15214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The presence of heavy metals with high acute toxicity in wastewater poses a substantial risk to both the environment and human health. To address this issue, we developed a nanocomposite of alginate-encapsulated polypyrrole (PPy) decorated with α-Fe2O3 nanoparticles (Alg@Mag/PPy NCs), fabricated for the removal of mercury(II) from synthetic wastewater. In the adsorption experiments, various parameters were examined to identify the ideal conditions. These parameters included temperature (ranging from 298 to 323 K), initial pH levels (ranging from two to nine), interaction time, amount of adsorbent (from 8 to 80 mg/40 mL), and initial concentrations (from 10 to 200 mg/L). The results of these studies demonstrated that the removal efficiency of mercury(II) was obtained to be 95.58% at the optimum pH of 7 and a temperature of 303 K. The analysis of adsorption kinetics demonstrated that the removal of mercury(II) adhered closely to the pseudo-second-order model. Additionally, it displayed a three-stage intraparticle diffusion model throughout the entire adsorption process. The Langmuir model most accurately represented equilibrium data. The Alg@Mag/PPy NCs exhibited an estimated maximum adsorption capacity of 213.72 mg/g at 303 K, surpassing the capacities of most of the other polymer-based adsorbents previously reported. The thermodynamic analysis indicates that the removal of mercury(II) from the Alg@Mag/PPy NCs was endothermic and spontaneous in nature. In summary, this study suggests that Alg@Mag/PPy NCs could serve as a promising choice for confiscating toxic heavy metal ions from wastewater through adsorption.
Collapse
Affiliation(s)
| | | | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (F.M.); (M.S.)
| |
Collapse
|
19
|
Fu K, Luo J. Rebuttal to Correspondence on "Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13543-13545. [PMID: 37625121 DOI: 10.1021/acs.est.3c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Affiliation(s)
- Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
20
|
Mo Z, Zhang H, Shahab A, khan FA, Chen J, Huang C. Functionalized metal-organic framework UIO-66 nanocomposites with ultra-high stability for efficient adsorption of heavy metals: Kinetics, thermodynamics, and isothermal adsorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
21
|
Preparation of metal organic frameworks modified chitosan composite with high capacity for Hg(II) adsorption. Int J Biol Macromol 2023; 232:123329. [PMID: 36669630 DOI: 10.1016/j.ijbiomac.2023.123329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/26/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In this study, a novel modified chitosan composite adsorbent (UNCS) was prepared by crosslinking between chitosan and metal organic frameworks (MOFs) material UiO-66-NH2 using epichlorohydrin as crosslinker. The influence of the prepared conditions was investigated. The structure and morphology of the composite were characterized by FT-IR, XRD, SEM, TGA, BET and zeta potential analysis. Effects of different variables for adsorption of Hg(II) on this adsorbent were explored. The kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic model and the adsorption equilibrium could be reached within 2 h. The adsorption was mainly controlled by chemical process. Adsorption isothermal studies illustrated that the adsorption fitted Langmuir isotherm model, implying the homogeneous adsorption on the surface of the adsorbent. The adsorbent exhibited high uptake and the maximum capacity from Langmuir model could reach 896.8 mg g-1 at pH 6. Thermodynamic studies showed the spontaneous nature and exothermic nature of the adsorption process. Additionally, the removal of Hg(II) on UNCS could achieve over 90 %. The adsorption-desorption cycled experiments indicated the appropriate reusability of the adsorbent. Hence, this adsorbent would be promising for the removal of Hg(II) from wastewater.
Collapse
|
22
|
Hu SZ, Deng YF, Li L, Zhang N, Huang T, Lei YZ, Wang Y. Biomimetic Polylactic Acid Electrospun Fibers Grafted with Polyethyleneimine for Highly Efficient Methyl Orange and Cr(VI) Removal. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3770-3783. [PMID: 36856335 DOI: 10.1021/acs.langmuir.2c03508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rapid growth of industrialization has resulted in the release of large quantities of pollutants into the environment, especially dyes and heavy metals, which are environmentally hazardous for humans and animals. It is considered as the most promising and environmentally friendly route to develop green materials by using the green modification method, which has no negative impact on the environment. In this work, the green material of polylactic acid (PLA) was used as the substrate material, and a novel modification method of polydopamine (PDA)-assisted polyethyleneimine (PEI) grafting was developed. The electrospun PLA fibers are mainly composed of stereocomplex crystallites, which were achieved via the electrospinning of poly(l-lactic acid) and poly(d-lactic acid). The water-soluble PEI was grafted onto the PDA-modified PLA fibers through the glutaraldehyde-assisted cross-linking reaction. The prepared composite fibers can be degraded, which is environmentally friendly and meets the requirements of sustainable development. The potential application of such PLA composite fibers in wastewater treatment was intensively evaluated. The results show that at appropriate fabrication conditions (PDA concentration of 3 g·L-1 and a PEI molecular weight of 70,000 g·mol-1), the composite fibers exhibit the maximum adsorption capacities of 612 and 398.41 mg·g-1 for methyl orange (MO) and hexavalent chromium [Cr(VI)], respectively. Simultaneously, about 64.79% of Cr(VI) adsorbed on the composite fibers was reduced to Cr(III). The above results show that the PLA composite fibers have a good development prospect in the field of wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yu-Fan Deng
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Liang Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Nan Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
- School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
23
|
Gao X, Liu B, Zhao X. Thiol-decorated defective metal-organic framework for effective removal of mercury(II) ion. CHEMOSPHERE 2023; 317:137891. [PMID: 36657579 DOI: 10.1016/j.chemosphere.2023.137891] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/22/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Removal of mercury (Hg) ion from water is important while still faces challenges in capacity and adsorption speed. Herein, using thiol-containing mercaptoacetic acid (MA) as the template, we constructed a novel metal-organic framework (MOF) adsorbent, Zr-MSA-MA (MSA, mercaptosuccinic acid). Unlike other monodentate acids such as acetic acid and formic acid, MA benefits to maintain high-content binding sites, in the meantime of defect formation. On the basis, Zr-MSA-MA exhibits a high adsorption capacity of 714.8 mg g-1 for Hg2+ and fast adsorption kinetics, superior to other MOF-based adsorbents. Co-existing metal ions and pH have only slight interference for the adsorption behavior. Besides, the adsorption is proved to an endothermic reaction and the adsorbent can be regenerated based on a simple elution. Further analysis indicates the strong chemical bonding of Hg2+ and -SH is the main adsorption mechanism. Thus, our work demonstrates the Zr-MSA-MA can serve as a potential adsorbent for Hg2+, and provides a novel strategy to construct defective adsorbent via using active group-containing template.
Collapse
Affiliation(s)
- Xinxin Gao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China
| | - Baosheng Liu
- Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China; College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| | - Xudong Zhao
- College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, 030024, China; Engineering Research Center for Magnesium Alloy of Shanxi Province, Taiyuan University of Science and Technology, Taiyuan, 030024, China.
| |
Collapse
|
24
|
Santibañez D, Mendizabal F. Understanding lead and mercury adsorption by post-synthetically modified linkers in UiO-66 MOF. A computational theoretical study. MOLECULAR SIMULATION 2023. [DOI: 10.1080/08927022.2023.2171073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel Santibañez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
25
|
Polyethylene glycol functionalized Fe3O4@MIL-101(Cr) for the efficient removal of heavy metals from Ligusticum chuanxiong Hort. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
Arya K, Kumar A, Mehra S, Divya, Kumar A, Kumar Mehta S, Kataria R. Exploration and removal of multiple metal ions using mixed-linker-architected Zn-MOF in aqueous media. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Ruan W, Wu H, Qi Y, Yang H. Removal of Hg 2+ in wastewater by grafting nitrogen/sulfur-containing molecule onto Uio-66-NH 2: from synthesis to adsorption studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15464-15479. [PMID: 36169833 DOI: 10.1007/s11356-022-23255-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The remediation of heavy metal deserves to be on the agenda, with the adsorbent design bearing the brunt of it. In this study, the molecule (4, 6-diamino-2-mercaptopyrimidine, DMP) containing thiol (-SH) and amino (-NH2) functional groups was grafted onto Uio-66-NH2, and a composite metal-organic framework nanomaterial (Zr(NH2)-DMP) was synthesized via a facile post-modification scheme. The morphological characteristics and structural features of the modified adsorbent were characterized by XRD, FT-IR, FE-SEM, EDS, BET, and XPS. The characterization results verified that the post-modification scheme was successfully achieved. The adsorption experiments were carried out to investigate the removal performance of the Zr(NH2)-DMP towards Hg2+ under different influencing parameters. The maximum adsorption capacity of 389.4 mg/g was obtained, and the adsorption equilibrium was achieved within 30 min at pH 6 at room temperature. Adsorption thermodynamic study indicated that the adsorption process was exothermic and spontaneous. The Zr(NH2)-DMP exhibited excellent selectivity for Hg2+, and also has the potential to remove Cu2+, Fe2+, and Zn2+ ions. The introduction of Cl- inhibited the removal of Hg2+ due to the formation of mercuric chlorides (removal efficiency reduced from 97.8 to 95.6%). The removal efficiency of up to 86.7% was obtained after four cycles. The Langmuir isotherm and Pseudo-second kinetic were more suitable for fitting the adsorption process of Hg2+ by Zr(NH2)-DMP. The main removal mechanism could be attributed to the chelation between Hg2+ (soft acid) and nitrogen/sulfur (soft base) elements. These findings convinced that the successful synthesis of Zr(NH2)-DMP provides an option for Hg2+ removal from wastewater.
Collapse
Affiliation(s)
- Wei Ruan
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042, People's Republic of China
| | - Hao Wu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042, People's Republic of China.
| | - Yuan Qi
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042, People's Republic of China
| | - Hongmin Yang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210042, People's Republic of China
| |
Collapse
|
28
|
Two Facile Aniline-Based Hypercrosslinked Polymer Adsorbents for Highly Efficient Iodine Capture and Removal. Int J Mol Sci 2022; 24:ijms24010370. [PMID: 36613814 PMCID: PMC9820307 DOI: 10.3390/ijms24010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Effective capture and safe disposal of radioactive iodine (129I or 131I) during nuclear power generation processes have always been a worldwide environmental concern. Low-cost and high-efficiency iodine removal materials are urgently needed. In this study, we synthesized two aniline-based hypercrosslinked polymers (AHCPs), AHCP-1 and AHCP-2, for iodine capture in both aqueous and gaseous phases. They are obtained by aniline polymerization through Friedel-Crafts alkylation and Scholl coupling reaction, respectively, with high chemical and thermal stability. Notably, AHCP-1 exhibits record-high static iodine adsorption (250 wt%) in aqueous solution. In the iodine vapor adsorption, AHCP-2 presents an excellent total iodine capture (596 wt%), surpassing the most reported amorphous polymer adsorbents. The rich primary amine groups of AHCPs promote the rapid physical capture of iodine from iodine water and iodine vapor. Intrinsic features such as low-cost preparation, good recyclability, as well as excellent performance in iodine capture indicate that the AHCPs can be used as potential candidates for the removal of iodine from radioactive wastewater and gas mixtures.
Collapse
|
29
|
Ge Q, Tian Q, Wang S, Zhang J, Hou R. Highly Efficient Removal of Lead/Cadmium by Phosphoric Acid-Modified Hydrochar Prepared from Fresh Banana Peels: Adsorption Mechanisms and Environmental Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15394-15403. [PMID: 36442158 DOI: 10.1021/acs.langmuir.2c02693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, a phosphoric acid (H3PO4)-modified hydrochar (BPH200) was prepared at a low temperature (200 °C) in an air atmosphere with fresh banana peels as the raw material. The Cd2+ and Pb2+ adsorption behaviors and mechanisms of BPH200 were explored. As the temperature rose, co-hydrothermal carbonization of the banana peels and H3PO4 enhanced the transformation of phosphorus (P) species. More orthophosphate and metaphosphate were found in BPH200 than in banana peel hydrochar (BP) without modification. The adsorption kinetics for Cd2+ and Pb2+ followed the pseudo-second-order model. The Redlich-Peterson model best fit the experimental results of the adsorption isotherm, with maximum adsorption capacities of 84.25 and 237.90 mg·g-1 for Cd2+ and Pb2+, respectively. H3PO4 promoted Cd2+ and Pb2+ adsorption by forming precipitates, which, respectively, accounted for 32.75 and 41.12% of the total adsorption onto BPH200. In addition, the cation-exchange capacities of BPH200 with Cd2+ and Pb2+ were weakened compared with those of BP. However, complexation with these two ions strengthened, accounting for 26.68 and 32.81%, respectively, of the total adsorption capacity. This indicated that the adsorption of Cd2+ and Pb2+ onto BPH200 was dominated by precipitation with minerals and complexation with oxygen-containing functional groups. The removal rates of Cd2+ and Pb2+ by BPH200 from different water bodies were more than 99.95 and 99.97%, respectively. The addition of BPH200 also decreased the amounts of bioavailable Cd2+ and Pb2+ in the soil, resulting in relatively high immobilization rates of Cd2+ (67.13%) and Pb2+ (70.07%).
Collapse
Affiliation(s)
- Qilong Ge
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan030032, China
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan030024, China
| | - Qi Tian
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan030024, China
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan030024, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan030024, China
| | - Jing Zhang
- Department of Architecture and Environmental Engineering, Taiyuan University, Taiyuan030032, China
| | - Rui Hou
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou510301, China
| |
Collapse
|
30
|
Recent advances in removal of toxic elements from water using MOFs: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
31
|
Zhao X, Gao X, Zhang YN, Wang M, Gao X, Liu B. Construction of dual sulfur sites in metal-organic framework for enhanced mercury(II) removal. J Colloid Interface Sci 2022; 631:191-201. [DOI: 10.1016/j.jcis.2022.10.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 11/07/2022]
|
32
|
Ionic liquid-modified chitosan fibers for Au(I) recovery from waste printed circuit boards bioleachate: Preparation, adsorption mechanism, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Highly selective separation of Pb(II) with a novel aminophosphonic acid chelating resin from strong-acidic hexa-solute media. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Enhanced removal of lead ions and methyl orange from wastewater using polyethyleneimine grafted UiO-66-NH2 nanoparticles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Fu K, Zhang Y, Liu H, Lv C, Guo J, Luo J, Yin K, Luo S. Construction of metal-organic framework/polymer beads for efficient lead ions removal from water: Experiment studies and full-scale performance prediction. CHEMOSPHERE 2022; 303:135084. [PMID: 35618066 DOI: 10.1016/j.chemosphere.2022.135084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/15/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) show great promise in heavy metal removal; however, their applications are restricted by the poor separability and water instability. Herein, granular Zr-based MOF-polymer composite beads (MPCB(Zr)) (mean diameter ∼ 1.74 mm) were synthesized using a facile dropping method, and applied on efficient lead ions (Pb(II)) removal. The as-prepared MPCB(Zr) demonstrated deep Pb(II) removal capability by reducing its concentration to ∼ 0.002 mg L-1 after adsorption equilibrium at 360 min. The distribution coefficient for Pb(II) reached 8.0 × 106 mL g-1, and the theoretical adsorption capacity for Pb(II) was 144.5 mg g-1 (0.70 mmol g-1, 30 °C). The resulting MPCB(Zr) was highly selective for Pb(II), with the selectivity coefficient up to ∼ 1.0-3.6 × 103 for the background cations (Na(I), K(I), Ca(II), and Mg(II)). Moreover, the MPCB(Zr) exhibited a broad working pH range (3.0-6.0) and satisfactory anti-interference to dissolved organic matters (humic acid and fuvic acid). Notably, the MPCB(Zr) also demonstrated excellent reusability with the Pb(II) removal efficiency over 99.0% after 20 cycles. Combined physicochemical characterizations unveiled that the thiol and oxygen-containing groups (e.g., hydroxyl, carboxylate) were responsible for the effective Pb(II) removal. To provide guidance for engineering application, the full-scale performance of the MPCB(Zr) under varying operation conditions was systematically evaluated via the validated pore surface diffusion model. This work provides an effective methodology to construct macroscopic MOF-polymer beads for effective Pb(II) removal, and promote the actual application of MOFs in water treatment.
Collapse
Affiliation(s)
- Kaixing Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Youqin Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan Province, 411105, PR China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Kai Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan Province, 410082, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, Hunan Province, 410082, PR China.
| |
Collapse
|
36
|
Huang Z, Xiong C, Ying L, Wang W, Wang S, Ding J, Lu J. A post-functional Ti-based MOFs composite for selective removal of Pb (II) from water. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128700. [PMID: 35305417 DOI: 10.1016/j.jhazmat.2022.128700] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Lead ions in water have notorious effects on humans and environment. It is important to design an adsorbent with high adsorption capacity and reproducibility for efficiently removing Pb (II)ions from polluted water. Here, a novel Ti-based MOFs material (BDB-MIL-125(Ti)@Fe3O4) was prepared by modifying NH2-MIL-125(Ti) with sulfhydryl and amino groups. Due to the large number of active sites, the maximum Pb (II) adsorption capacity of BDB-MIL-125(Ti)@Fe3O4 was 710.79 mg/g at 25 °C and pH = 6 within 120 min corresponding to a maximum removal rate of 95.68%. The adsorbent also has extremely high selectivity and good cycling adsorption performance. The adsorption isotherms and kinetics agree with the Langmuir and the pseudo-second-order models, indicating that the process was chemisorption. Thermodynamic studies prove that spontaneous processes enhance Pb (II) adsorption at higher temperatures. DFT and FMOs calculations were used to discuss the adsorption mechanism. The sulfhydryl groups on the surface of organic ligands have a stronger affinity for Pb (II).
Collapse
Affiliation(s)
- Zhen Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Chao Xiong
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lingri Ying
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Welong Wang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Shixing Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, PR China.
| | - Jing Ding
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Jianfeng Lu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China
| |
Collapse
|
37
|
Liu J, Chen Y, Hu Y, Zhang Y, Zhang G, Wang S, Zhang L. A novel metal-organic framework-derived ZnO@ZIF-8 adsorbent with high efficiency for Pb (II) from solution: Performance and mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Wang RD, He L, Zhu RR, Jia M, Zhou S, Tang J, Zhang WQ, Du L, Zhao QH. Highly efficient and selective capture Pb(II) through a novel metal-organic framework containing bifunctional groups. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127852. [PMID: 34838355 DOI: 10.1016/j.jhazmat.2021.127852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 05/25/2023]
Abstract
The design and development of materials with a selective adsorption capacity for Pb(II) are very important for environmental governance and ecological safety. In this work, a novel 3D metal-organic framework ([Cd2H4L4Cl2SO4]·4H2O, Cd-MOF) is constructed using a multiple pyrazole heterocycles tetraphenylethylene-based ligand (H4L4) and CdSO4 which containing Pb(II) adsorption sites (SO42-). Studies have shown that the Cd-MOF has outstanding stability, and its maximum adsorption value of Pb(II) can be as high as 845.55 mg/g, which is higher than that of most MOFs or MOFs modified materials. It is worth emphasizing that the Cd-MOF have excellent recyclability due to the unique adsorption mechanism of the Cd-MOF. Thermodynamic studies have shown that Pb(II) adsorption of the Cd-MOF is a spontaneous endothermic process. Specific selective adsorption, exceptional stability and remarkable recyclability make the Cd-MOF a potential material for industrial capture and recovery of Pb(II) from water.
Collapse
Affiliation(s)
- Rui-Dong Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Liancheng He
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Rong-Rong Zhu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Mingxuan Jia
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Sihan Zhou
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jinsheng Tang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Wen-Qian Zhang
- College of Pharmaceutical Engineering, Xinyang Agricultural and Forestry University, Henan 464000, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
40
|
Wang RD, He M, Li Z, Niu Z, Zhu RR, Zhang WQ, Zhang S, Du L, Zhao QH. A Novel Coordination Polymer as Adsorbent Used to Remove Hg(II) and Pb(II) from Water with Different Adsorption Mechanisms. ACS OMEGA 2022; 7:10187-10195. [PMID: 35382326 PMCID: PMC8973041 DOI: 10.1021/acsomega.1c06606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Under the hydrothermal condition, a new type of two-dimensional coordination polymer ([Cd(D-Cam)(3-bpdb)]n, Cd-CP) has been constructed. It is composed of D-(+)-Camphoric-Cd(II) (D-cam-Cd(II)) one-dimensional chain and bridging 1,4-bis(3-pyridyl)-2,3-diaza-1,3-butadiene (3-bpdb) ligands. Cd-CP has a good removal effect for Hg(II) and Pb(II), and the maximum adsorption capacity is 545 and 450 mg/g, respectively. Interestingly, thermodynamic studies have shown that the adsorption processes of Hg(II) and Pb(II) on Cd-CP use completely different thermodynamic mechanisms, in which the adsorption of Hg(II) is due to a strong electrostatic interaction with Cd-CP, while that of Pb(II) is through a weak coordination with Cd-CP. Moreover, Cd-CP has a higher affinity for Hg(II), and when Hg(II) and Pb(II) coexist, Cd-CP preferentially adsorbs Hg(II).
Collapse
Affiliation(s)
- Rui-Dong Wang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Mei He
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zhihao Li
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Zongling Niu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Rong-Rong Zhu
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Wen-Qian Zhang
- College
of Pharmaceutical Engineering, Xinyang Agricultural
and Forestry University, Henan, 464000, People’s Republic
of China
| | - Suoshu Zhang
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
| | - Lin Du
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| | - Qi-Hua Zhao
- School
of Chemical Science and Technology, Yunnan
University, Kunming 650091, People’s Republic
of China
- Key
Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, Yunnan Research & Development Center for Natural Products, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|
41
|
Zahra M, Zulfiqar S, Wahab MF, Sarwar MI. Exploring a novel family of poly(amide-imide)s as promising cationic sorbents for water remediation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Fu K, Liu X, Lv C, Luo J, Sun M, Luo S, Crittenden JC. Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2677-2688. [PMID: 35112842 DOI: 10.1021/acs.est.1c07480] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Point-of-use (POU) devices with satisfying mercury (Hg) removal performance are urgently needed for public health and yet are scarcely reported. In this study, a thiol-laced metal-organic framework (MOF)-based sponge monolith (TLMSM) has been investigated for Hg(II) removal as the POU device for its benchmark application. The resulting TLMSM was characterized by remarkable chemical resistance, mechanical stability, and hydroscopicity (>2100 wt %). Importantly, the TLMSM has exhibited high adsorption capacity (∼954.7 mg g-1), fast kinetics (kf ∼ 1.76 × 10-5 ms-1), broad working pH range (1-10), high selectivity (Kd > 5.0 × 107 mL g-1), and excellent regeneration capability (removal efficiency >90% after 25 cycles). The high applicability of TLMSM in real-world scenarios was verified by its excellent Hg(II) removal performance in various real water matrices (e.g., surface waters and industrial effluents). Moreover, a fixed-bed column test demonstrated that ∼1485 bed volumes of the feeding streams (∼500 μg L-1) can be effectively treated with an enrichment factor of 12.6, suggesting the great potential of TLMSM as POU devices. Furthermore, the principal adsorption complexes (e.g., single-layer -S-Hg-Cl and double-layer -S-Hg-O-Hg-Cl and -S-Hg-O-Hg-OH) formed during the adsorption process under a wide range of pH were synergistically and systematically unveiled using advanced tools. Overall, this work presents an applicable approach by tailoring MOF into a sponge substrate to achieve its real application in heavy metal removal from water, especially for Hg(II).
Collapse
Affiliation(s)
- Kaixing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong Province, P. R. China
| | - Chunyu Lv
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinming Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Mingxing Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Shenglian Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
43
|
Hu SZ, Huang T, Zhang N, Lei YZ, Wang Y. Chitosan-assisted MOFs dispersion via covalent bonding interaction toward highly efficient removal of heavy metal ions from wastewater. Carbohydr Polym 2022; 277:118809. [PMID: 34893228 DOI: 10.1016/j.carbpol.2021.118809] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/10/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Metal organic frameworks (MOFs) have been considered to be robust adsorbent for the removing heavy metal ions from wastewater due to their unique properties such as large active sites, high specific surface area and high porosity, etc., however, their practical engineering application faces the problem of serious agglomeration. In this work, a new strategy of chitosan (CS) assisting MOF dispersion was proposed to develop the new generation of MOF-based adsorbents, namely, CS grafted UiO-66-NH2 composite materials (CGUNCM). The UiO-66-NH2 was selected and it was grafted onto the main chains of CS through covalent bonding interaction with the aid of glutaraldehyde, which was totally different from the common method that grafting molecular chains on the surface of MOFs resulting in the dramatic reduction of active adsorption sites. The results show that grafting MOFs onto CS main chains not only greatly improves the dispersion of MOFs but also reserves the morphology of MOFs as much as possible. The adsorption performances toward Cu(II) and Pb(II) were intensively studied by varying adsorbate concentration, ionic strength, the contact time, adsorption temperature and pH value of solution. The results show that the composite adsorbent exhibits high adsorption efficiency and the adsorption equilibrium can be reached within 45 min, and the maximum adsorption capacity toward Cu(II) and Pb(II) achieve 364.96 mg/g and 555.56 mg/g, respectively. Furthermore, the composite adsorbent shows good reusability. This work provides a new method of fabricating the MOF-based adsorbent and paves the way for the practical application of such adsorbents in wastewater treatment.
Collapse
Affiliation(s)
- Shao-Zhong Hu
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Ting Huang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Nan Zhang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yan-Zhou Lei
- Analytical and Testing Center, Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science & Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
44
|
Ma X, Tan J, Li Z, Huang D, Xue S, Xu Y, Tao H. Fabrication of Stable MIL-53(Al) for Excellent Removal of Rhodamine B. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1158-1169. [PMID: 35021013 DOI: 10.1021/acs.langmuir.1c02836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Adsorptive purification of organic dyes in wastewater is significant to protect the water environment. Herein, MIL-53(Al) was successfully fabricated through a facile and versatile solvothermal strategy. The stability of MIL-53(Al) under high temperature, acid, base, and peroxide conditions was investigated. The porous MIL-53(Al) had high chemical stability, and the thermal stability reached up to 500 °C, which provided a good foundation for dye removal. MIL-53(Al) showed excellent adsorption performance. The maximum adsorption capacity of MIL-53(Al) for rhodamine B (RhB) can reach 1547 mg g-1 under 303 K, and the corresponding removal efficiency exceeded 90% at the equilibrium time (120 min). The Langmuir model and pseudo-second-order model can well fit RhB adsorption on MIL-53(Al). Thermodynamic study and activation energy values over the range of 298-323 K revealed that the adsorption of RhB was a spontaneous and endothermic physical process in nature. The batch experimental results, X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared (FTIR) spectroscopy analyses suggested that the hydrogen bonding and electrostatic interactions between the hydroxyl/carboxyl groups of MIL-53(Al) and RhB were the primary adsorption mechanisms. Besides, MIL-53(Al) had a higher selectivity to RhB than the coexisting ions in aqueous solution and a superior adsorption performance after five cycles.
Collapse
Affiliation(s)
- Xiaoyu Ma
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Jiangyao Tan
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Zuhao Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Dongan Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Shan Xue
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Yinqi Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Haisheng Tao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
45
|
Cheng S, Zhao S, Guo H, Xing B, Liu Y, Zhang C, Ma M. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. BIORESOURCE TECHNOLOGY 2022; 343:126081. [PMID: 34610424 DOI: 10.1016/j.biortech.2021.126081] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The adsorption performance and mechanisms of Pb2+ and Cd2+ in wastewater using MgO modified biochar derived from crofton weed (MBCW600) are investigated. The Pb2+ and Cd2+ adsorption capacities of MBCW600 by the Hill model reach 384.08 mg/g and 207.02 mg/g, respectively, which is larger than that of original biochar. Pb2+ could be more easily captured by MBCW600 compared to Cd2+ in the multimetal system. Mg2+ contributes to Pb2+ and Cd2+ adsorption among coexisting cations. The exhausted MBCW600 could be well regenerated by simple method after use. The adsorption mechanism study indicates that Pb2+ and Cd2+ removal are primary contributed to mineral precipitation and ion exchange. The effective treatment volumes of Pb2+ and Cd2+ wastewater achieve 3050 mL and 2150 mL in the fixed-bed column experiment, respectively. Therefore, MBCW600 presents remarkable adsorption capability, excellent recoverability and large throughput, which shows the potential application in future treatment of wastewater containing heavy metal.
Collapse
Affiliation(s)
- Song Cheng
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Saidan Zhao
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Hui Guo
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Baolin Xing
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China.
| | - Yongzhi Liu
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| | - Chuanxiang Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, PR China
| | - Mingjie Ma
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, PR China
| |
Collapse
|
46
|
Wang Y, Li M, Hu J, Feng W, Li J, You Z. Highly efficient and selective removal of Pb2+ by ultrafast synthesis of HKUST-1: Kinetic, isotherms and mechanism analysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Wang S, Chen W, Zhang C, Pan H. Efficient and selective adsorption of cationic dyes with regenerated cellulose. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Facile synthesis of zinc-based organic framework for aqueous Hg (II) removal: Adsorption performance and mechanism. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Graphene oxide decorated with fullerenol nanoparticles for highly efficient removal of Pb(II) ions and ultrasensitive detection by total-reflection X-ray fluorescence spectrometry. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Guo J, Fan X, Li Y, Yu S, Zhang Y, Wang L, Ren X. Mechanism of selective gold adsorption on ion-imprinted chitosan resin modified by thiourea. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125617. [PMID: 33743379 DOI: 10.1016/j.jhazmat.2021.125617] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/27/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Thiourea-modified chitosan-imprinted resin (IM-TUCS) and a corresponding nonimprinted resin (NIM-TUCS) were synthesized and characterized using adsorption experiments. The adsorption results showed that adsorption reached equilibrium within 4 h. The adsorption data were better fitted using the Langmuir model (R2>0.99), and the gold adsorption capacities of IM-TUCS and NIM-TUCS were 933.2 and 373.7 mg·g-1, respectively. The IM-TUCS adsorbent was more suitable for gold than other coexisting anions and cations. The possible mechanism underlying Au(Ⅲ) adsorption on IM-TUCS was further investigated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction analyses. The protonation of the amino group on the resin under low pH conditions promoted Au(Ⅲ) adsorption; O, N and S in the C‒OH, C˭S and C-NH2 groups contained in the IM-TUCS coordinated with Au(III) ions. The cross-linking of the imprinted resin provided holes that could hold Au(III), thus the imprinted resin supported more Au(III). The adsorption capacity of the IM-TUCS for Au(III) was significantly higher than that of the NIM-TUCS, which is attributed to the cross-linking of the imprinted resin. Moreover, the IM-TUCS showed specific recognition capabilities for Au(III). After elution with the eluent, IM-TUCS was reused for four cycles with a gold recovery rate of approximately 93%, revealing its high potential economic value.
Collapse
Affiliation(s)
- Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaohu Fan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yanping Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shenghui Yu
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yi Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|