1
|
Wang Z, Lan K, Wang Z, Wei J, Chen R, Qin G. High-performance PANI sensor on silicon nanowire arrays for sub-ppb NH 3 detection. Talanta 2025; 282:127086. [PMID: 39447343 DOI: 10.1016/j.talanta.2024.127086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
For industrial production and disease diagnosis, real-time detection of low concentrations of NH3 is crucial, necessitating a gas-sensitive sensor compatible with integrated processes and exhibiting excellent performance. Herein, we employed wet etching and rapid in-situ polymerization on silicon nanowire substrates to grow polyaniline fibers, thereby fabricating NH3 gas sensors with p-p heterojunction and three-dimensional network structures. Characterization and gas sensing performance testing were conducted. The results demonstrate the outstanding NH3 detection capabilities of the sensor, providing stable responses down to concentrations as low as 1 ppb, which indicates its LOD is one to two orders of magnitude lower than current similar products. It also exhibits verified selectivity and long-term reliability. The excellent sensing performance is attributed to the high surface area from the silicon nanowire structure and efficient synergy of p-p heterojunction. Additionally, the influence of doping types of the substrates and annealing process were explored. This work serves as a reference for the design of silicon-based gas sensors with high sensitivity, low detection limits, and extended operational lifetimes, suitable for deployment in commercial integrated monitoring systems.
Collapse
Affiliation(s)
- Zhehang Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Kuibo Lan
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Zhi Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China
| | - Junqing Wei
- School of Integrated Circuit Science and Engineering, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Guoxuan Qin
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
2
|
Su PG, Yang JJ. Preparation and NH 3 gas-sensing properties of Ag/β-AgVO 3 nanorods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38682943 DOI: 10.1039/d4ay00255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
NH3 gas sensors operating at room temperature, consisting of Ag nanoparticles decorated β-AgVO3 nanorods (Ag/β-AgVO3 NRs), were fabricated via a facile hydrothermal method without the need for a template. The surface characteristics and compositions of Ag/β-AgVO3 NRs were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Ag nanoparticles, ranging in diameter from approximately 20 to 40 nm, were dispersed on the surface of monoclinic β-AgVO3 NRs with diameters ranging from 50 to 105 nm and lengths from 0.3 to 1.3 μm. The NH3 gas sensing properties of Ag/β-AgVO3 NRs were studied under both dry air and humid conditions at room temperature. Comparative analysis demonstrated that the Ag/β-AgVO3 NRs exhibited a strong response to NH3 gas under 70% relative humidity (RH) at room temperature compared to α-AgVO3 NRs. Specifically, the response of the Ag/β-AgVO3 NRs to 5 ppm NH3 increased by 2.25 times as the RH varied from 20% to 80% at room temperature. This enhanced response was attributed to the effects of formation of nanoheterojunctions, nano-metallic Ag activity and the conductivity of NH4+ and OH- ions induced by the presence of humidity. The room temperature NH3 gas sensors based on Ag/β-AgVO3 NRs demonstrated strong responses to low NH3 concentrations, high selectivity, good reproducibility, and long-term stability, and show promise for the development of low-power and cost-effective NH3 gas sensors for practical applications even under high humidity.
Collapse
Affiliation(s)
- Pi-Guey Su
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| | - Jia-Jie Yang
- Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan.
| |
Collapse
|
3
|
Zhao J, Wang H, Cai Y, Zhao J, Gao Z, Song YY. The Challenges and Opportunities for TiO 2 Nanostructures in Gas Sensing. ACS Sens 2024; 9:1644-1655. [PMID: 38503265 DOI: 10.1021/acssensors.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Chemiresistive gas sensors based on metal oxides have been widely applied in industrial monitoring, medical diagnosis, environmental pollutant detection, and food safety. To further enhance the gas sensing performance, researchers have worked to modify the structure and function of the material so that it can adapt to different gas types and environmental conditions. Among the numerous gas-sensitive materials, n-type TiO2 semiconductors are a focus of attention for their high stability, excellent biosafety, controllable carrier concentration, and low manufacturing cost. This Perspective first introduces the sensing mechanism of TiO2 nanostructures and composite TiO2-based nanomaterials and then analyzes the relationship between their gas-sensitive properties and their structure and composition, focusing also on technical issues such as doping, heterojunctions, and functional applications. The applications and challenges of TiO2-based nanostructured gas sensors in food safety, medical diagnosis, environmental detection, and other fields are also summarized in detail. Finally, in the context of their practical application challenges, future development technologies and new sensing concepts are explored, providing new ideas and directions for the development of multifunctional intelligent gas sensors in various application fields.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Haiquan Wang
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yahui Cai
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjin Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
4
|
Zhang H, Wang L, Zou Y, Li Y, Xuan J, Wang X, Jia F, Yin G, Sun M. Enhanced ammonia sensing response based on Pt-decorated Ti 3C 2T x/TiO 2composite at room temperature. NANOTECHNOLOGY 2023; 34:205501. [PMID: 36787630 DOI: 10.1088/1361-6528/acbbd2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report a Pt-decorated Ti3C2Tx/TiO2gas sensor for the enhanced NH3sensing response at room temperature. Firstly, the TiO2nanosheets (NSs) arein situgrown onto the two-dimensional (2D) Ti3C2Txby hydrothermal treatment. Similar to Ti3C2Txsensor, the Ti3C2Tx/TiO2sensor has a positive resistance variation upon exposure to NH3, but with slight enhancement in response. However, after the loading of Pt nanoparticles (NPs), the Pt-Ti3C2Tx/TiO2sensor shows a negative response with significantly improved NH3sensing performance. The shift in response direction indicates that the dominant sensing mechanism has changed under the sensitization effect of Pt NPs. At room temperature, the response of Pt-Ti3C2Tx/TiO2gas sensor to 100 ppm NH3is about 45.5%, which is 13.8- and 10.8- times higher than those of Ti3C2Txand Ti3C2Tx/TiO2gas sensors, respectively. The experimental detection limit of the Pt-Ti3C2Tx/TiO2gas sensor to detect NH3is 10 ppm, and the corresponding response is 10.0%. In addition, the Pt-Ti3C2Tx/TiO2gas sensor shows the fast response/recovery speed (23/34 s to 100 ppm NH3), high selectivity and good stability. Considering both the response value and the response direction, the corresponding gas-sensing mechanism is also deeply discussed. This work is expected to shed a new light on the development of noble metals decorated MXene-metal oxide gas sensors.
Collapse
Affiliation(s)
- Haifeng Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Li Wang
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Yecheng Zou
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Yongzhe Li
- Shandong Dongyue Future Hydrogen Energy Material Co., Ltd, Zibo 256401, People's Republic of China
| | - Jingyue Xuan
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Xiaomei Wang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Fuchao Jia
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Guangchao Yin
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| | - Meiling Sun
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255000, People's Republic of China
| |
Collapse
|
5
|
Suriyawong S, Khumphon J, Rattanakam R, Chaopanich P, Thongmee S, Youngjan S, Khemthong P, Kityakarn S. Engineering three-dimensionally ordered mesoporous structure of TiO2 for the fast responsive NH3 gas sensor at ambient conditions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
6
|
Maji B, Sahoo SJ, Rout V, Barik B, Behera N, Dash P. Highly Sensitive and Selective Nonenzymatic Sensing of Glyphosate Using FTO-Modified MOF-Derived CuCo 2O 4 Nanostructures Intercalated in Protonated-g-C 3N 4 and 3D-Graphene Oxide Sheets. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Banalata Maji
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Shital Jyotsna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Vishal Rout
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bapun Barik
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
- School of Material Science and Engineering, Chonnam National University, Gwang-Ju 61186, Republic of Korea
| | - Narmada Behera
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Priyabrat Dash
- Department of Chemistry, National Institute of Technology, Rourkela 769008, Odisha, India
| |
Collapse
|
7
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Bastug Azer B, Gulsaran A, Pennings JR, Saritas R, Kocer S, Bennett JL, Devdas Abhang Y, Pope MA, Abdel-Rahman E, Yavuz M. A Review: TiO2 based photoelectrocatalytic chemical oxygen demand sensors and their usage in industrial applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
9
|
Ren J, Wang L, Gong Q, Xuan J, Sun M, Zhang Q, Zhang H, Yin G, Liu B. Fabrication of a high-efficiency CdS@TiO 2@C/Ti 3C 2 composite photocatalyst for the degradation of TC-HCl under visible light. NEW J CHEM 2022. [DOI: 10.1039/d1nj05786c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CdS@TiO2@C/Ti3C2 composites derived from Ti3C2 MXene exhibit outstanding photodegradation ability for TC-HCl under visible light irradiation.
Collapse
Affiliation(s)
- Juanjuan Ren
- School of Material Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Lili Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Qianqian Gong
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Jingyue Xuan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Meiling Sun
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Qi Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Haifeng Zhang
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Guangchao Yin
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Bo Liu
- School of Material Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| |
Collapse
|
10
|
Tan H, Huang Z, Wang Y, Sang L, Wang L, Jia F, Sun F, Wang X. One-step fabrication and photocatalytic performance of sea urchin-like CuO/ZnO heterostructures. NEW J CHEM 2022. [DOI: 10.1039/d2nj01046a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sea urchin-like hierarchical p-CuO/n-ZnO heterostructures were fabricated through one-step chemical bath deposition method without any surfactant or heat treatment. The morphologies and crystal structures of the obtained CuO/ZnO heterostructures were...
Collapse
|
11
|
Wan J, Zheng J, Zhang H, Wu A, Li X. Single atom catalysis for electrocatalytic ammonia synthesis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01442k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review points out major challenges and outlook of NH3 synthesis via SACs. Summarizing the deficiencies of existing research can help researchers to continuously innovate and improve, and explore new research approaches.
Collapse
Affiliation(s)
- Jieying Wan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiageng Zheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hao Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Angjian Wu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaodong Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
12
|
Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Cao S, Sui N, Zhang P, Zhou T, Tu J, Zhang T. TiO 2 nanostructures with different crystal phases for sensitive acetone gas sensors. J Colloid Interface Sci 2021; 607:357-366. [PMID: 34509110 DOI: 10.1016/j.jcis.2021.08.215] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023]
Abstract
Gas sensors have become increasingly significant because of the rapid development in electronic devices that are applied in detecting noxious gases. Adjusting the crystal phase structure of sensing materials can optimize the band gap and oxygen-adsorptive capacity, which influences the gas sensing characteristics. Therefore, titanium dioxide (TiO2) materials with different crystal phase structures including rutile TiO2 nanorods (R-TiO2 NRs), anatase TiO2 nanoparticles (A-TiO2 NRs) and brookite TiO2 nanorods (B-TiO2 NRs) were synthesized successfully via one-step hydrothermal process, respectively. The gas sensing characteristics were also investigated systematically. The sensors based on R-TiO2 NRs displayed the higher response value (12.3) to 100 ppm acetone vapor at 320 °C compared to A-TiO2 NRs (4.1) and B-TiO2 NRs (2.3). Furthermore, gas sensors based on R-TiO2 NRs exhibited excellent repeatability under six cycles and good selectivity to acetone. The outstanding sensing properties of gas sensors based on R-TiO2 NRs can be ascribed to relatively narrow band gap and more oxygen vacancies of rutile phase, which showed a probable way for design gas sensors based on metal oxide semiconductors with remarkable gas sensing performances by the crystal phase adjustment engineering in the future.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
14
|
Shao X, Wang S, Hu L, Liu T, Wang X, Yin G, Zhou T, Rajan R, Jia F, Liu B. Improvement of Gas Sensing of Uniform Ag
3
PO
4
Nanoparticles to NH
3
under the Assistant of LED Lamp with Low Power Consumption at Room Temperature. ChemistrySelect 2021. [DOI: 10.1002/slct.202101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xingyan Shao
- School of Material Science and Engineering Shandong University of Technology Zibo Shandong 255000 China
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Shuo Wang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Leqi Hu
- School of Material Science and Engineering Shandong University of Technology Zibo Shandong 255000 China
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Tingting Liu
- School of Material Science and Engineering Shandong University of Technology Zibo Shandong 255000 China
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Xiaomei Wang
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Guangchao Yin
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Tong Zhou
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Ramachandran Rajan
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Fuchao Jia
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| | - Bo Liu
- School of Material Science and Engineering Shandong University of Technology Zibo Shandong 255000 China
- School of Physics and Optoelectronic Engineering Shandong University of Technology Zibo Shandong 255000 China
| |
Collapse
|
15
|
Shooshtari M, Salehi A, Vollebregt S. Effect of temperature and humidity on the sensing performance of TiO 2nanowire-based ethanol vapor sensors. NANOTECHNOLOGY 2021; 32:325501. [PMID: 33930881 DOI: 10.1088/1361-6528/abfd54] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we study the influence of two key factors, temperature, and humidity, on gas sensors based on titanium dioxide nanowires synthesized at 4 different temperatures and with different morphology. The samples' structure are investigated using SEM, XRD and FTIR analysis. The effects of humidity and temperature are studied by measuring the resistance and gas response when exposed to ethanol. At room temperature, we observed a 15% sensitivity response to 100 ppm of ethanol vapor and by increasing the operating temperature up to 180 °C, the response is enhanced by two orders of magnitude. The best operating temperature for the highest gas response is found to be around 180 °C. Also, it was observed that every nanowire morphology has its own optimum operating temperature. The resistance of sensors is increased at higher Relative Humidity (RH). Besides, the response to ethanol vapor experiences a gradual increase when the RH rises from 10% to 60%. On the other hand, from 60% to 90% RH the gas response decreases gradually due to different mechanisms of interaction of the TiO2with H2O and ethanol molecules.
Collapse
Affiliation(s)
- Mostafa Shooshtari
- Department of Electrical Engineering, K N Toosi University of Technology, Tehran, Iran
| | - Alireza Salehi
- Department of Electrical Engineering, K N Toosi University of Technology, Tehran, Iran
| | - Sten Vollebregt
- Department of Microelectronics, Delft University of Technology, Delft, The Netherland
| |
Collapse
|
16
|
Song X, Hu R, Xu S, Liu Z, Wang J, Shi Y, Xu J, Chen K, Yu L. Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14377-14384. [PMID: 33750109 DOI: 10.1021/acsami.1c00585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic gas monitoring at room temperature (RT) is of great concern to public health and safety, where ultrathin silicon nanowires (SiNWs), with diameter <80 nm, are ideal one-dimensional candidates to achieve high-performance field-effect sensing. However, a precise integration of the tiny SiNWs as active gas sensor channels has not been possible except for the use of expensive and inefficient electron beam lithography and etching. In this work, we demonstrate an integratable fabrication of field-effect sensors based on orderly SiNW arrays, produced via step-guided in-plane solid-liquid-solid growth. The back-gated SiNW sensors can be tuned into suitable subthreshold detection regime to achieve an outstanding field-effect sensitivity (75.8% @ 100 ppm NH3), low detection limit (100 ppb), and excellent selectivity to NH3 gas at RT, with fast response/recovery time scales (Tres/Trec) of 20 s (at 100 ppb NH3) and excellent repeatability and high stability over 180 days. These outstanding sensing performances can be attributed to the fast charge transfer between adsorbed NH3 molecules and the exposed SiNW channels, indicating a convenient strategy to fabricate and deploy high-performance gas detectors that are widely needed in the booming marketplace of wearable or portable electronics.
Collapse
Affiliation(s)
- Xiaopan Song
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Ruijin Hu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Shun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zongguang Liu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
17
|
Noh J, Kwon SH, Park S, Kim KK, Yoon YJ. TiO 2 Nanorods and Pt Nanoparticles under a UV-LED for an NO 2 Gas Sensor at Room Temperature. SENSORS (BASEL, SWITZERLAND) 2021; 21:1826. [PMID: 33807891 PMCID: PMC7961387 DOI: 10.3390/s21051826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023]
Abstract
Because the oxides of nitrogen (NOx) cause detrimental effects on not only the environment but humans, developing a high-performance NO2 gas sensor is a crucial issue for real-time monitoring. To this end, metal oxide semiconductors have been employed for sensor materials. Because in general, semiconductor-type gas sensors require a high working temperature, photoactivation has emerged as an alternative method for realizing the sensor working at room temperature. In this regard, titanium dioxide (TiO2) is a promising material for its photocatalytic ability with ultraviolet (UV) photonic energy. However, TiO2-based sensors inevitably encounter a problem of recombination of photogenerated electron-hole pairs, which occurs in a short time. To address this challenge, in this study, TiO2 nanorods (NRs) and Pt nanoparticles (NPs) under a UV-LED were used as an NO2 gas sensor to utilize the Schottky barrier formed at the TiO2-Pt junction, thereby capturing the photoactivated electrons by Pt NPs. The separation between the electron-hole pairs might be further enhanced by plasmonic effects. In addition, it is reported that annealing TiO2 NRs can achieve noteworthy improvements in sensing performance. Elucidation of the performance enhancement is suggested with the investigation of the X-ray diffraction patterns, which implies that the crystallinity was improved by the annealing process.
Collapse
Affiliation(s)
- Jinhong Noh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
| | - Soon-Hwan Kwon
- Department of Advanced Convergence Technology, Research Institute of Advanced Convergence Technology, Korea Polytechnic University, Siheung-si 15073, Korea;
| | - Sunghoon Park
- Department of Intelligent and Mechatronics Engineering, Sejong University, Seoul 05006, Korea;
| | - Kyoung-Kook Kim
- Department of Advanced Convergence Technology, Research Institute of Advanced Convergence Technology, Korea Polytechnic University, Siheung-si 15073, Korea;
- Department of Nano & Semiconductor Engineering, Korea Polytechnic University, Siheung-si 15073, Korea
| | - Yong-Jin Yoon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
18
|
Xuan J, Zhao G, Sun M, Jia F, Wang X, Zhou T, Yin G, Liu B. Low-temperature operating ZnO-based NO 2 sensors: a review. RSC Adv 2020; 10:39786-39807. [PMID: 35515369 PMCID: PMC9057570 DOI: 10.1039/d0ra07328h] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/04/2023] Open
Abstract
Owing to its excellent physical and chemical properties, ZnO has been considered to be a promising material for development of NO2 sensors with high sensitivity, and fast response and recovery. However, due to the low activity of ZnO at low temperature, most of the current work is focused on detecting NO2 at high operating temperatures (200-500 °C), which will inevitably increase energy consumption and shorten the lifetime of sensors. In order to overcome these problems and improve the practicality of ZnO-based NO2 sensors, it is necessary to systematically understand the effective strategies and mechanisms of low-temperature NO2 detection of ZnO sensors. This paper reviews the latest research progress of low-temperature ZnO nanomaterial-based NO2 gas sensors. Several efficient strategies to achieve low-temperature NO2 detection (such as morphology modification, noble metal decoration, additive doping, heterostructure sensitization, two-dimensional material composites, and light activation) and corresponding sensing mechanisms (such as depletion layer theory, grain boundary barrier theory, spill-over effects) are also introduced. Finally, the challenges and future development directions of low-temperature ZnO-based NO2 sensors are outlined.
Collapse
Affiliation(s)
- Jingyue Xuan
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Guodong Zhao
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Meiling Sun
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Fuchao Jia
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Xiaomei Wang
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Tong Zhou
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Guangchao Yin
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| | - Bo Liu
- Laboratory of Functional Molecular and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology Zibo 255000 China +86 533 2783909
| |
Collapse
|
19
|
Sivan S, Shankar SS, N S, Kandambath Padinjareveetil A, Pilankatta R, Kumar VBS, Mathew B, George B, Makvandi P, Černík M, Padil VVT, Varma RS. Fabrication of a Greener TiO 2@Gum Arabic-Carbon Paste Electrode for the Electrochemical Detection of Pb 2+ Ions in Plastic Toys. ACS OMEGA 2020; 5:25390-25399. [PMID: 33043219 PMCID: PMC7542840 DOI: 10.1021/acsomega.0c03781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 05/25/2023]
Abstract
A novel greener methodology is reported for the synthesis of titanium dioxide (TiO2) nanoparticles (NPs) using gum Arabic (Acacia senegal) and the characterization of the ensuing TiO2 NPs by various techniques such as X-ray diffraction (XRD), Fourier transform infrared, Raman spectroscopy, scanning electron microscopy-energy dispersive X-ray, transmission electron microscopy (TEM), high resolution-TEM, and UV-visible spectroscopy. The XRD analysis confirmed the formation of TiO2 NPs in the anatase phase with high crystal purity, while TEM confirmed the size to be 8.9 ± 1.5 nm with a spherical morphology. The electrode for the electrochemical detection of Pb2+ ions was modified by a carbon paste fabricated using the synthesized TiO2 NPs. Compared to the bare electrode, the fabricated electrode exhibited improved electro-catalytic activity toward the reduction of Pb2+ ions. The detection limit, quantification limit, and the sensitivity of the developed electrode were observed by using differential pulse voltammetry to be 506 ppb, 1.68 ppm, and 0.52 ± 0.01 μA μM-1, respectively. The constructed electrode was tested for the detection of lead content in plastic toys.
Collapse
Affiliation(s)
| | - Sarojini Sharath Shankar
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - Sajina N
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Periye 671316 India
| | | | - Rajendra Pilankatta
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - V. B. Sameer Kumar
- Department
of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Periye 671316, India
| | - Beena Mathew
- School
of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam 686560, Kerala, India
| | - Bini George
- Department
of Chemistry, School of Physical Sciences, Central University of Kerala, Periye 671316 India
| | - Pooyan Makvandi
- Chemistry
Department, Faculty of Science, Shahid Chamran
University of Ahvaz, Ahvaz 6153753843, Iran
- Institute
for Polymers, Composites, and Biomaterials (IPCB), National Research Council (CNR), Naples 80125, Italy
| | - Miroslav Černík
- Department
of Nanomaterials in Natural Sciences, Institute for Nanomaterials,
Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech
Republic
| | - Vinod V. T. Padil
- Department
of Nanomaterials in Natural Sciences, Institute for Nanomaterials,
Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech
Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech
Republic
| |
Collapse
|
20
|
Shang X, Guo L, Zhang H, Li D, Yue Q. Titanium Disulfide Based Saturable Absorber for Generating Passively Mode-Locked and Q-Switched Ultra-Fast Fiber Lasers. NANOMATERIALS 2020; 10:nano10101922. [PMID: 32993059 PMCID: PMC7601229 DOI: 10.3390/nano10101922] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023]
Abstract
In our work, passively mode-locked and Q-switched Er-doped fiber lasers (EDFLs) based on titanium disulfide (TiS2) as a saturable absorber (SA) were generated successfully. Stable mode-locked pulses centred at 1531.69 nm with the minimum pulse width of 2.36 ps were obtained. By reducing the length of the laser cavity and optimizing the cavity loss, Q-switched operation with a maximum pulse energy of 67.2 nJ and a minimum pulse duration of 2.34 µs was also obtained. Its repetition rate monotonically increased from 13.17 kHz to 48.45 kHz with about a 35 kHz tuning range. Our experiment results fully indicate that TiS2 exhibits excellent nonlinear absorption performance and significant potential in acting as ultra-fast photonics devices.
Collapse
Affiliation(s)
- Xinxin Shang
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Devices and Shandong Key Laboratory of Medical Physics and Image Processing, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.S.); (L.G.)
| | - Linguang Guo
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Devices and Shandong Key Laboratory of Medical Physics and Image Processing, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.S.); (L.G.)
| | - Huanian Zhang
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255049, China
- Correspondence: (H.Z.); (D.L.); (Q.Y.)
| | - Dengwang Li
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Devices and Shandong Key Laboratory of Medical Physics and Image Processing, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.S.); (L.G.)
- Correspondence: (H.Z.); (D.L.); (Q.Y.)
| | - Qingyang Yue
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Provincial Key Laboratory of Optics and Photonic Devices and Shandong Key Laboratory of Medical Physics and Image Processing, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.S.); (L.G.)
- Correspondence: (H.Z.); (D.L.); (Q.Y.)
| |
Collapse
|
21
|
Kaur N, Singh M, Moumen A, Duina G, Comini E. 1D Titanium Dioxide: Achievements in Chemical Sensing. MATERIALS 2020; 13:ma13132974. [PMID: 32635229 PMCID: PMC7372330 DOI: 10.3390/ma13132974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
For the last two decades, titanium dioxide (TiO2) has received wide attention in several areas such as in medicine, sensor technology and solar cell industries. TiO2-based gas sensors have attracted significant attention in past decades due to their excellent physical/chemical properties, low cost and high abundance on Earth. In recent years, more and more efforts have been invested for the further improvement in sensing properties of TiO2 by implementing new strategies such as growth of TiO2 in different morphologies. Indeed, in the last five to seven years, 1D nanostructures and heterostructures of TiO2 have been synthesized using different growth techniques and integrated in chemical/gas sensing. Thus, in this review article, we briefly summarize the most important contributions by different researchers within the last five to seven years in fabrication of 1D nanostructures of TiO2-based chemical/gas sensors and the different strategies applied for the improvements of their performances. Moreover, the crystal structure of TiO2, different fabrication techniques used for the growth of TiO2-based 1D nanostructures, their chemical sensing mechanism and sensing performances towards reducing and oxidizing gases have been discussed in detail.
Collapse
|