1
|
Li Y, Coodley SN, Chen S, Dong P, Li S, Yao S. Thermally responsive spatially programmable soft actuators with multiple response states enabled by Grayscale UV light processing. MATERIALS HORIZONS 2025; 12:1568-1580. [PMID: 39652336 DOI: 10.1039/d4mh01209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Soft actuators hold great promise for applications in biomimetic robots, artificial muscles, and drug delivery systems due to their adaptability in diverse environments. A critical aspect of designing thermally responsive soft actuators is to achieve spatially programmable actuation under a global thermal stimulus. Different local actuation behaviors can be encoded in one actuator to enable complex morphing structures for different tasks. However, it is challenging to achieve programmability beyond one or binary states. This work introduces a new grayscale ultraviolet (UV) light processing method to fabricate soft actuators with spatially tunable Young's modulus, enabling multiple programmable states in one actuator. Together with a liquid crystal elastomer actuation layer and a photothermal heating layer, the LCE programming layer with spatially programmable moduli allows different regions of the soft actuator to bend to controllable extents under a global thermal stimulus. Various shape morphing patterns can be encoded using UV photomasks with spatially controlled grayscales. Additionally, caterpillar-inspired robots capable of bi-directional crawling and octopus-arm-inspired structures for object manipulation are demonstrated. This work represents advancements in the programmability of thermally responsive soft actuators, laying the foundation for their applications in advanced soft robotic systems.
Collapse
Affiliation(s)
- Yizong Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sooyeon Noh Coodley
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Si Chen
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Su Li
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
2
|
Adeshina MA, Ogunleye AM, Lee H, Mareddi B, Kim H, Park J. Graphene-Liquid Crystal Synergy: Advancing Sensor Technologies across Multiple Domains. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4431. [PMID: 39274820 PMCID: PMC11396380 DOI: 10.3390/ma17174431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
This review explores the integration of graphene and liquid crystals to advance sensor technologies across multiple domains, with a focus on recent developments in thermal and infrared sensing, flexible actuators, chemical and biological detection, and environmental monitoring systems. The synergy between graphene's exceptional electrical, optical, and thermal properties and the dynamic behavior of liquid crystals leads to sensors with significantly enhanced sensitivity, selectivity, and versatility. Notable contributions of this review include highlighting key advancements such as graphene-doped liquid crystal IR detectors, shape-memory polymers for flexible actuators, and composite hydrogels for environmental pollutant detection. Additionally, this review addresses ongoing challenges in scalability and integration, providing insights into current research efforts aimed at overcoming these obstacles. The potential for multi-modal sensing, self-powered devices, and AI integration is discussed, suggesting a transformative impact of these composite sensors on various sectors, including health, environmental monitoring, and technology. This review demonstrates how the fusion of graphene and liquid crystals is pushing the boundaries of sensor technology, offering more sensitive, adaptable, and innovative solutions to global challenges.
Collapse
Affiliation(s)
- Mohammad A Adeshina
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Abdulazeez M Ogunleye
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hakseon Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bharathkumar Mareddi
- Electronics and Communication Engineering, Christ University, Bangalore 560074, India
| | - Hyunmin Kim
- Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jonghoo Park
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Hassan F, Tang Y, Bisoyi HK, Li Q. Photochromic Carbon Nanomaterials: An Emerging Class of Light-Driven Hybrid Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401912. [PMID: 38847224 DOI: 10.1002/adma.202401912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/04/2024] [Indexed: 06/28/2024]
Abstract
Photochromic molecules have remarkable potential in memory and optical devices, as well as in driving and manipulating molecular motors or actuators and many other systems using light. When photochromic molecules are introduced into carbon nanomaterials (CNMs), the resulting hybrids provide unique advantages and create new functions that can be employed in specific applications and devices. This review highlights the recent developments in diverse photochromic CNMs. Photochromic molecules and CNMs are also introduced. The fundamentals of different photochromic CNMs are discussed, including design principles and the types of interactions between CNMs and photochromic molecules via covalent interactions and non-covalent bonding such as π-π stacking, amphiphilic, electrostatic, and hydrogen bonding. Then the properties of photochromic CNMs, e.g., in photopatterning, fluorescence modulation, actuation, and photoinduced surface-relief gratings, and their applications in energy storage (solar thermal fuels, photothermal batteries, and supercapacitors), nanoelectronics (transistors, molecular junctions, photo-switchable conductance, and photoinduced electron transfer), sensors, and bioimaging are highlighted. Finally, an outlook on the challenges and opportunities in the future of photochromic CNMs is presented. This review discusses a vibrant interdisciplinary research field and is expected to stimulate further developments in nanoscience, advanced nanotechnology, intelligently responsive materials, and devices.
Collapse
Affiliation(s)
- Fathy Hassan
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, El-Gharbia, Egypt
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, China
| |
Collapse
|
4
|
Ma Z, Wang W, Xiong Y, Long Y, Shao Q, Wu L, Wang J, Tian P, Khan AU, Yang W, Dong Y, Yin H, Tang H, Dai J, Tahir M, Liu X, He L. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large-Scale Fabrication, and Performance Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400179. [PMID: 39031523 DOI: 10.1002/smll.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Indexed: 07/22/2024]
Abstract
With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.
Collapse
Affiliation(s)
- Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yibo Xiong
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yihao Long
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qi Shao
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Leixin Wu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiangwang Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Tian
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Arif Ullah Khan
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenhao Yang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yixiao Dong
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Tahir
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Liu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin, 644005, P. R. China
| |
Collapse
|
5
|
Ma S, Zhou Y, Wang L, Zhang H. Multifunctional UV-NIR Dual Light-Responsive Soft Actuators from a Main-Chain Azobenzene Semi-Crystalline Poly(ester-amide) Doped with Polydopamine Nanoparticles. Chemistry 2024; 30:e202303306. [PMID: 37965800 DOI: 10.1002/chem.202303306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
The development of soft photoactuators with multifunctionality and improved performance is highly important for their broad applications. Herein, we report on a facile and efficient strategy for fabricating such photoactuators with UV-NIR dual light-responsivity, room-temperature 3D shape reprogrammability and reprocessability, and photothermal healability by doping polydopamine (PDA) nanoparticles into a main-chain azobenzene semi-crystalline poly(ester-amide) (PEA). The PEA/PDA nanoparticle composite was readily processed into free-standing films with enhanced mechanical and photomechanical properties compared with the blank PEA films. Its physically crosslinked uniaxially oriented films showed rapid and highly reversible photochemically induced bending/unbending under the UV/visible light irradiation at room temperature in both the air atmosphere and water. When exposed to the NIR light, they (and their bilayer films formed with a polyimide film) exhibited photothermally induced bending even at a temperature much lower than their crystalline-to-isotropic phase transition temperature based on a unique mechanism (involving photothermally induced polymer chain relaxation due to the disruption of their hydrogen bonds). The room-temperature 3D shape reprogrammability and reprocessability and photothermal healability of the composite polymer films were also demonstrated. Such multifunctional dual light-responsive photoactuators with well-balanced mechanical robustness, actuation stability, 3D shape reprogrammability/reprocessability and photothermal healability hold much promise in various photoactuating applications.
Collapse
Affiliation(s)
- Shengkui Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yan Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lei Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Li X, Wu Z, Li B, Xing Y, Huang P, Liu L. Selaginella lepidophylla-Inspired Multi-Stimulus Cooperative Control MXene-Based Flexible Actuator. Soft Robot 2023; 10:861-872. [PMID: 37335927 DOI: 10.1089/soro.2022.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Predictable bending deformation, high cycle stability, and multimode complex motion have always been the goals pursued in the field of flexible robots. In this study, inspired by the delicate structure and humidity response characteristics of Selaginella lepidophylla, a new multilevel assisted assembly strategy was developed to construct MXene-CoFe2O4 (MXCFO) flexible actuators with different concentration gradients, to achieve predictable bending deformation and multi-stimulus cooperative control of the actuators, revealing the intrinsic link between the gradient change and the bending deformation ability of the actuator. The thickness of the actuator shows uniformity compared with the common layer-by-layer assembly strategy. And, the bionic gradient structured actuator shows high cycle stability, and it maintains excellent interlayer bonding after bending 100 times. The flexible robots designed based on the predictable bending deformation and the multi-stimulus cooperative response characteristics of the actuator initially realize conceptual models of humidity monitoring, climbing, grasping, cargo transportation, and drug delivery. The designed bionic gradient structure and unbound multi-stimulus cooperative control strategy may show great potential in the design and development of robots in the future.
Collapse
Affiliation(s)
- Xiang Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Ze Wu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Bingjue Li
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Youqiang Xing
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Peng Huang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Lei Liu
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Kumar A, Heidari-Bafroui H, Rahmani N, Anagnostopoulos C, Faghri M. Modeling of Paper-Based Bi-Material Cantilever Actuator for Microfluidic Biosensors. BIOSENSORS 2023; 13:580. [PMID: 37366945 DOI: 10.3390/bios13060580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
This research explores the dynamics of a fluidically loaded Bi-Material cantilever (B-MaC), a critical component of μPADs (microfluidic paper-based analytical devices) used in point-of-care diagnostics. Constructed from Scotch Tape and Whatman Grade 41 filter paper strips, the B-MaC's behavior under fluid imbibition is examined. A capillary fluid flow model is formulated for the B-MaC, adhering to the Lucas-Washburn (LW) equation, and supported by empirical data. This paper further investigates the stress-strain relationship to estimate the modulus of the B-MaC at various saturation levels and to predict the behavior of the fluidically loaded cantilever. The study shows that the Young's modulus of Whatman Grade 41 filter paper drastically decreases to approximately 20 MPa (about 7% of its dry-state value) upon full saturation. This significant decrease in flexural rigidity, in conjunction with the hygroexpansive strain and coefficient of hygroexpansion (empirically deduced to be 0.008), is essential in determining the B-MaC's deflection. The proposed moderate deflection formulation effectively predicts the B-MaC's behavior under fluidic loading, emphasizing the measurement of maximum (tip) deflection using interfacial boundary conditions for the B-MaC's wet and dry regions. This knowledge of tip deflection will prove instrumental in optimizing the design parameters of B-MaCs.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Hojat Heidari-Bafroui
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Nassim Rahmani
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Constantine Anagnostopoulos
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Mohammad Faghri
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| |
Collapse
|
8
|
Chen G, Kumar A, Heidari-Bafroui H, Smith W, Charbaji A, Rahmani N, Anagnostopoulos C, Faghri M. Paper-Based Bi-Material Cantilever Actuator Bending Behavior and Modeling. MICROMACHINES 2023; 14:mi14050924. [PMID: 37241548 DOI: 10.3390/mi14050924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
In this paper, the behavior of the Bi-Material Cantilever (B-MaC) response deflection upon fluidic loading was experimentally studied and modeled for bilayer strips. A B-MaC consists of a strip of paper adhered to a strip of tape. When fluid is introduced, the paper expands while the tape does not, which causes the structure to bend due to strain mismatch, similar to the thermal loading of bi-metal thermostats. The main novelty of the paper-based bilayer cantilevers is the mechanical properties of two different types of material layers, a top layer of sensing paper and a bottom layer of actuating tape, to create a structure that can respond to moisture changes. When the sensing layer absorbs moisture, it causes the bilayer cantilever to bend or curl due to the differential swelling between the two layers. The portion of the paper strip that gets wet forms an arc, and as the fluid advances and fully wets the B-MaC, the entire B-MaC assumes the shape of the initial arc. This study showed that paper with higher hygroscopic expansion forms an arc with a smaller radius of curvature, whereas thicker tape with a higher Young's modulus forms an arc with a larger radius of curvature. The results showed that the theoretical modeling could accurately predict the behavior of the bilayer strips. The significance of paper-based bilayer cantilevers lies in their potential applications in various fields, such as biomedicine, and environmental monitoring. In summary, the novelty and significance of paper-based bilayer cantilevers lie in their unique combination of sensing and actuating capabilities using a low-cost and environmentally friendly material.
Collapse
Affiliation(s)
- Gordon Chen
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Ashutosh Kumar
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Hojat Heidari-Bafroui
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Winfield Smith
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Amer Charbaji
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Nassim Rahmani
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Constantine Anagnostopoulos
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| | - Mohammad Faghri
- Microfluidics Laboratory, Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, 2 East Alumni Avenue, Kingston, RI 02881, USA
| |
Collapse
|
9
|
Jedrych A, Pawlak M, Gorecka E, Lewandowski W, Wojcik MM. Light-Responsive Supramolecular Nanotubes-Based Chiral Plasmonic Assemblies. ACS NANO 2023; 17:5548-5560. [PMID: 36897199 PMCID: PMC10062029 DOI: 10.1021/acsnano.2c10955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
We describe the fabrication of dual-responsive (thermo/light) chiral plasmonic films. The idea is based on using photoswitchable achiral liquid crystal (LCs) forming chiral nanotubes for templating helical assemblies of Au NPs. Circular dichroism spectroscopy (CD) confirms chiroptical properties coming from the arrangement of organic and inorganic components, with up to 0.2 dissymmetry factor (g-factor). Upon exposure to UV light, organic molecules isomerize, resulting in controlled melting of organic nanotubes and/or inorganic nanohelices. The process can be reversed using visible light and further modified by varying the temperature, offering a control of chiroptical response of the composite material. These properties can play a key role in the future development of chiral plasmonics, metamaterials, and optoelectronic devices.
Collapse
|
10
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
11
|
Zhang X, Han R, Li H, Zhao X, Cao H, Chen Y, Yang Z, Wang D, He W. Preparation of Flexible Liquid Crystal Films with Broadband Reflection Based on PD&SLC. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8896. [PMID: 36556703 PMCID: PMC9786151 DOI: 10.3390/ma15248896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
A simple and efficient method for the preparation of a film with flexible characteristic and selective reflection of near-infrared light is proposed. Based on the coexistence system (PD&SLC) of polymer dispersed liquid crystals (PDLC) and polymer stabilized liquid crystals (PSLC), it combines the flexibility of PDLC with the selectively reflection of PSLC. Innovative use of step-by-step light curing to achieve microstructural differences in the three-dimensional orientation of the material is proposed. That is, the difference between PDLC and PSLC in the planar orientation, as well as the gradient distribution of cholesteric phase liquid crystal pitch in the cell thickness direction, is observed. While realizing the flexibility of the material, the function of broadening the reflection bandwidth is fulfilled. This method of preparing liquid crystal films is expected to have great potential for applications, such as flexible smart windows, infrared light shielding, and sensors.
Collapse
Affiliation(s)
- Xuetao Zhang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Han
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaohui Zhao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Cao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinjie Chen
- Beijing Engineering Research Center of Printed Electronics, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zhou Yang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dong Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanli He
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
12
|
Wang X, Lin D, Zhou Y, Jiao N, Tung S, Liu L. Multistimuli-Responsive Hydroplaning Superhydrophobic Microrobots with Programmable Motion and Multifunctional Applications. ACS NANO 2022; 16:14895-14906. [PMID: 36067035 DOI: 10.1021/acsnano.2c05783] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Superhydrophobic microrobots that can swim efficiently and rapidly on water under the action of external stimuli have attracted significant research attention for various applications. However, most studies on superhydrophobic microrobots have focused on single-stimulus driving modes, which limit the motion and functional applications of microrobots in complex aquatic environments. Therefore, multistimuli-responsive superhydrophobic microrobots that are capable of drifting rapidly on water through light, magnetic, and chemical control were developed in this study. The stability and environmental adaptability of the microrobots were systematically investigated. The microrobots achieved programmable trajectory motion on water, particularly complex motions such as circular, spiral, and helical movements under the coupled influence of chemical and magnetic fields. Importantly, the motion and control of multimicrorobots can be realized by combining control methods. Under the action of light and magnetic field, multimicrorobots could realize cooperative movement and completed the transportation of cargo. Additionally, broad multifunctional applications of the microrobots were explored in terms of oil spill recovery and solution mix. This study provides a method for the preparation and development of superhydrophobic microrobots with multistimuli-responsive characteristics.
Collapse
Affiliation(s)
- Xiaodong Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daojing Lin
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zhou
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Niandong Jiao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| | - Steve Tung
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
13
|
Jayoti D, Peeketi AR, Annabattula RK, Prasad SK. Dynamics of the photo-thermo-mechanical actuations in NIR-dye doped liquid crystal polymer networks. SOFT MATTER 2022; 18:3358-3368. [PMID: 35411357 DOI: 10.1039/d2sm00156j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe photo-thermo-mechanical actuation and its dynamics in thin films of a liquid crystal networks (LCN) under near infrared (NIR) illumination through experiments and simulations. Splay aligned films of different thicknesses (25 μm to 100 μm) were obtained by crosslinking a mixture of mono-functional and bi-functional liquid crystal monomers. The NIR-driven thermo-mechanical actuation was achieved by adding an NIR dye to the monomer mixture. The absorption of incoming radiation by the dye molecules raises the local temperature of the film causing an order-disorder (nematic-isotropic) transition, thereby resulting in a macroscopic shape change. We have investigated the effect of film thickness, NIR laser power and dye concentration on the tip displacement of the films in a cantilever configuration. The experimental findings and finite element simulation results are in reasonably good quantitative agreement. Despite using lower NIR powers than typically employed, the films show high actuation and large displacements. After achieving saturation in actuation, the films exhibit a flutter behavior which is discussed in light of the observed overshoot in the tip displacement for certain intensities and thicknesses. Finally, using a solar simulator, we also show the visible light response of the film.
Collapse
Affiliation(s)
- Divya Jayoti
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Akhil R Peeketi
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - Ratna K Annabattula
- Center for Responsive Soft Matter, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
| | - S Krishna Prasad
- Centre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India.
| |
Collapse
|
14
|
Yu Z, Wang Y, Zheng J, Sun S, Fu Y, Chen D, Cai W, Wang D, Zhou H, Li D. Fast-Response Bioinspired Near-Infrared Light-Driven Soft Robot Based on Two-Stage Deformation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16649-16657. [PMID: 35360897 DOI: 10.1021/acsami.2c01109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we report a remotely controlled soft robot employing a photoresponsive nanocomposite synthesized from liquid crystal elastomers (LCEs), high elastic form-stable phase change polymer (HEPCP), and multiwalled carbon nanotubes (MWCNTs). Possessing a two-stage deformation upon exposure to near-infrared (NIR) light, the LCE/HEPCP/MWCNT (LHM) nanocomposite allows the soft robot to exhibit an obvious, fast, and reversible shape change with low detection limitations. In addition to the deformation and bending of the LCE molecular chains itself, the HEPCP in the composite material can also be triggered by a reversible solid-liquid transition due to the temperature rise caused by MWCNTs, which further promotes the change of the LCE. In particular, the proposed photodriven LHM soft robot can bend up to 180° in 2 s upon NIR stimulation (320 mW, distance of 5 cm) and generate recoverable, dramatic, and sensitive deformation to execute various tasks including walking, twisting, and bending. With the capacity of imitating biological behaviors through remote control, the disruptive innovation developed here offers a promising path toward miniaturized untethered robotic systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yunming Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Jiaqi Zheng
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Shuang Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Yue Fu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dan Chen
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Weihao Cai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dong Wang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Huamin Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| | - Dequn Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China
| |
Collapse
|
15
|
Wang J, Yang B, Yu M, Yu H. Light-Powered Self-Sustained Oscillators of Graphene Oxide/Liquid Crystalline Network Composites Showing Amplitude and Frequency Superposition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15632-15640. [PMID: 35333059 DOI: 10.1021/acsami.2c00680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Light-activated self-oscillators have drawn enormous attention for their potential applications in mobile machines, energy harvesting, signal modulation, etc. Herein, we report one graphene oxide (GO)/liquid crystalline network (LCN) actuator that presents a unique light-activated oscillation with amplitude and frequency superposition. The GO/LCN composite film is prepared by the one-step polymerization of LC monomers, which favors a splay orientation in LC cells made by gluing together two glass sheets, one coated with photothermal agent GO and the other coated with a rubbed polyimide alignment layer. Owing to the asymmetric contraction/expansion, changing the cutting direction gives rise to notably different actuation behaviors for GO/LCN composite films. Moreover, it twists a little during the deflection process as a result of experimental error during the cutting process, which may cause the strip to be cut inaccurately. When the composite film is embedded in a self-shadowing system, it produces an unconventional hybrid oscillation mode upon near-infrared light irradiation, i.e., bending and twisting oscillation coupled. Furthermore, when the aspect ratio of the film decreases, the twisting mode is suppressed and the actuator changes from a coupled mode to a single bending mode. The proposed strategy may extend the application of GO/LCN composite materials and enrich light-activated self-oscillating behaviors.
Collapse
Affiliation(s)
- Jianchuang Wang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Bowen Yang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| | - Mingming Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
16
|
Wang R, Han L, Wu C, Dong Y, Zhao X. Localizable, Identifiable, and Perceptive Untethered Light-Driven Soft Crawling Robot. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6138-6147. [PMID: 35050581 DOI: 10.1021/acsami.1c20539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft robots based on bionics have attracted extensive attention in recent years. However, most of previous works focused on the motion of robots that were incapable of communication and perception. In this work, an untethered crawling robot is proposed with integration of motion, communication, and location based entirely on a flexible material, which is capable of being utilized as a sensing platform. The hydrophilic graphene oxide film, capable of photothermal conversion, allows the robot to undergo a large deformation stimulated by near-infrared light. Conductive fabric with low resistivity and high mechanical strength, replacing the traditional rigid circuit, is utilized to complete the communication of the robot. The designed communication module allows an electrical signal to be inductively coupled to the soft robot instead of being generated by batteries or through transmission lines. The perception of the robot is demonstrated by covering sensitive materials. Furthermore, the positioning and identification of the robot are verified by an external coil array. The proposed soft crawling robot provides an innovative strategy for the integration of multifunctional robots and shows great potential in bionic devices, intelligent robots, and advanced sensors.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chenggen Wu
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yupeng Dong
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoguang Zhao
- Department of Precision Instruments, Tsinghua University, Beijing 100084, China
| |
Collapse
|
17
|
Tang D, Zhang L, Zhang X, Xu L, Li K, Zhang A. Bio-Mimetic Actuators of a Photothermal-Responsive Vitrimer Liquid Crystal Elastomer with Robust, Self-Healing, Shape Memory, and Reconfigurable Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1929-1939. [PMID: 34964343 DOI: 10.1021/acsami.1c19595] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft actuators with apparent uniqueness in exhibiting complex shape morphing are highly desirable for artificial intelligence applications. However, for the majority of soft actuators, in general, it is challenging to achieve versatility, durability, and configurability simultaneously. Enormous works are devoted to meet the multifunctional smart actuators, to little effect. Herein, self-healing and bio-mimetic smart actuators are proposed based on azobenzene chromophores and dynamic disulfide bonds. Benefiting from the dynamic and drivable vitrimer liquid crystal elastomer (V-LCE) materials, a series of actuators with single or compound dynamic three-dimensional structures were fabricated, which were capable of double-stimuli response and complex "bionic" motions, such as the blooming of a flower, grasping and loosening an object, and so forth. Moreover, these flexible actuators showed fascinating properties, such as high robustness, excellent elasticity-plasticity shape-memory properties (Rf and Rr are close to 100%), easily reconfigurable property, and self-healing. This smart V-LCE provides a guideline to design and fabricate soft versatility actuators, which has prospects for developing smart bionic and artificial intelligence devices.
Collapse
Affiliation(s)
- Die Tang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lun Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xiaoyu Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Liqiang Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ke Li
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
- College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
| | - Aimin Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Xu X, Hao X, Hu J, Gao W, Ning N, Yu B, Zhang L, Tian M. Recyclable silicone elastic light-triggered actuator with a reconfigurable Janus structure and self-healable performance. Polym Chem 2022. [DOI: 10.1039/d1py01632f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recyclable silicone elastic light-triggered actuator with reconfigurable Janus structure and self-healable performance is reported, which was fabricated via heterogeneous crosslinking induced by a gradient intensity of UV light due to CNTs accretion.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Hao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weisheng Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- China National Petroleum & Chemical Planning Institute, Beijing 100013, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
19
|
Lin J, Zhou P, Wen Z, Zhang W, Luo Z, Chen L. Chinese ink: a programmable, dual-responsive and self-sensing actuator using a healing-assembling method. NANOSCALE 2021; 13:20134-20143. [PMID: 34846409 DOI: 10.1039/d1nr06111a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Actuators have wide applications in soft robotics and bionic devices. Since the healing ability not only makes actuators have longer service lives, but also allows them to be programmable through welding and assembling, it is regarded as an important feature for state-of-the-art actuators. Nevertheless, it remains a great challenge to integrate multi-functional merits, such as multi-responsiveness, programmable shape-morphing, healing and self-sensing function, simultaneously into a monolithic actuating material. Here, we introduce Chinese ink, a carbon-based material used in traditional calligraphy, to develop programmable, dual-responsive and self-sensing actuators by a healing-assembling method. The ink is combined with graphene oxide (GO) to fabricate a double-layer ink/GO actuator, which shows bi-directional bending under near-infrared light or humidity, owing to the mismatch of the volume change between ink and GO films. The maximal bending curvature is up to 5.2 cm-1. Importantly, the entire ink/GO actuator can be healed with the aid of ink solution. Using the healing-assembling method to fabricate advanced structures including a Mobius ring, triangular rings and square rings, diverse actuating modes and complex 3D deformations such as a wavy shape and saddle shape are realized. This method also enables the construction of an artificial mimosa that shows a biomimetic stimulus-responsive behavior. In addition, the ink/GO actuator shows a self-sensing function, which is attributed to the thermoresistivity of the ink film. This research shows the huge potential of Chinese-ink-based actuators for use in smart materials, providing a new idea for the development of new generation multi-functional actuators.
Collapse
Affiliation(s)
- Jian Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Zhiyuan Wen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, 350117, China.
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou, 350117, China
| |
Collapse
|
20
|
|
21
|
Lin D, Yang F, Gong D, Lin Z, Li R, Qian W, Li C, Jia S, Chen H. Magnetoactive Soft Drivers with Radial-Chain Iron Microparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34935-34941. [PMID: 34279894 DOI: 10.1021/acsami.1c08525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetoactive elastomers (MAEs), one kind of typical novel magnetoactive driver applied in the soft robotic area, have become one of the research hotspots as they can provide biologically friendly driving methods with safe, preprogrammed, and easy-to-implement properties. In this study, novel MAEs embedding soft magnetic iron microparticles with radial chains, which can be molded in one piece, achieve 3D deformation, and co-work between multiple MAEs under single homogeneous stimuli, are proposed. Then, two kinds of novel magnetoactive drivers are established based on the proposed MAEs, which can achieve the synchronous pumping behavior of heart and the extension behavior of muscle under applied homogeneous magnetic fields. The experimental data show that (1) for the pumping behavior, the maximum instantaneous flow rate and total pumping volume can reach 200.1 and 52.3 mL/min, respectively, under 120 BPM applied harmonic magnetic field with 0-300 mT amplitude; (2) the muscle extension behavior can achieve a strain of 0.925 without a loading mass and carry a load of 40 times its own weight with a pronounced dynamic movement. It should be emphasized that the behavior of the proposed magnetoactive drivers can be excited by remote homogeneous magnetic fields, and it has great application potential in biomimetic or bioinspired soft driving systems.
Collapse
Affiliation(s)
- Dezhao Lin
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Fan Yang
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Di Gong
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Zhihong Lin
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Ruihong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Wenbo Qian
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Chenghong Li
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Sheng Jia
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| | - Hongwei Chen
- Research Center for Intelligent Materials and Structures (CIMS), College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
22
|
Zheng Q, Xu C, Jiang Z, Zhu M, Chen C, Fu F. Smart Actuators Based on External Stimulus Response. Front Chem 2021; 9:650358. [PMID: 34136462 PMCID: PMC8200850 DOI: 10.3389/fchem.2021.650358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Smart actuators refer to integrated devices that are composed of smart and artificial materials, and can provide actuation and dampening capabilities in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). Due to their capability of dynamically sensing and interaction with complex surroundings, smart actuators have attracted increasing attention in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. Among these intelligent material, functional hydrogels with fiber structure are of great value in the manufacture of smart actuators. In this review, we summarized the recent advances in stimuli-responsive actuators based on functional materials. We emphasized the important role of functional nano-material-based additives in the preparation of the stimulus response materials, then analyzed the driving response medium, the preparation method, and the performance of different stimuli responses in detail. In addition, some challenges and future prospects of smart actuators are reported.
Collapse
Affiliation(s)
- Qinchao Zheng
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Fanfan Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
23
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
24
|
Chen Y, Yang J, Zhang X, Feng Y, Zeng H, Wang L, Feng W. Light-driven bimorph soft actuators: design, fabrication, and properties. MATERIALS HORIZONS 2021; 8:728-757. [PMID: 34821314 DOI: 10.1039/d0mh01406k] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Soft robots that can move like living organisms and adapt to their surroundings are currently in the limelight from fundamental studies to technological applications, due to their advances in material flexibility, human-friendly interaction, and biological adaptation that surpass conventional rigid machines. Light-fueled smart actuators based on responsive soft materials are considered to be one of the most promising candidates to promote the field of untethered soft robotics, thereby attracting considerable attention amongst materials scientists and microroboticists to investigate photomechanics, photoswitch, bioinspired design, and actuation realization. In this review, we discuss the recent state-of-the-art advances in light-driven bimorph soft actuators, with the focus on bilayer strategy, i.e., integration between photoactive and passive layers within a single material system. Bilayer structures can endow soft actuators with unprecedented features such as ultrasensitivity, programmability, superior compatibility, robustness, and sophistication in controllability. We begin with an explanation about the working principle of bimorph soft actuators and introduction of a synthesis pathway toward light-responsive materials for soft robotics. Then, photothermal and photochemical bimorph soft actuators are sequentially introduced, with an emphasis on the design strategy, actuation performance, underlying mechanism, and emerging applications. Finally, this review is concluded with a perspective on the existing challenges and future opportunities in this nascent research Frontier.
Collapse
Affiliation(s)
- Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Shen C, Lan R, Huang R, Zhang Z, Bao J, Zhang L, Yang H. Photochemically and Photothermally Controllable Liquid Crystalline Network and Soft Walkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3221-3227. [PMID: 33406823 DOI: 10.1021/acsami.0c20628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Developing intelligent soft robots capable to perform various responses to different stimulations has been a hot topic in recent years. Liquid crystalline networks (LCNs) have been considered as one of the most promising candidates in the fabrication of soft actuators because of the combination of elasticity of the polymer and anisotropy of the liquid crystals. However, the design and fabrication of advanced LCN materials with outstanding performances and multiple responsivities is highly demanded but still a challenge. In this work, a NIR-UV dual light-responsive LCN actuator was prepared by selectively coating a polydopamine (PDA) layer on an azobenzene-doped LCN film. This actuator presents UV responsivity in the uncoated region because of the photochemical isomerization of azobenzene and NIR sensitivity in the PDA-coated region originated from the striking photothermal effect. Thanks to the reprogrammable PDA coating, this dual-responsive LCN actuator was totally reprogrammable by coating and washing the PDA layer repeatedly. Based on the novel soft actuator, an artificial car that can imitate the switch of the "forward gear" to "neutral gear" of a real car was prepared. In normal mode, the actuator can move forward under NIR irradiation. After UV light excitation, the actuator cannot move under the same NIR irradiation, just like the car with the level in neutral. This novel actuator may provide inspirations for the fabrication of light-driven functional devices and soft actuators.
Collapse
Affiliation(s)
- Chen Shen
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Ruochen Lan
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Rui Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Zhongping Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jinying Bao
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Lanying Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Huai Yang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
26
|
Weng M, Xiao Y, Yao L, Zhang W, Zhou P, Chen L. Programmable and Self-Healing Light-Driven Actuators through Synergetic Use of Water-Shaping and -Welding Methods. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55125-55133. [PMID: 33253523 DOI: 10.1021/acsami.0c14380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape programming is critical for the fabrication of a light-driven actuator with complex shape morphing, which demonstrates potential applications in remote-controlled light-driven soft robots. However, it remains a huge challenge to obtain light-driven actuators having advantages of complex shape morphing, self-healing function, and facile fabrication simultaneously. Here, we report a facile strategy to obtain programmable and self-healing light-driven actuators with complex shape morphing. Various initial shapes of actuators can be programmed by synergetic use of water-shaping and -welding methods, which provides unlimited opportunities for fabricating actuators with predesigned shapes and subsequently demonstrating complex shape morphing. A template transfer method is used to prepare a single-layer graphene oxide (GO) film with asymmetric surface structures, which acts as the basic actuator and has the self-healing function based on the hydrophilic property of GO. It shows bending morphing under near-infrared (NIR) light irradiation due to the photothermal effect and asymmetric morphology on the opposite surfaces. Four more types of actuators are programmed from the basic actuator through the water-shaping method, which exhibits bending, unbending, twisting, and untwisting, respectively, under NIR light illumination. In addition, an S-shape actuator and a flower-shape actuator are programmed from the basic actuators through the water-welding method. By simply turning over the S-shape actuator, it can perform a bidirectional crawling motion. Finally, two intricate bionic light-driven actuators (tendril-shape and octopus-shape) are constructed, which are unattainable from conventional fabrication methods of actuators. We believe that this study will unlock a new way to programmable, self-healing, and light-driven soft robots with tunable and complex shape morphing.
Collapse
Affiliation(s)
- Mingcen Weng
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Yiwen Xiao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Liqiang Yao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| |
Collapse
|
27
|
Chen Y, Chen C, Rehman HU, Zheng X, Li H, Liu H, Hedenqvist MS. Shape-Memory Polymeric Artificial Muscles: Mechanisms, Applications and Challenges. Molecules 2020; 25:E4246. [PMID: 32947872 PMCID: PMC7570610 DOI: 10.3390/molecules25184246] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.
Collapse
Affiliation(s)
- Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Chi Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Hafeez Ur Rehman
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Xu Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (C.C.); (X.Z.)
| | - Hua Li
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.L.)
| | - Hezhou Liu
- Collaborative Innovation Centre for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China; (H.L.); (H.L.)
| | - Mikael S. Hedenqvist
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
28
|
Wang M, Li Q, Shi J, Cao X, Min L, Li X, Zhu L, Lv Y, Qin Z, Chen X, Pan K. Bio-Inspired High Sensitivity of Moisture-Mechanical GO Films with Period-Gradient Structures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33104-33112. [PMID: 32573195 DOI: 10.1021/acsami.0c07956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Moisture actuators can accomplish humidity-triggered energy-conversion process, through material screening and structural design. Inspired by natural caterpillars and the hydrophilic properties of graphene oxide (GO), this work proposes a geometrical design of period-gradient structures in GO films for fabricating moisture actuators. These novel period-gradient-structured GO films exhibit excellent dynamic performance that they could deform at 1000° with a small radius in several seconds at a high relative humidity (RH ≈ 80%). The properties of fast actuating speed and high response to deformation are achieved through the structural designing of the sole GO film by a one-step formation process. A mechanics-based theoretical model combined with the finite element simulation is presented to demonstrate the actuating mechanism in geometry, moisture, and mechanics, which lays the foundation for potential applications of GO films in remote control, environmental monitoring, and man-machine interactions.
Collapse
Affiliation(s)
- Mingti Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qicong Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
| | - Jiaxin Shi
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xueyuan Cao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lizhen Min
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaofeng Li
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linli Zhu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China
| | - Yuhuan Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Qin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiangyang Chen
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kai Pan
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|