1
|
Chen Z, Song J, Lu Y, Zhu J, Zhu H, Du W, Hu B. Mechanical Compatibility in Stitch Configuration and Sensor Adhesion for High-Fidelity Pulse Wave Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415608. [PMID: 39951279 PMCID: PMC11984903 DOI: 10.1002/advs.202415608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/28/2025] [Indexed: 04/12/2025]
Abstract
Wearable electronics can achieve high-fidelity monitoring of pulse waveforms on the body surface enabling early diagnosis of cardiovascular diseases (CVDs). Textile-based wearable devices offer advantages in terms of high permeability and comfort. However, knitted strain sensors struggle to capture small-range deformation signals due to stress dissipation during friction and slip of yarns within the textiles. They are optimized for mechanical adaptability and adhesive capability. In this work, the stitch configurations of knitted structure are adjusted to optimize the energy dissipation ratio during deformation and waveform fitting performance. These electric-mechanical results enabled the selection of the most suitable knitted structure for the clinical diagnosis. On the other hand, the sensor's adhesion is optimized with respect to electrical-force-strain coupling and energy transfer efficiency at the interface between skin and sensor. The balance between the storage modulus and loss modulus are adjusted via the crosslinking degree of the polyacrylamide (PAAm) hydrogel network. As a result, the optimized knitted sensor enables stable collection of pulse waveforms from the radial and dorsalis pedis arteries. In human patient evaluations, the knitting-based strain sensor can distinguish patients with different potential CVD risks through extracted characteristic indicators.
Collapse
Affiliation(s)
- Zhongda Chen
- School of Biomedical Engineering and InformaticsNanjing Medical University101 Longmian AvenueNanjing211166China
| | - Jun Song
- Materdicine LabSchool of Life SciencesShanghai University99 Shangda RoadShanghai200444China
| | - Yu Lu
- School of Mechanical EngineeringNantong University9 Seyuan RoadNantong226002China
| | - Jing Zhu
- Department of GeriatricsAffiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong)Shanghai University500 Yonghe RoadNantong226011China
| | - Hongxu Zhu
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiaotong University600 Yishan RoadXuhuiShanghai200233China
| | - Wenxian Du
- Institute of Diagnostic and Interventional RadiologyShanghai Sixth People's HospitalSchool of MedicineShanghai Jiaotong University600 Yishan RoadXuhuiShanghai200233China
| | - Benhui Hu
- School of Biomedical Engineering and InformaticsNanjing Medical University101 Longmian AvenueNanjing211166China
| |
Collapse
|
2
|
Kompa A, Ravindran R, Hao J, Fernandez JG. A low-cost biocompatible and biodegradable multipurpose resistive ink for monitoring biological systems. J Mater Chem B 2025; 13:3295-3303. [PMID: 39992683 DOI: 10.1039/d4tb02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Flexible and biocompatible strain sensors are becoming increasingly important in fields such as health monitoring, wearable electronics, and environmental sensing because they offer significant advantages over conventional rigid systems. However, they lack the versatility and ecological and physiological biocompatibility necessary for broader integration within biological systems. Here, we describe the development of an inexpensive water-based plasticized chitosan-carbon black composite ink that can be used to produce conductive and biocompatible strain sensors. The ink can be applied to various surfaces, including skin, internal organs, and other biological tissues, using numerous methods, such as painting, dipping, and stamping. Furthermore, this unprecedented ability to attach and conform to biological surfaces allows the exploration of secondary sensing innovations, such as exploiting skin wrinkles to improve sensitivity. This study demonstrates that the ink exhibits a reliable change in electrical resistance in response to a wide range of motions, from subtle vibrations during speech and heartbeats to extensive articulations, like finger and elbow movements. This exceptional sensitivity range, biocompatibility, and the ink's low cost, biodegradability, and ease of removal enhance its applicability in sustainable, temporary, and customizable sensing solutions, highlighting its potential for versatile applications in human health monitoring, motion detection, and environmental sensing.
Collapse
Affiliation(s)
- Akshayakumar Kompa
- Engineering and Product Development, Singapore University of Technology and Design, Singapore
| | - Revathi Ravindran
- Engineering and Product Development, Singapore University of Technology and Design, Singapore
| | - Jianyu Hao
- Engineering and Product Development, Singapore University of Technology and Design, Singapore
| | - Javier G Fernandez
- Engineering and Product Development, Singapore University of Technology and Design, Singapore
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
- ICREA, Barcelona, Spain
| |
Collapse
|
3
|
Virdyawan V, Marendra T, Prakoso B, Indrawanto, Sumboja A. Palm oil based stretchable piezoresistive strain sensors. Heliyon 2024; 10:e40791. [PMID: 39687178 PMCID: PMC11648233 DOI: 10.1016/j.heliyon.2024.e40791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/13/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The advancement of wearable devices and soft robots requires soft and stretchable sensors to detect their movements. This article proposes palm oil as an organic solvent for a stretchable piezoresistive strain sensor made from a composite consisting of elastomer (Ecoflex 00-30) filled with carbon black. The high content of palmitic acid in the palm oil increases the dispersity of carbon black in the composite, hence effectively improving the conductivity of the sensors. Furthermore, using palm oil as a natural plasticizer can lower the degree of crosslinking of the matrix, reducing the modulus elasticity but still producing a stretchable sensor with 500 % elongation at break. The presence of palm oil in the sensor also increases the gauge factor, showing a value of 2.43-4.75 and better repeatability during loading. These gauge factors are associated with two linear strain regions of the sensors (R2 > 0.99), which are 20-200 % and 0-20 % strain, respectively. The stretchable sensor also shows high durability that can withstand >1500 cycles at 60 % strain. The as-fabricated sensor can be deployed to detect the movement of the human body, such as for measuring a finger's joint angle and in soft robotics applications.
Collapse
Affiliation(s)
- Vani Virdyawan
- Engineering Design and Production Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132, Indonesia
| | - Thoriq Marendra
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132, Indonesia
| | - Bagas Prakoso
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132, Indonesia
- Mekanisasi Perikanan, Politeknik Kelautan dan Perikanan Sorong, Jl. Kapitan Pattimura, Sorong, 98411, Indonesia
| | - Indrawanto
- Engineering Design and Production Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132, Indonesia
| | - Afriyanti Sumboja
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesa 10, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Song J, Chen Z, Shi L, Yang T, Lu Y, Yu S, Xiang H, Li J, Li Y, Ma P, Hu B, Chen Y. A Knitted and MXenzyme-Integrated Dressing for Geriatrics Diagnosis and Ulcer Healing. ACS NANO 2024; 18:23412-23427. [PMID: 39146437 DOI: 10.1021/acsnano.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Integrated diagnostic and therapeutic dressings are desirable to relieve diabetic patients who often suffer from diabetic foot ulcers (DFUs) and peripheral vascular diseases (PVDs). However, it is highly difficult to monitor the pulse waves with fidelity under wet environments and connect the waveforms to diseases through a small strain sensor. Additionally, immobilizing MXenzyme to regulate spatially heterogeneous levels of reactive oxygen species (ROS) and applying active intervention to enhance ulcer healing on a single structure remain a complex task. To address these issues, we designed a multiscale wearable dressing comprising a knitted all-textile sensing array for quantitatively investigating the pulse wave toward PVD diagnosis. MXenzyme was loaded onto the dressing to provide multiple enzyme mimics for anti-inflammatory activities and deliver electrical stimulation to promote wound growth. In mice, we demonstrate that high and uniform expression of the vascular endothelial growth factor (VEGF) is observed only in the group undergoing dual mediation with electrical stimulation and MXenzyme. This observation indicates that the engineered wound dressing has the capability to accelerate healing in DFU. In human patient evaluations, the engineered dressing distinguishes vascular compliance and pulse period, enabling the diagnosis of arteriosclerosis and return blockage, two typical PVDs. The designed and engineered multiscale dressing achieves the purpose of integrating diagnostic peripheral vessel health monitoring and ulcer healing therapeutics for satisfying the practical clinical requirements of geriatric patients.
Collapse
Affiliation(s)
- Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhongda Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Lanhao Shi
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Tong Yang
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Lu
- School of Mechanical Engineering, Nantong University, Nantong 226002, China
| | - Shancheng Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Yi Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Pibo Ma
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Institute of Materdicine, Shanghai 200051, China
| |
Collapse
|
5
|
Chen X, Yang X, Han X, Ruan Z, Xu J, Huang F, Zhang K. Advanced Thermoelectric Textiles for Power Generation: Principles, Design, and Manufacturing. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300023. [PMID: 38356682 PMCID: PMC10862169 DOI: 10.1002/gch2.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Indexed: 02/16/2024]
Abstract
Self-powered wearable thermoelectric (TE) devices significantly reduce the inconvenience caused to users, especially in daily use of portable devices and monitoring personal health. The textile-based TE devices (TETs) exhibit the excellent flexibility, deformability, and light weight, which fulfill demands of long-term wearing for the human body. In comparison to traditional TE devices with their longstanding research history, TETs are still in an initial stage of growth. In recent years, TETs to provide electricity for low-power wearable electronics have attracted increasing attention. This review summarizes the recent progress of TETs from the points of selecting TE materials, scalable fabrication methods of TE fibers/yarns and TETs, structure design of TETs and reported high-performance TETs. The key points to develop TETs with outstanding TE properties and mechanical performance and better than available optimization strategies are discussed. Furthermore, remaining challenges and perspectives of TETs are also proposed to suggest practical applications for heat harvesting from human body.
Collapse
Affiliation(s)
- Xinyi Chen
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Xiaona Yang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Xue Han
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Zuping Ruan
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Jinchuan Xu
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Fuli Huang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| | - Kun Zhang
- Key Laboratory of Textile Science & TechnologyMinistry of EducationDonghua UniversityShanghai200051China
- College of TextilesDonghua UniversityShanghai200051China
| |
Collapse
|
6
|
Moon S, Chae Y. Colorful graphene-based wearable e-textiles prepared by co-dyeing cotton fabrics with natural dyes and reduced graphene oxide. Sci Rep 2024; 14:2298. [PMID: 38280886 PMCID: PMC10821867 DOI: 10.1038/s41598-024-52850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/24/2024] [Indexed: 01/29/2024] Open
Abstract
In addition to the functionality of electronic textiles (e-textiles), their aesthetic properties should be considered to expand their marketability. In this study, premordanted cotton fabrics were co-dyed with reduced graphene oxide (rGO) and natural dyes to develop ecofriendly and colorful graphene-based wearable e-textiles. The color attributes of the textiles were analyzed in terms of the dyeing conditions, namely, rGO loading, mordant type, and natural dye type. The lightness of the dyed samples increased in the order of cochineal < gardenia blue < rhubarb. Regardless of the natural dye and rGO loading, the lightness of the fabrics mordanted with Fe was lower than that with Al and Cu. Moreover, the rhubarb- and gardenia blue-dyed fabrics exhibited broad chroma and hue dispersions, indicating the strong impact of the dyeing conditions. With increasing rGO loading, the chroma of the rhubarb-dyed fabrics substantially decreased, resulting in decreased color saturation. The initial greenish-blue color of the gardenia blue-dyed fabrics gradually changed to yellowish-green and then yellow. Regardless of the natural dye, drastic overall color changes were observed, with average values of 7.60, 11.14, 12.68, and 13.56 ΔECMC(2:1) at increasing rGO loadings of 1, 3, 5, and 7% owb, respectively.
Collapse
Affiliation(s)
- Sungwoo Moon
- Department of Clothing and Textiles, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Youngjoo Chae
- Department of Clothing and Textiles, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
7
|
Meena JS, Choi SB, Jung SB, Kim JW. Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Mater Today Bio 2023; 19:100565. [PMID: 36816602 PMCID: PMC9932217 DOI: 10.1016/j.mtbio.2023.100565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
Sedentary lifestyles and evolving work environments have created challenges for global health and cause huge burdens on healthcare and fitness systems. Physical immobility and functional losses due to aging are two main reasons for noncommunicable disease mortality. Smart electronic textiles (e-textiles) have attracted considerable attention because of their potential uses in health monitoring, rehabilitation, and training assessment applications. Interactive textiles integrated with electronic devices and algorithms can be used to gather, process, and digitize data on human body motion in real time for purposes such as electrotherapy, improving blood circulation, and promoting wound healing. This review summarizes research advances on e-textiles designed for wearable healthcare and fitness systems. The significance of e-textiles, key applications, and future demand expectations are addressed in this review. Various health conditions and fitness problems and possible solutions involving the use of multifunctional interactive garments are discussed. A brief discussion of essential materials and basic procedures used to fabricate wearable e-textiles are included. Finally, the current challenges, possible solutions, opportunities, and future perspectives in the area of smart textiles are discussed.
Collapse
Affiliation(s)
- Jagan Singh Meena
- Research Center for Advanced Materials Technology, Core Research Institute, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Bin Choi
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung-Boo Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Woong Kim
- Department of Smart Fab Technology, Sungkyunkwan University, Suwon, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Lai QT, Sun QJ, Tang Z, Tang XG, Zhao XH. Conjugated Polymer-Based Nanocomposites for Pressure Sensors. Molecules 2023; 28:1627. [PMID: 36838615 PMCID: PMC9964060 DOI: 10.3390/molecules28041627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Flexible sensors are the essential foundations of pressure sensing, microcomputer sensing systems, and wearable devices. The flexible tactile sensor can sense stimuli by converting external forces into electrical signals. The electrical signals are transmitted to a computer processing system for analysis, realizing real-time health monitoring and human motion detection. According to the working mechanism, tactile sensors are mainly divided into four types-piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. Conventional silicon-based tactile sensors are often inadequate for flexible electronics due to their limited mechanical flexibility. In comparison, polymeric nanocomposites are flexible and stretchable, which makes them excellent candidates for flexible and wearable tactile sensors. Among the promising polymers, conjugated polymers (CPs), due to their unique chemical structures and electronic properties that contribute to their high electrical and mechanical conductivity, show great potential for flexible sensors and wearable devices. In this paper, we first introduce the parameters of pressure sensors. Then, we describe the operating principles of resistive, capacitive, piezoelectric, and triboelectric sensors, and review the pressure sensors based on conjugated polymer nanocomposites that were reported in recent years. After that, we introduce the performance characteristics of flexible sensors, regarding their applications in healthcare, human motion monitoring, electronic skin, wearable devices, and artificial intelligence. In addition, we summarize and compare the performances of conjugated polymer nanocomposite-based pressure sensors that were reported in recent years. Finally, we summarize the challenges and future directions of conjugated polymer nanocomposite-based sensors.
Collapse
Affiliation(s)
- Qin-Teng Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 518060, China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou 511400, China
| | - Xin-Hua Zhao
- Department of Chemistry, South University of Science and Technology of China, Shenzhen 518060, China
| |
Collapse
|
9
|
Ojstršek A, Jug L, Plohl O. A Review of Electro Conductive Textiles Utilizing the Dip-Coating Technique: Their Functionality, Durability and Sustainability. Polymers (Basel) 2022; 14:4713. [PMID: 36365707 PMCID: PMC9654088 DOI: 10.3390/polym14214713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 07/29/2023] Open
Abstract
The presented review summarizes recent studies in the field of electro conductive textiles as an essential part of lightweight and flexible textile-based electronics (so called e-textiles), with the main focus on a relatively simple and low-cost dip-coating technique that can easily be integrated into an existing textile finishing plant. Herein, numerous electro conductive compounds are discussed, including intrinsically conductive polymers, carbon-based materials, metal, and metal-based nanomaterials, as well as their combinations, with their advantages and drawbacks in contributing to the sectors of healthcare, military, security, fitness, entertainment, environmental, and fashion, for applications such as energy harvesting, energy storage, real-time health and human motion monitoring, personal thermal management, Electromagnetic Interference (EMI) shielding, wireless communication, light emitting, tracking, etc. The greatest challenge is related to the wash and wear durability of the conductive compounds and their unreduced performance during the textiles' lifetimes, which includes the action of water, high temperature, detergents, mechanical forces, repeated bending, rubbing, sweat, etc. Besides electrical conductivity, the applied compounds also influence the physical-mechanical, optical, morphological, and comfort properties of textiles, depending on the type and concentration of the compound, the number of applied layers, the process parameters, as well as additional protective coatings. Finally, the sustainability and end-of-life of e-textiles are critically discussed in terms of the circular economy and eco-design, since these aspects are mainly neglected, although e-textile' waste could become a huge problem in the future when their mass production starts.
Collapse
|
10
|
Dou L, Zeng Z, Cheng D, Li S, Ke W, Cai G. Weft-Knitted Spacer Fabric for Highly Stretchable-Compressible Strain Sensor, Supercapacitor, and Joule Heater. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203684. [PMID: 36296874 PMCID: PMC9608609 DOI: 10.3390/nano12203684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
The development of wearable electronic devices has greatly stimulated the research interest of textile-based strain sensors, which can effectively combine functionality with wearability. In this work, the fabrication of highly stretchable and compressible strain sensors from weft-knitted spacer fabric was reported. Carbon nanotubes and polypyrrole were deposited on the surface of fabric via an in situ polymerization approach to reduce the electrical resistance. The as-fabricated WSP-CNT-PPy strain sensor exhibits high electrical conductivity and stable strain-sensing performance under different stretching deformations. The WSP-CNT-PPy strain sensor can be stretched up to 450% and compressed to 60% with a pressure of less than 50 KPa, which can be attributed to the unique loop and interval filament structures. The distinguishing response efficiency of WSP-CNT-PPy can effectively detect faint and strenuous body movements. In addition, the electrochemical behavior of WSP-CNT-PPy was also characterized to study the comprehensive properties. The electro-heating performance was also evaluated for feasible Joule heater applications. This work demonstrates the practicability of WSP-CNT-PPy strain sensor fabric for real-time monitoring in promising wearable garments.
Collapse
Affiliation(s)
| | | | | | | | - Wei Ke
- Correspondence: (S.L.); (W.K.); (G.C.)
| | | |
Collapse
|
11
|
Zhou Y, Stewart R. Highly flexible, durable,
UV
resistant, and electrically conductive graphene based
TPU
/textile composite sensor. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yi Zhou
- Dyson School of Design Engineering Imperial College London London UK
| | - Rebecca Stewart
- Dyson School of Design Engineering Imperial College London London UK
| |
Collapse
|
12
|
Shi S, Liang J, Qu C, Chen S, Sheng B. Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. MICROMACHINES 2022; 13:1309. [PMID: 36014231 PMCID: PMC9414723 DOI: 10.3390/mi13081309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 05/08/2023]
Abstract
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human-machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq-1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring.
Collapse
Affiliation(s)
- Shangxuan Shi
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jiao Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
13
|
Shak Sadi M, Kumpikaitė E. Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2039. [PMID: 35745378 PMCID: PMC9229712 DOI: 10.3390/nano12122039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023]
Abstract
Flexible electronic textiles are the future of wearable technology with a diverse application potential inspired by the Internet of Things (IoT) to improve all aspects of wearer life by replacing traditional bulky, rigid, and uncomfortable wearable electronics. The inherently prominent characteristics exhibited by textile substrates make them ideal candidates for designing user-friendly wearable electronic textiles for high-end variant applications. Textile substrates (fiber, yarn, fabric, and garment) combined with nanostructured electroactive materials provide a universal pathway for the researcher to construct advanced wearable electronics compatible with the human body and other circumstances. However, e-textiles are found to be vulnerable to physical deformation induced during repeated wash and wear. Thus, e-textiles need to be robust enough to withstand such challenges involved in designing a reliable product and require more attention for substantial advancement in stability and washability. As a step toward reliable devices, we present this comprehensive review of the state-of-the-art advances in substrate geometries, modification, fabrication, and standardized washing strategies to predict a roadmap toward sustainability. Furthermore, current challenges, opportunities, and future aspects of durable e-textiles development are envisioned to provide a conclusive pathway for researchers to conduct advanced studies.
Collapse
Affiliation(s)
| | - Eglė Kumpikaitė
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų Str. 56, LT-51424 Kaunas, Lithuania;
| |
Collapse
|
14
|
Ismail Z, W Idris WF, Abdullah AH. Graphene-based temperature, humidity, and strain sensor: A review on progress, characterization, and potential applications during Covid-19 pandemic. SENSORS INTERNATIONAL 2022; 3:100183. [PMID: 35633818 PMCID: PMC9126002 DOI: 10.1016/j.sintl.2022.100183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Graphene's potential as material for wearable, highly sensitive and robust sensor in various fields of technology has been widely investigated until now in order to capitalize on its unique intrinsic physical and chemical properties. In the wake of Covid-19 pandemic, it has been noticed that there are various potentials roles that can be fulfilled by graphene-based temperature, humidity and strain sensor, whose roles has not been widely explored to date. This paper takes the liberty to mainly highlight the progress layout and characterization technique for graphene-based sensor while including a brief discussion on the possible strategy of sensing data analysis that can be employed to minimize and prevent the risk of Covid-19 infection within a living community. While majority of the reported sensor is still in the in-progress status, its highlighted role in this work may provide a brief idea on how the ongoing research in graphene-based sensor may lead to the future implementation of the device for routine healthcare check-up and diagnostic point-care during and post-pandemic era. On the other hand, the sensitivity and response time data against working temperature, humidity and strain range that are provided could serve as a reference for benchmarking purpose, which certainly would help enthusiast in the development of a graphene-based sensor with a better performance for the future.
Collapse
|
15
|
Zhao Z, Li Q, Dong Y, Gong J, Li Z, Zhang J. Washable Patches with Gold Nanowires/Textiles in Wearable Sensors for Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18884-18900. [PMID: 35427121 DOI: 10.1021/acsami.2c01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Textile-based flexible electronic devices have attracted tremendous attention in wearable sensors due to their excellent skin affinity and conformability. However, the washing process of such devices may damage the electronic components. Here, a textile-based piezoresistive sensor with ultrahigh sensitivity was fabricated through the layered integration of gold nanowire (AuNW)-impregnated cotton fabric and silver ink screen-printed nylon fabric electrodes, sealing with Parafilm. The prepared piezoresistive sensing patch exhibits outstanding performance, including high sensitivity (914.970 kPa-1, <100 Pa), a fast response time (load: 38 ms, recovery: 34 ms), and a low detection limit (0.49 Pa). More importantly, it can maintain a stable signal output even after 30 000 s of loading-unloading cycles. Furthermore, this sensing patch can efficiently detect breathing, pulse, heart rate, and joint movements during the activities. After five cycles of mechanical washing, the piezoresistive performance keeps 90.3%, demonstrating the high feasibility of this sensor in practical applications. This sensor has a simple fabrication, with good fatigue resistance and durability due to its all-fabric core element. It provides a strategy to address the machine-washing issues in textile electronics. This washable textile sensor is expected to show significant potential in future applications of health monitoring, human-machine interfaces, and artificial skin.
Collapse
Affiliation(s)
- Zhiqi Zhao
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Yu Dong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| |
Collapse
|
16
|
Tian B, Fang Y, Liang J, Zheng K, Guo P, Zhang X, Wu Y, Liu Q, Huang Z, Cao C, Wu W. Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107298. [PMID: 35150063 DOI: 10.1002/smll.202107298] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Electronic textiles (e-textiles) that combine the wearing comfort of textiles and the functionality of soft electronics are highly demanded in wearable applications. However, fabricating robust high-performance stretchable e-textiles with good abrasion resistance and high-resolution aesthetic patterns for high-throughput manufacturing and practical applications remains challenging. Herein, the authors report a new multifunctional e-textile fabricated via screen printing of the water-based silver fractal dendrites conductive ink. The as-fabricated e-textiles spray-coated with the invisible waterproofing agent exhibit superior flexibility, water resistance, wearing comfort, air permeability, and abrasion resistance, achieving a low sheet resistance of 0.088 Ω sq-1 , high stretchability of up to 154%, and excellent dynamic stability for over 1000 cyclic testing (ε = 100%). The printed e-textiles can be explored as strain sensors and ultralow voltage-driven Joule heaters driven for personalized thermal management. They finally demonstrate an integrated aesthetic smart clothing made of their multifunctional e-textiles for human motion detection and body-temperature management. The printed e-textiles provide new opportunities for developing novel wearable electronics and smart clothing for future commercial applications.
Collapse
Affiliation(s)
- Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Yuhui Fang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Ke Zheng
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Panwang Guo
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Youfusheng Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Qun Liu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| | - Zhida Huang
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Changyong Cao
- Laboratory for Soft Machines & Electronics, Department of Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Printing and Packaging, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
17
|
Qiao Y, Tang H, Liu H, Jian J, Ji S, Han F, Liu Z, Liu Y, Li Y, Cui T, Cai J, Gou G, Zhou B, Yang Y, Ren TL, Zhou J. Intelligent and highly sensitive strain sensor based on indium tin oxide micromesh with a high crack density. NANOSCALE 2022; 14:4234-4243. [PMID: 35234767 DOI: 10.1039/d1nr08005a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cracks play an important role in strain sensors. However, a systematic analysis of how cracks influence the strain sensors has not been proposed. In this work, an intelligent and highly sensitive strain sensor based on indium tin oxide (ITO)/polyurethane (PU) micromesh is realized. The micromesh has good skin compatibility, water vapor permeability, and stability. Due to the color of the ITO/PU micromesh, it can be invisible on the skin. Based on the fragility of ITO, the density and resistance of cracks in the micromesh are greatly improved. Therefore, the ITO/PU micromesh strain sensor (IMSS) has an ultrahigh gauge factor (744.3). In addition, a finite element model based on four resistance layers is proposed to explain the performance of the IMSS and show the importance of high-density cracks. Compared with other strain sensors based on low-density cracks, the IMSS based on high-density cracks has larger sensitivity and better linearity. Physiological signals, such as respiration, pulse, and joint motion, can be monitored using the IMSS self-fixed on the skin. Finally, an invisible and artificial throat has been realized by combining the IMSS with a convolutional neural network algorithm. The artificial throat can translate the throat vibrations of the tester automatically with an accuracy of 86.5%. This work has great potential in health care and language function reconstruction.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Hao Tang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Haidong Liu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Jinming Jian
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Shourui Ji
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Fei Han
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Ying Liu
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yuanfang Li
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Tianrui Cui
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Jingxuan Cai
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Guangyang Gou
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yi Yang
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Tian-Ling Ren
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
18
|
Liu Z, Zhu T, Wang J, Zheng Z, Li Y, Li J, Lai Y. Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. NANO-MICRO LETTERS 2022; 14:61. [PMID: 35165824 PMCID: PMC8844338 DOI: 10.1007/s40820-022-00806-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 05/09/2023]
Abstract
Wearable strain sensors are arousing increasing research interests in recent years on account of their potentials in motion detection, personal and public healthcare, future entertainment, man-machine interaction, artificial intelligence, and so forth. Much research has focused on fiber-based sensors due to the appealing performance of fibers, including processing flexibility, wearing comfortability, outstanding lifetime and serviceability, low-cost and large-scale capacity. Herein, we review the latest advances in functionalization and device fabrication of fiber materials toward applications in fiber-based wearable strain sensors. We describe the approaches for preparing conductive fibers such as spinning, surface modification, and structural transformation. We also introduce the fabrication and sensing mechanisms of state-of-the-art sensors and analyze their merits and demerits. The applications toward motion detection, healthcare, man-machine interaction, future entertainment, and multifunctional sensing are summarized with typical examples. We finally critically analyze tough challenges and future remarks of fiber-based strain sensors, aiming to implement them in real applications.
Collapse
Affiliation(s)
- Zekun Liu
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Junru Wang
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Zijian Zheng
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR, China
| | - Yi Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jiashen Li
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
19
|
Qiao Y, Li X, Wang J, Ji S, Hirtz T, Tian H, Jian J, Cui T, Dong Y, Xu X, Wang F, Wang H, Zhou J, Yang Y, Someya T, Ren TL. Intelligent and Multifunctional Graphene Nanomesh Electronic Skin with High Comfort. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104810. [PMID: 34882950 DOI: 10.1002/smll.202104810] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/21/2021] [Indexed: 05/15/2023]
Abstract
As the aging population increases in many countries, electronic skin (e-skin) for health monitoring has been attracting much attention. However, to realize the industrialization of e-skin, two factors must be optimized. The first is to achieve high comfort, which can significantly improve the user experience. The second is to make the e-skin intelligent, so it can detect and analyze physiological signals at the same time. In this article, intelligent and multifunctional e-skin consisting of laser-scribed graphene and polyurethane (PU) nanomesh is realized with high comfort. The e-skin can be used as a strain sensor with large measurement range (>60%), good sensitivity (GF≈40), high linearity range (60%), and excellent stability (>1000 cycles). By analyzing the morphology of e-skin, a parallel networks model is proposed to express the mechanism of the strain sensor. In addition, laser scribing is also applied to etch the insulating PU, which greatly decreases the impedance in detecting electrophysiology signals. Finally, the e-skin is applied to monitor the electrocardiogram, electroencephalogram (EEG), and electrooculogram signals. A time- and frequency-domain concatenated convolution neural network is built to analyze the EEG signal detected using the e-skin on the forehead and classify the attention level of testers.
Collapse
Affiliation(s)
- Yancong Qiao
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518707, China
| | - Xiaoshi Li
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Jiabin Wang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shourui Ji
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Thomas Hirtz
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - He Tian
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Jinming Jian
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tianrui Cui
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Ying Dong
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Xinwei Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei Wang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hong Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianhua Zhou
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518707, China
| | - Yi Yang
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Takao Someya
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tian-Ling Ren
- School of Integrated Circuits (SIC) and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Sideri IK, Tagmatarchis N. Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. MATERIALS HORIZONS 2021; 8:3187-3200. [PMID: 34731229 DOI: 10.1039/d1mh01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extensive research on carbon nanostructures and 2D nanomaterials will come to fruition once these materials steadily join everyday-life applications. Their chemical functionalization unlocks their potential as carriers of customized properties and counterparts to fabric fibers. The scope of the current review covers the chemical modification of carbon nanostructures and 2D nanomaterials for hybrid fabrics with enhanced qualities against critical operational and weather conditions, such as antibacterial, flame retardant, UV resistant, water repellent and high air and water vapor permeability activities.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
21
|
Kalasin S, Sangnuang P, Surareungchai W. Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Anal Chem 2021; 93:10661-10671. [PMID: 34288659 DOI: 10.1021/acs.analchem.1c02085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The serum creatinine level is commonly recognized as a measure of glomerular filtration rate (GFR) and is defined as an indicator of overall renal health. A typical procedure in determining kidney performance is venipuncture to obtain serum creatinine in the blood, which requires a skilled technician to perform on a laboratory basis and multiple clinical steps to acquire a meaningful result. Recently, wearable sensors have undergone immense development, especially for noninvasive health monitoring without a need for a blood sample. This article addresses a fiber-based sensing device selective for tear creatinine, which was fabricated using a copper-containing benzenedicarboxylate (BDC) metal-organic framework (MOF) bound with graphene oxide-Cu(II) and hybridized with Cu2O nanoparticles (NPs). Density functional theory (DFT) was employed to study the binding energies of creatinine toward the ternary hybrid materials that irreversibly occurred at pendant copper ions attached with the BDC segments. Electrochemical impedance spectroscopy (EIS) was utilized to probe the unique charge-transfer resistances of the derived sensing materials. The single-use modified sensor achieved 95.1% selectivity efficiency toward the determination of tear creatinine contents from 1.6 to 2400 μM of 10 repeated measurements in the presence of interfering species of dopamine, urea, and uric acid. The machine learning with the supervised training estimated 83.3% algorithm accuracy to distinguish among low, moderate, and high normal serum creatinine by evaluating tear creatinine. With only one step of collecting tears, this lab-on-eyeglasses with disposable hybrid textile electrodes selective for tear creatinine may be greatly beneficial for point-of-care (POC) kidney monitoring for vulnerable populations remotely, especially during pandemics.
Collapse
Affiliation(s)
- Surachate Kalasin
- Faculty of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut's University of Technology, Thonburi 10140, Thailand
| | - Pantawan Sangnuang
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand
| | - Werasak Surareungchai
- Pilot Plant Research and Development Laboratory, King Mongkut's University of Technology, Thonburi 10150, Thailand.,School of Bioresource and Technology, King Mongkut's University of Technology, Thonburi 10150, Thailand
| |
Collapse
|
22
|
Yu R, Zhu C, Wan J, Li Y, Hong X. Review of Graphene-Based Textile Strain Sensors, with Emphasis on Structure Activity Relationship. Polymers (Basel) 2021; 13:polym13010151. [PMID: 33401466 PMCID: PMC7795091 DOI: 10.3390/polym13010151] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Graphene-based textile strain sensors were reviewed in terms of their preparation methods, performance, and applications with particular attention on its forming method, the key properties (sensitivity, stability, sensing range and response time), and comparisons. Staple fiber strain sensors, staple and filament strain sensors, nonwoven fabric strain sensors, woven fabric strain sensors and knitted fabric strain sensors were summarized, respectively. (i) In general, graphene-based textile strain sensors can be obtained in two ways. One method is to prepare conductive textiles through spinning and weaving techniques, and the graphene worked as conductive filler. The other method is to deposit graphene-based materials on the surface of textiles, the graphene served as conductive coatings and colorants. (ii) The gauge factor (GF) value of sensor refers to its mechanical and electromechanical properties, which are the key evaluation indicators. We found the absolute value of GF of graphene-based textile strain sensor could be roughly divided into two trends according to its structural changes. Firstly, in the recoverable deformation stage, GF usually decreased with the increase of strain. Secondly, in the unrecoverable deformation stage, GF usually increased with the increase of strain. (iii) The main challenge of graphene-based textile strain sensors was that their application capacity received limited studies. Most of current studies only discussed washability, seldomly involving the impact of other environmental factors, including friction, PH, etc. Based on these developments, this work was done to provide some merit to references and guidelines for the progress of future research on flexible and wearable electronics.
Collapse
Affiliation(s)
- Rufang Yu
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Chengyan Zhu
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Junmin Wan
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongqiang Li
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
| | - Xinghua Hong
- College of Textiles (International Silk Institute), Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; (R.Y.); (C.Z.); (Y.L.)
- Tongxiang Research Institute, Zhejiang Sci-Tech University, Tongxiang 314599, China;
- Correspondence: ; Tel.: +86-0571-86843262
| |
Collapse
|
23
|
Chen T, Zhang SH, Lin QH, Wang MJ, Yang Z, Zhang YL, Wang FX, Sun LN. Highly sensitive and wide-detection range pressure sensor constructed on a hierarchical-structured conductive fabric as a human-machine interface. NANOSCALE 2020; 12:21271-21279. [PMID: 33063798 DOI: 10.1039/d0nr05976e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the booming development of flexible pressure sensors, the need for multifunctional and high-performance pressure sensor has become increasingly important. Although great progress has been made in the novel structure and sensing mechanism of the pressure sensor, the trade-off between the sensitivity and the wide-detection range has prevented its development, further restricting its application in wearable human-machine interfaces (WHMIs). Herein, a novel pressure sensor based on the hierarchical conductive fabric was fabricated and purposed as a WHMI. Poly(3,4-ethylenedioxythiophene) nanowires (PEDOT NWs) and cellulose nanofibers (CNF) were stacked on a conductive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) fabric to form a special spatial multi-level hierarchical structure inside the fabric, which is a breakthrough for the improvement of the sensor's performance and makes the fabrication process of in situ polymerization suitable for large-scale production. The multi-level hierarchical structures endowed the pressure sensor with characteristics of high sensitivity (15.78 kPa-1), a wide-detection range from 30 Pa to 700 kPa, and outstanding stability toward compression and bending deformation. Benefiting from its excellent performance, a human-machine interface based on arrayed pressure sensors and signal processing system can control the illumination of the LED array and effectively capture finger motion to control the eight-direction movement of an unmanned aerial vehicle (UAV). This improved performance of the pressure sensor based on the hierarchical conductive fabric made it a widespread application in intelligent fabric, electronic skin, human-machine interfaces, and robotics.
Collapse
Affiliation(s)
- Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Shao-Hui Zhang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qi-Hang Lin
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Ming-Jiong Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Zhan Yang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Yun-Lin Zhang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Feng-Xia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| | - Li-Ning Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China.
| |
Collapse
|
24
|
da Luz FS, Garcia Filho FDC, del-Río MTG, Nascimento LFC, Pinheiro WA, Monteiro SN. Graphene-Incorporated Natural Fiber Polymer Composites: A First Overview. Polymers (Basel) 2020; 12:polym12071601. [PMID: 32708475 PMCID: PMC7408016 DOI: 10.3390/polym12071601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 11/26/2022] Open
Abstract
A novel class of graphene-based materials incorporated into natural lignocellulosic fiber (NLF) polymer composites is surging since 2011. The present overview is the first attempt to compile achievements regarding this novel class of composites both in terms of technical and scientific researches as well as development of innovative products. A brief description of the graphene nature and its recent isolation from graphite is initially presented together with the processing of its main derivatives. In particular, graphene-based materials, such as nanographene (NG), exfoliated graphene/graphite nanoplatelet (GNP), graphene oxide (GO) and reduced graphene oxide (rGO), as well as other carbon-based nanomaterials, such as carbon nanotube (CNT), are effectively being incorporated into NLF composites. Their disclosed superior mechanical, thermal, electrical, and ballistic properties are discussed in specific publications. Interfacial shear strength of 575 MPa and tensile strength of 379 MPa were attained in 1 wt % GO-jute fiber and 0.75 wt % jute fiber, respectively, epoxy composites. Moreover, a Young’s modulus of 44.4 GPa was reported for 0.75 wt % GO-jute fiber composite. An important point of interest concerning this incorporation is the fact that the amphiphilic character of graphene allows a better way to enhance the interfacial adhesion between hydrophilic NLF and hydrophobic polymer matrix. As indicated in this overview, two basic incorporation strategies have so far been adopted. In the first, NG, GNP, GO, rGO and CNT are used as hybrid filler together with NLF to reinforce polymer composites. The second one starts with GO or rGO as a coating to functionalize molecular bonding with NLF, which is then added into a polymeric matrix. Both strategies are contributing to develop innovative products for energy storage, drug release, biosensor, functional electronic clothes, medical implants, and armor for ballistic protection. As such, this first overview intends to provide a critical assessment of a surging class of composite materials and unveil successful development associated with graphene incorporated NLF polymer composites.
Collapse
Affiliation(s)
- Fernanda Santos da Luz
- Military Institute of Engineering—IME, Materials Science Program, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil; (F.S.d.L.); (L.F.C.N.); (W.A.P.)
| | - Fabio da Costa Garcia Filho
- Department of Mechanical and Aerospace Engineering, University of California San Diego—UCSD, La Jolla, CA 92093-0411, USA or (F.d.C.G.F.); (M.T.G.d.-R.)
| | - Maria Teresa Gómez del-Río
- Department of Mechanical and Aerospace Engineering, University of California San Diego—UCSD, La Jolla, CA 92093-0411, USA or (F.d.C.G.F.); (M.T.G.d.-R.)
- DIMME, Grupo de Durabilidad e Integridad Mecánica de Materiales Estructurales, Universidad Rey Juan Carlos, C/Tulipán, s/n, 28933 Móstoles, Madrid, Spain
| | - Lucio Fabio Cassiano Nascimento
- Military Institute of Engineering—IME, Materials Science Program, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil; (F.S.d.L.); (L.F.C.N.); (W.A.P.)
| | - Wagner Anacleto Pinheiro
- Military Institute of Engineering—IME, Materials Science Program, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil; (F.S.d.L.); (L.F.C.N.); (W.A.P.)
| | - Sergio Neves Monteiro
- Military Institute of Engineering—IME, Materials Science Program, Praça General Tibúrcio 80, Urca, Rio de Janeiro 22290-270, Brazil; (F.S.d.L.); (L.F.C.N.); (W.A.P.)
- Correspondence: or
| |
Collapse
|